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ELECTRON EIGENSTATES IN MAGNETOELECTRONIC 
SUBBANDS 

Ecaterina  NICULESCU* 

În lucrare sunt calculate stările uniparticulă pentru electroni şi goluri grele 
într-un fir cuantic cilindric din GaAs, în prezenţa unui câmp magnetic extern 
paralel cu axa firului. Metoda originală propusă conduce la valori ale energiei 
stării fundamentale şi ale extinderii radiale a funcţiei de undă care sunt în bună 
concordanţă cu cele obţinute prin metoda variaţională, utilizată uzual în astfel de 
calcule. Metoda necesită un timp de calcul redus şi poate fi extinsă pentru studierea 
stărilor excitate în heterostructuri semiconductoare sub acţiunea unor câmpuri 
externe 

The single-particle states of electron and heavy-hole in a quantum wire in the 
presence of an axial magnetic field are calculated by an analytical method 
introduced herein. The quantum wire is assumed to be a cylinder of GaAs material 
surrounded by Al0.3Ga0.7As, with finite confinement potentials. It is significant that a 
comparison of the ground-state energies and of the radial widths of the wave 
function with those computed by a variational method shows good quantitative 
agreement for varying wire radii and magnetic field strengths. The method is fast 
computationally and can be readily extended to calculate energies of higher excited 
states.  

Introduction 

In recent years, there has been great interest in investigating quantum-well 
wires (QWWs) both theoretically and experimentally. In such systems, the 
electron is confined to move along the length of the wire while the motion is 
quantised in the two transverse directions. Due to the strong confinement of 
QWW’s, the optical and electron transport characteristics are quite different from 
those of 3D and 2D systems, leading to novel optoelectronic devices.  
This has motive extensive research in nanowire technology [1-3] and in study of 
their electronic properties [4-9]. The optical spectra of semiconductor quantum 
wires can be dramatically modified by the application of external static electric 
and / or magnetic fields. In particular, the magnetic field modifies the symmetry 
of the electronic states and increases the confining energies of the carriers.  
 The first step towards understanding the optoelectronic properties of a 
quantum wire device is to calculate the quantum-confined electron and hole states 
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in the structure. Previously, Tsetseri et al. [8] reported a study of the ground state 
of quantum wires using the finite difference method, in the absence of the external 
fields. The energy levels of a shallow impurity in GaAs-AlGaAs QWWs under 
the action of the magnetic field were theoretically studied using variational 
methods for the infinite potential barriers [10,11].  

In the present paper we investigate the effect of an axial magnetic field on 
the electron and heavy hole ground states in GaAs-AlGaAs QWWs with a finite 
height of the confinement potential. 
 
 Theory 
 We consider a cylinder of radius R, which is composed of GaAs embedded 
in AlxGa1-xAs under the action of a magnetic field applied in the axial direction, 

zB ˆB= . In the effective mass approximation, the Hamiltonian describing the 
electron (hole) motion is given by 
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Here i = (e,h) denotes electron and hole, respectively, iA  is the vector 
potential, and the confining potentials for the electrons (holes), )(heV , depend on 
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The eigenenergies and eigenstates of the electron confined in the quantum wire 
are obtained by solving the Schrödinger equation 
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In zero magnetic field case, the problem can be solved exactly. The 
electron wave function for a confined state ( )z,,ϕρΦ  with corresponding energy 
eigenvalue 0E  is given by 
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where J is the Bessel function of the first kind and K is the modified Bessel 
function of the second kind,  
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mA  and nB  are the normalization factors and the energy 0E  is get by applying 
the boundary conditions at R=ρ .  

When a magnetic field is applied the problem can no longer be solved 
analitically. We will proceed by relying on a variational calculation of the energy. 
We propose the following variational wave function 

  ( ) ( ) 2
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where α  is the variational parameter. For the ground state energy, ( )0,0 == zkm , 
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and α  is obtained by minimizing the energy  
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 The method presented above is also quite applicable to holes. For our 
analysis we used the simplest approximation of parabolic valence band, 
neglecting any mixing between heavy and light holes. This approximation is 
reasonable good for quantum wires in magnetic fields; as pointed out Goldoni et 
al. [12] and Vouilloz et al. [2] even in strongly confined two-dimensional systems 
the ground state in the valence band is almost a pure heavy hole (hh) state (92%). 
Thus, for the study of the hole’s ground state the Hamiltonian can be obtained 
from (3) by exchanging the index he ↔ , and changing the sign of the 
elementary charge (in Eq. (3), e > 0).  
 However, the calculation of the band structure of quantum wires in 
magnetic field can be done analitically if we use structures with infinite potential 
barrier heights and the effective radius, eeffR , hheffR , so that we obtain the 

correct zero-field energies. Thus, effR ’s are so chosen that for each i =(e, hh),  

  ( ) 0100 =effRkJ       (10) 

so effRk10  is the first zero of the spherical Bessel function with ( )0110 == zkkk . 

Of course, the effective radius, effR , are greater than the physical radius because 
in real structure there is significant penetration of the wave functions into the 
barriers.  
 For the infinite-barrier case,   
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The Schrödinger equation for the ground s-like state of the electron is rewritten as 
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with Bq
=γ . By letting 2
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The eigenfunctions are written as follows 
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1F  is the confluent hypergeometric function, which remains 

finite at 0=ξ  and C, the normalization factor. The value of β  is determined by 
the boundary condition 
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0β  is the first zero of Eq. (15), the eigenvalue are given by  

  ( )
m
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This effective infinite-barrier (EIB) model is also applicable to heavy (light)-
holes. 
 
 Results and Discussion 
 We have studied the electron and heavy hole ground states in cylindrical 
GaAs-Al0.3Ga0.7As quantum wires in the presence of an axial uniform magnetic 
field. We assumed an electron (heavy hole) effective mass constant for the entire 
structure: 0067.0 mme =  and 034.0 mmhh = . The finite potential barriers are 
taken as 
 ( )2

0 37.0155.1 xxQV ii +=  (eV),  
 
where x is the Al concentration.  
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 The single-particle confined wire states are calculated using our effective 
infinite-barrier model and compared with those obtained from the variational 
method. In Fig. 1. is plotted the energy shift, )0()( EBEE −=Δ , as a function of 
the magnetic field for electrons in QWW.  
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Fig. 1. The electron energy shift, )0()( EBEE −=Δ , as a function of magnetic field. Solid 

lines: EIB method; dotted lines: variational method. 
 

It is significantly that there is a remarkably good agreement in the ground-
state energies for all studied wire sizes and magnetic field strengths. Even for 
small values of the radius, when the geometric confinement determines the 
behavior of the electronic states and the difference RReff −  is appreciable 
(Table 1), the confining energies calculated with the infinite-model are less than 
1% lower than the values obtained using the variational method. Similar results 
are obtained for heavy holes. 

 
 Table 1 

 
R (nm) 

eeffR (nm) hheffR  (nm) 

5 6.716 5.835 
10 11.647 10.823 
20 21.632 20.820 

  
 

In Fig. 2 we present the single-particle energies obtained with EIB method 
as a function of the magnetic field for different values of the wire radius.  
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Fig. 2. Variation of single-particle 1s-energies with magnetic field in a GaAs QWW with different 
wire radii. 

 
 

It is seen that for high magnetic fields such that the quantum confinement 
energy is smaller than the magnetic energy, the ground-state energies approach 

im
qB

2
1 , the n =0 Landau level. This high-field limit is reached if the wire 

effective radius, effR , exceeds the cyclotron radius, 
γ
1

=cR , plotted in Fig. 3.  
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Fig. 3. Cyclotronic radius versus magnetic field 

 
In the magnetic field presence, the wave functions become more 

compressed and the lateral width of the wave function, given by 
∞∞ ΨΨ= ρρ , is decreased. This is shown in Fig. 4, where the results scaled 

by the cyclotron radius are presented. The changeover from low-field to high-field 
behavior occurs when the average radial position ρ  becomes comparable to 

effR , and in high-field limit the lateral width of the wave function approach cR . 
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Fig. 4. Magnetic field dependence of average radial position scaled with the cyclotron radius. 

Electron: solid lines; heavy hole: dotted lines. 
 
  Note that the values obtained from the two methods are again in 
quantitative agreement, as observed in Fig. 5.  
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Fig. 5. The electron average radial position for different wire radii using EIB method (solid lines) 

and variational method (dotted lines). 
 

Conclusion 

 We have been studied single-particle states of electron and heavy hole in a 
quantum wire with finite potential barrier in the presence of a uniform magnetic 
field. The calculation has been performed using an original analytical method, 
whose results agree fairly well with corresponding variational ones. As expected, 
in quantum wires with large radii at high magnetic fields the single-particle 
ground states go over into the n = 0 Landau levels.  
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