U.P.B. Sci. Bull., Series C, Vol. 86, Iss. 3, 2024 ISSN 2286-3540

A STUDY ON MONITORING HETEROGENEOUS CLUSTER
INFRASTRUCTURES

Sergiu Weisz!, Toan-Teodor Teugea?, Maria-Elena Mihailescu®, Darius Mihai?,
Mihai Carabas®, Nicolae Tapus®

Monitoring solutions have been a mainstay of cloud infrastructures for the
past two decades. Because of this our conceptions about infrastructure need
to be re-evaluated. The monitoring paradigm has shifted, and new solutions
have appeared to supplant existing software. This paper will analyze the
existing cluster monitoring software available, present their advantages and
drawbacks. Based on the analysis we will present an applied use case of
cluster monitoring based on the tools presented.

1. Introduction

As the size of institutional IT clusters has increased, the likelihood of
systems failure has turned from a rare occurrence into an expected cost of
doing business. In order for the mission critical services to not be affected
system issues have to be detected or prevented from appearing.

System administrators use monitoring tools to extract information about
the state of nodes and applications. The status can be represented by metrics,
such as request rate, memory usage, response time for applications, or resource

'PhD student, Faculty of Automatic Control and Computer Science, National
University of Science and Technology POLITEHNICA Bucharest, Romania, e-mail:
sergiu.weisz@upb.ro

2Masters student, Faculty of Automatic Control and Computer Science, National Uni-
versity of Science and Technology POLITEHNICA Bucharest, Romania, e-mail: ioan_-
teodor.teugeal@stud.acs.upb.ro

3PhD student, Faculty of Automatic Control and Computer Science, National
University of Science and Technology POLITEHNICA Bucharest, Romania, e-mail:
maria.mihailescu@upb.ro

4PhD student, Faculty of Automatic Control and Computer Science, National
University of Science and Technology POLITEHNICA Bucharest, Romania, e-mail:
darius.mihai@upb.ro

SProfessor, Faculty of Automatic Control and Computer Science, National Uni-
versity of Science and Technology POLITEHNICA Bucharest, Romania, e-mail:
mihai.carabas@upb.ro

6Professor, Faculty of Automatic Control and Computer Science, National Uni-
versity of Science and Technology POLITEHNICA Bucharest, Romania, e-mail:
nicolae.tapusQupb.ro

4 S Weisz, IT Teugea, ME Mihailescu, D Mihai, M Carabas, N Tapus

usage for hosts. Logs can also be an information source that can indicate issues
with nodes or services.

There exists a breadth of monitoring and observability tools that can
be deployed and configured. Each solution has advantages, such as optimized
information lookup, visualization support, easy scalability and setup.

In this paper we will present the current state of the art of free and open
source monitoring solutions. We will focus on their advantages, deployment use
cases and disadvantages, taking into account scalability, visualization support,
alerting support.

Based on the state of the art we will be presenting a use case for deploying
monitoring solutions in a HPC cluster environment situated at the National
University of Sciences and Technology Politehnica Bucharest (UNSTPB). The
infrastructure description will include the services and types of nodes that we
integrate and issues that we have had in deploying the monitoring tools.

2. Related work

In this chapter we will be enumerating the different cluster monitoring
and alerting solutions used by systems administrators. We will focus on the
use cases that they serve, their ability to visualize data in different forms
such as graphs, lists and histograms. We will pay attention the ability of the
solutions to integrate information provided from different types of systems and
applications and display the information in custom dashboards. Community
support is another aspect that we will focus on, which can signal the solution’s
health and future prospects.

We discuss cluster monitoring solutions which can gather information
from as many types of systems as possible, and display it using complex visu-
alization methods. The information that is displayed has to be in the form of
graphs, because they can display at a glance the system state, and its evolution
in a time period. A simple graph is sometimes not enough to display complex
information, so we will also look at the other visualization types that can be
offered, such as charts and histograms. The monitoring solutions have to be
free and open source, and be hosted on-site for security and licensing issues.

Monitoring software has to collect data from the nodes and applications
in the cluster. This can be done in a pull or push configuration. Pull configu-
ration connects to each node and downloads information from them, while the
push configuration receives the information from each nodes. The pull config-
uration is recommended in situations where all nodes can be accessed by the
monitoring machines, and in systems where the consumers cannot send data
to the monitoring systems. The push configuration is used when the client
systems can access the central monitoring system, but not vice versa.

Scalability is an inportant factor when discussing desployed services, be-
cause clusters increase in size, and their monitoring needs increase too. A

A study on monitoring heterogeneous cluster infrastructures 5

solution needs to be able to scale up without the need to pay increased fees,
and with the ability to be set up without needing to be re-installed.

2.1. Zabbix

Zabbix [I4] is a free and open source network monitoring solution which
gathers data from system nodes or networking equipment deployed in the clus-
ter. Zabbix uses a pull method of downloading metrics from systems. This
means that an agent has to be developed for Zabbix, which will expose de
information that will be downloaded by the server. As it is focused on net-
working monitoring, the visualization support for Zabbix is limited to 15 types
of panels based on maps graphs and charts.

Zabbix [19] is a more complex solution to set up, as opposed to modern
solutions such as Prometheus and InfluxDB. It needs an existing web server and
database to be set up, which will be connected to it. This added complexity
also makes it harder to use for quick lookups and testing, because the data is
stored in a specific format in the SQL database.

Zabbix offers an alerting system based on the metrics [21] that are stored
by configuring actions in the web interface.

2.2. InfluxDB

InfluxDB [5] is a time series database that collects information from
agents running on nodes. It uses the push model to receive metrics from nodes
in the cluster; which can be an issue if the number of agents is large, as it can
puts a large amount of pressure on the monitor node. The issue being that
InfluxDB can offer a HA platform only for paying customers.

InfluxDB has proven to be a popular solution for many types of envi-
ronments such as IoT [20] or High Energy Phisics [16], because it provides
an SQL-like interface, and large programming languages support, which can
perform lookups.

As opposed to other solutions such as Zabbix or Prometheus, InfluxDB’s
use case is for event logging as opposed to metrics gathering. For InfluxDB
the focus is not on querying and joining metrics but on being able to look up
time based events for logging purposes. InfluxDB supports alerts for specific
triggers selected by the users, the same as other monitoring solutions.

InfluxDB does not support visualizations by itself, so it is most often
packed together with Chronograf[3], a product of the same developers. Tt
allows users to run test queries and create dashboards to display data from
InfluxDB.

2.3. Prometheus

Prometheus [11] is a time series database that collects data retrieved from
monitored systems such as nodes and applications. It uses the pull model to
download information exposed by endpoints running on the same systems as

6 S Weisz, IT Teugea, ME Mihailescu, D Mihai, M Carabas, N Tapus

the monitored solutions. Metrics data is the focus of the time series indexing.
The metrics are downloaded from clients which have to respond on a specific
port [23]. The issue with the pull model is that it requires routing between all
the nodes and the monitoring system and an open firewall for the inter-node
communication, which is hard to configure in some instances.

Prometheus offers limited visualization support through a web interface.
It allows users to test different queries and see their output, but it doesn’t
integrate many visualization types, and it doesn’t support dashboards.

High availability is available in Prometheus, because it can be deployed
with multiple front end server that can be connected to the same database
[1].

Prometheus can be integrated with AlertManager [10], an alert engine
which can be installed along side Prometheus, and queries Prometheus for
metrics information. It can send alerts based on conditions from different
metrics. The alerts can be silenced, or repeated as long as the condition
matches.

Prometheus benefits from a large community adoption rate because of
its ease of use, performance per dollar in virtualized environment and agents
ease of use [15].

2.4. Grafana

Grafana [4] is a tool that offers visualization and alerting tools for dis-
playing information based on different data sources. It does not handle data
storage, instead connecting to data sources by implementing their querying
language.

In most use cases Grafana is found pulling data from time series databases
[18], which are specialized organizing data based on the time that it was
recorded. These types of databases are used because Grafana can be set up
for graphing different metrics, system statuses and metrics which can be used
to summarize the status of a system or an application.

Grafana offers a large variety of data visualization options to allow differ-
ent types of events an metrics to be displayed. Information can be displayed
as time series, charts, heat maps, histograms, gauges and more. They can
be integrated in dashboards which can pull data from data sources. Grafana
dashboards can be build from scratch by the users or they can be downloaded
from community forums which export them as JSON files. Dashboards can be
further customized through parameters specified by the user.

Grafana supports alerts based on triggers, but it supports fewer features
than a more alert focused solution.

2.5. Nagios

Nagios [7] is an open source event monitoring system. It is both used as a
stand alone product, used for monitoring service states, and as a base project

A study on monitoring heterogeneous cluster infrastructures 7

used by other larger infrastructure projects such as Checkmk and Icinga. The
NRPE Nagios agent is required in order for the Nagios service to access the
state of a machine. The agent can be made to checked the status of different
metrics that can be collected by it

Nagios is primarily used as a health check system for cluster infrastruc-
tures [22]. Additional plugins such as RRDtool [12] can be used to also display
information obtained from Checkmk, but setting these up increase the setup
complexity, and aren’t in the stated goals of Nagios.

A web interface is provided by Nagios where the general state of hosts
and services can be seen at a glance. Nagios configurations are file based, so
changing the system requires is not as simple as for other systems.

3. Monitoring Infrastructure

Based on the state of the art for monitoring solutions we have had to make
a choice of what system to use in the institutional deployment. The monitoring
solution selected should be easy to set up, and configure. It should provide a
flexible node configuration system that allows for splitting hosts into groups.
We should be able to visualize the state of the different systems deployed, with
further detailed panels available for deep dives. An alerting system should be
setup which checks the node states and notifies administrators of outages and
system failures.

The following chapter presents the infrastructure deployed at UNSTPB,
which satisfies the above mentioned requirements, using free and open source
software. We will be detailing the configurations made, the software solutions
chosen and we will display the resulting visualizations.

3.1. Cluster infrastructure overview

The UNSTPB cluster is made up of an OpenStack [9] private cloud in-
frastructure that servers the compute needs of the teaching and research staff.
The private cloud runs on physical machines distributed in three data centers
which serve as both compute and service nodes collocated, installed through
the kolla-ansible [6] deployment tool. All the OpenStack services and phys-
ical nodes must be monitored to make sure that the machines are using the
resources efficiently, and the services are running correctly.

The cluster also hosts a SLURM [I3] grid that runs compute-intensive
workloads for users who want to run multi-machine OpenMPT [§] jobs or GPU
accelerated applications. The SLURM service status and the node resource
usage must be monitored, to make sure that we are able to serve the users’
needs.

Both the grid and cloud software use a CEPH [I] storage cluster which
is deployed in a single data center location. The storage system must be
monitored to ensure system uptime and quality of operations. Because the

8 S Weisz, IT Teugea, ME Mihailescu, D Mihai, M Carabas, N Tapus

storage is running on hard disks we must also monitor the health of each disk,
to prevent disk failures which can result in data loss.

3.2. Implementing the runtime data collection service

The OpenStack infrastructure hosts a large number of services and the
nodes, which requires a scalable method to regularly monitor host and service
health. Logs are not enough to inspect the health of a service, because they
are a way to display certain errors, but they do not display a simple to parse
message. Metrics can be used to parse at a glance the general state of services
and systems. They can be used to determine both the operational parameters
in which services and systems are expected to run, and also deviations from the
expected behaviour. Logs would only allow us to see when a system actually
fails, not the iterative process of its failure.

For the collection of statistical data, we chose to use the Prometheus
service. Prometheus works by connecting to a list of endpoints configured to
export runtime parameters.

We chose to use Prometheus because it runs using the pull model, where
it connects to services, instead of the push model, where services connect
directly to a central node. The advantage of using the pull method is that we do
not have to provide a central node with a large number of resources dedicated
to it. Another advantage of the Prometheus service is that it provides an easy
query interface where we can perform complex queries to obtain information
in the form of time series. The Prometheus community also provides a large
array of tools and agents to monitor different services and hardware, so that
we would not need to implement agents specific to our own use case.

The disadvantage of using Prometheus is that we have to ensure connec-
tivity between the system on which Prometheus is running and all the stations
from which we want to collect information. Thus it is necessary to configure
network routes, entries in firewall systems and configurations on nodes that al-
low connection between nodes. All these aspects add complexity to the system
and make it harder to maintain, but we can solve these aspects by automating
the generation of configurations for nodes, thus removing the human element
from configuring endpoints.

Prometheus provides a graphical interface in the form of a web page
where we can run queries and view the results. Figure|l|displays the Prometheus
service GUI querying the number of virtual machines running in the OpenStack
infrastructure. The web interface can be used for test queries, but in order to
have broader visualization support, one has to run another service which will
serve information from Prometheus.

Each configured service has a different endpoint to which it publishes
the information and uses a different way to aggregate it because each service
works differently. For each type of service we need to configure an application
(called an exporter) that will collect the information, aggregate it and publish

A study on monitoring heterogeneous cluster infrastructures 9

it. Each exporter has a different configuration mode and receives different
parameters.

Prometheus is configured to connect to the exporter using the HTTP
protocol and download the exposed information. Listing[I]shows a Prometheus
job which will download service information from the OpenStack infrastructure
exporter.

— job_name: ’openstack_exporter’
static_configs:
— targets: |

"os—controller.grid.pub.1r0:9198 7,

T = W N =

]

LisTING 1. Prometheus exporter configuration

Since it was necessary to configure the Prometheus service for more than
100 physical nodes, each hosting several services, we developed a set of scripts
that generate Prometheus configuration files based on a set of services and node
groups that are associated with the. This script reduces the number of lines,
and implicitly the number of mistakes, that can be added to the Prometheus
configuration file by a systems administrator.

To configure an exporter on a node, we can follow the example of the
node_exporter exporter. It is installed using the distribution’s package man-
ager. A systemd unit file is created for the exported, which can then be started
on the node.

Ostackes

Add Graph

F1GURE 1. Viewing OpenStack compute node in Prometheus

Because the Prometheus service ingests a large amount of data, we have
chosen to implement a data retention policy. This policy is intended to auto-
mate the removal of old monitoring data. The system has been configured to
retain data collected up to one year. We chose this policy because it allows us
to analyze historical data, which would allow us to identify gradual changes to
the system without causing uncontrolled disk space growth. This policy should

10 S Weisz, IT Teugea, ME Mihailescu, D Mihai, M Carabas, N Tapus

be revisited each time a new service is integrated, as the metric download rate
may become higher than the old metric deletion rate.
We have integrated the following information using different exporters:

e OpenStack service status and statistics;

e Compute node resource usage;

e Web service status, such as GitLab, login services, e-learning platforms
and storage systems;

e SSL certificate lifetime for managed web services;

e Data center generator power and fuel status;

e ICMP prober for checking latency between systems;

e SLURM grid metrics;

e Storage statistics such as bandwidth usage and IO time;

e GPU usage metrics.

3.3. Investigating the health of services using dashboard

For advanced investigation of systems health, we chose to use the Grafana
service to generate graphs and dashboards from which we can visualize com-
plex images based on time series. We have chosen to use Grafana because of
its extensive visualization support, because different services have different vi-
sualization needs. Grafana offers us the query functionality of the Prometheus
service, so we can use the Prometheus Query Language queries that we have
used so far directly from the Prometheus dashboard to easily view the infor-
mation.

Figure illustrates dashboard elements for the OpenStack system. At a
glance we can see the following information: the number of virtual machine
images are installed, the number of virtual machines started, the number of
virtual machines started per tenant, the number of CPUs used per tenant, the
amount of RAM used by each tenant.

No data No data

FI1GURE 2. Displaying OpenStack resource usage using Grafana

Grafana is configured to access information based on the time frame
we request access to. Since there have been cases where there are too many

A study on monitoring heterogeneous cluster infrastructures 11

systems for which we collect the information, we have chosen to add to each
metric in Prometheus a tag that defines the type of service provided, so that
we can filter the metrics in queries based on the type of service we want to
investigate. We can see this in the dashboard showing latency in Figure .

: (AT [l | AT Il (A
S A AR A T AT I (AL

il W i (i
R 000000000 i I

FiGUurE 3. Displaying services latency using Grafana

We observe in Figure the variable hostgroup that defines the group
of instances we want to query. In the example we showed, the query was
addressed for the OpenStack systems.

The advantage of using Grafana for graphs is that it has a very flexible
suite of visualization modes, which allows us to present information in many
different ways, from regular graphs and numerical summaries to heatmaps and
histogram graphs. We can integrate other dashboards in Grafana by creating
our own or using the existing dashboards published by the community.

We have integrated into Grafana dashboards for viewing the following
elements:

e OpenStack infrastructure status;

e Connection latency between nodes;

e Web services status;

e Power generator status;

e Resource consumption of host nodes;
e CEPH storage status;

e Grid services status and usage;

e GPU usage per node;

It is difficult to keep track of all the dashboards because a large amount of
metrics is collected from many different types of services. To make it easier to
check resources at a glance, we’ve implemented an overview dashboard that
we refer to often. We can see a fragment of it in Figure .

3.4. Monitoring disk health

UNSTPB runs a large amount of hard disks for different use cases. Hard
disks wear out over time, which requires monitoring for errors that might
appear due to hard disk failure.

We needed to have a method to check the disk health and prevent a
situation where they might fail during high demand loads. To inspect the disk
state at a given time, we can use the S.M.A.R.T. metrics exposed by the disk,
which gives us insight into disk wear. The S.M.A.R.T. metrics that we are

12 S Weisz, IT Teugea, ME Mihailescu, D Mihai, M Carabas, N Tapus

FI1GURE 4. Cluster services overview configured in Grafana

interested in are the read error rate, the running temperature of the disk, and
how many errors occur when transmitting data from the disk to the system.
They can indicate the first signs that a disk might fail in the near future.

To interpret the S.M.A.R.T. characteristics we use the values recom-
mended by the manufacturers for the condition of the discs. An example of
metrics exposed by S.M.A.R.T can be viewed in Listing 77.

TABLE 1. S.M.A.R.T metrics exposed for CEPH disks

ATTRIBUTE NAME VALUE WORST THRESH
Raw_Read_Error_Rate 100 100 000
Power_On_Hours 100 100 000
Power_Cycle_Count 100 100 000
CRC_Error_Count 100 100 000
SSD_Life_Left 099 099 000

The columns of interest to us are:

(1) VALUE, the last value read;
(2) WORST, the largest value read,;
(3) THRESH, the value from which the disk can be considered defective.

To expose the metrics in an easy-to-read environment, we used a script
that collects the S.M.A.R.T. and exposes them using the already installed
node_exporter service.

The Prometheus service, installed on the Grafana instance automati-
cally, pulls the metrics. They are used to output generate Grafana dashboard
through which we can view the state of the disks, where disks suspect of failure
can be highlighted through the S.M.A.R.T. metrics.

A study on monitoring heterogeneous cluster infrastructures 13

FIGURE 5. Disk health check Grafana dashboard

4. Conclusion and Further Work

We have researched the optimal monitoring system for managing metrics
for a private cloud infrastructure which also host institutional and e-learning
systems.

Each viable monitoring solution has been analyzed and we have deployed
Prometheus to download metrics from nodes, storage systems and services.
Grafana was used to display the metrics in a new dashboards that allow ad-
ministrators to see at a glance the cluster state.

We have deployed an alert system for notifying administrator when ser-
vices fail, SSL certificates expire, or when disks show signs of degradation. The
new system has allowed us to pre-empt disk failure incidents by replacing disks
and rebuilding storage arrays in time and notice anomalous events in service
behaviours leading to bug fixes.

In the future we aim to move the monitoring setup from virtual machines
to a container-based environment with automated setup, so that it can be
easier to install and replicate for further use.

REFERENCES

Ceph website. https://ceph.io/. Accessed: 2023-10-04.

Checkmk website. https://www.checkmk.com. Accessed: 2023-10-04.

Chronograf website. https://www.influxdata.com/time-series-platform/chronograf; .
Accessed: 2023-10-04.

Grafana website. https://grafana.com/. Accessed: 2023-10-04.

Influxdb website. https://www.influxdata.com/. Accessed: 2023-10-04.

Kolla-ansible website. https://docs.openstack.org/kolla-ansible/latest/. Accessed:
2023-10-04.

Nagios website. https://www.nagios.com. Accessed: 2023-10-04.

Openmpi website. https://www.open-mpi.org/. Accessed: 2023-10-04.

Openstack website. https://www.openstack.org/. Accessed: 2023-10-04.

EENS

JENEI

EENCNE

14 S Weisz, IT Teugea, ME Mihailescu, D Mihai, M Carabas, N Tapus

[10] Prometheus alertmanager website. https://prometheus.io/docs/alerting/latest/alertmanager/.
Accessed: 2023-10-04.

[11] Prometheus website. https://prometheus.io/. Accessed: 2023-10-04.

[12] Rrdtool website. https://oss.oetiker.ch/rrdtool/. Accessed: 2023-10-04.

[13] Slurm website. https://slurm.schedmd.com/documentation.html. Accessed: 2023-10-
04.

[14] Zabbix website. https://www.zabbix.com/. Accessed: 2023-10-04.

[15] C. Anglano, M. Canonico, and M. Guazzone. Prometheus: A flexible toolkit for the ex-
perimentation with virtualized infrastructures. Concurrency and Computation: Prac-
tice and Experience, 30(11):e4400, 2018.

[16] T. Beermann, A. Alekseev, D. Baberis, S. Crépé-Renaudin, J. Elmsheuser, I. Glushkov,
M. Svatos, A. Vartapetian, P. Vokac, and H. Wolters. Implementation of atlas dis-
tributed computing monitoring dashboards using influxdb and grafana. In EPJ Web of
Conferences, volume 245, page 03031. EDP Sciences, 2020.

[17] M. Brattstrom and P. Morreale. Scalable agentless cloud network monitoring. In 2017
IEEE jth International Conference on Cyber Security and Cloud Computing (CSCloud),
pages 171-176. IEEE, 2017.

[18] M. Chakraborty and A. P. Kundan. Grafana. In Monitoring Cloud-Native Applica-
tions: Lead Agile Operations Confidently Using Open Source Software, pages 187—-240.
Springer, 2021.

[19] A. Dalle Vacche. Mastering Zabbiz. Packt Publishing Ltd, 2015.

[20] M. Nasar and M. A. Kausar. Suitability of influxdb database for iot applications. Inter-
national Journal of Innovative Technology and Exploring Engineering, 8(10):1850-1857,
2019.

[21] R. Olups. Zabbiz Network Monitoring. Packt Publishing Ltd, 2016.

[22] J. Renita and N. E. Elizabeth. Network’s server monitoring and analysis using nagios.
In 2017 International Conference on Wireless Communications, Signal Processing and
Networking (WiSPNET), pages 1904-1909. IEEE, 2017.

[23] J. Turnbull. Monitoring with Prometheus. Turnbull Press, 2018.

	1. Introduction
	2. Related work
	2.1. Zabbix
	2.2. InfluxDB
	2.3. Prometheus
	2.4. Grafana
	2.5. Nagios

	3. Monitoring Infrastructure
	3.1. Cluster infrastructure overview
	3.2. Implementing the runtime data collection service
	3.3. Investigating the health of services using dashboard
	3.4. Monitoring disk health

	4. Conclusion and Further Work
	REFERENCES

