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A HYBRID ITERATIVE METHOD FOR A CLASS OF RICCATI

EQUATIONS IN THE CRITICAL CASE

Bo Yu1, Ning Dong∗1, Feng-Hua Wen,2 Xiao-Hong Chen2

In this paper, we devise a hybrid nonlinear block splitting double Newton

method to compute the minimal positive solution of a class of Riccati equations

arising from transport theory. The overall convergence of our algorithm is

established. Preliminary numerical experiments show the new presented method

is very efficient for compute the desired solution of equations near or in the

critical case.
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1. Introduction

We consider the following nonsymmetric algebraic Riccati equation (NARE)

arising from the transport theory [1, 13]

R(X) = XCX −AX −XD +B = 0, (1)

where X is the desired solution matrix and A, B, C and D ∈ Rn×n are known

matrices of forms

A = ∆− eqT , B = eeT , C = qqT , D = Γ− qeT . (2)

In the above,

∆ = diag(δ1, δ2, ..., δn), Γ = diag(γ1, γ2, ..., γn),

e = (1, 1, ..., 1)T , q = (q1, q2, ..., qn)
T ,

where

δi =
1

cωi(1 + α)
, γi =

1

cωi(1− α)
, qi =

ci
2ωi
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for i = 1, ..., n with constants α ∈ [0, 1), c ∈ (0, 1] ci > 0, wi > 0 satisfying

0 < ωn < ... < ω1 < 1,

n∑
i=1

ci = 1.

From the definition of the diagonal elements of ∆ and Γ, we can easily see

0 < δ1 < δ2 < ... < δn and 0 < γ1 < γ2 < ... < γn. (3)

The above Riccati equation (1) is derived by discretizing the Gauss-Legendre

quadrature formula to an integrodifferential equation related to the transport theory

[13] or the Nash game [1]. It also can be regarded as a more generalized form of

Chandrasekhar H-equation considered in [6, 12, 20]. The minimal positive solution

X of (1) is of great interest and its existence was proved by a lot of scholars (see,

e.g. [10, 12]). In recent years, various numerical methods have been developed to

compute the minimal positive solution (see, e.g. [2]-[11], [18]-[22]). By introducing

the M-matrix structure, Guo et.al. [10] first transformed (1) to a more generalized

Riccati matrix equation and gave the Newton method in matrix form

(A−X(k)C)X(k+1) +X(k+1)(D − CX(k)) = B −X(k)CX(k), k = 1, 2, ... (4)

and the fixed-point method in matrix form

A1X
(k+1) +X(k+1)D1 = X(k)CX(k) +A2X

(k) +X(k)D2 +B, k = 1, 2, ... (5)

to find the minimal positive solution, where in (5) matrices A1 and A2, D1 and D2

are some regular splitting of coefficient matrices A and D [17].

If the NARE (1) is far away from the critical case, the fixed-point method (5)

is more proper to compute the minimal positive solution since its computational

cost at each step is relatively cheaper than that of Newton’s method although both

of them are about O(n3). While the NARE (1) comes close to the critical case,

Newton’s method (4) and its double variant (see, e.g. [7]) become a better choice

than the fixed-point iteration (5) as they bear a higher convergence speed than that

of fixed-point iteration.

As for the computational methods at each step in iterations (4) and (5),

the accurate algorithms such as Bartels-Stewart algorithm [5] are enough for small

scale problems. When the scale of (1) becomes larger, accurate methods lose their

effectiveness as their complexity at each iterative step is considerably huge as n

increase. By noting the special structure of NARE (1), Juang [12] observed the

solution X is of the form

X = T ◦ (uvT )

with

T := (tij) =
1

δi + γj
, u = Xq + e, v = XT q + e, (6)
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where ◦ is the Hadamard product. Lu [15] made use of these expression to refor-

mulate Ricaati equation to an equivalent form

u = u ◦ (Pv) + e, v = v ◦ (Qu) + e

with

P := (Pij) =
qj

δi + γj
, Q := (Qij) =

qj
δj + γi

(7)

and furthermore, devised the following simple iteration (SI) in vector form

u(k+1) = u(k) ◦ (Pv(k)) + e,

v(k+1) = v(k) ◦ (Qu(k)) + e.

The computational superiority of the SI over iterations (4) and (5) is that the

complexity at each iterative step can be reduced from O(n3) to O(n2), which is

fitter to solve (1) with larger scale. Recently, Bai, Gao and Lu [2] further designed

a class of nonlinear splitting iteration methods, including the nonlinear block Jacobi

(NBJ) iteration

u(k+1) = u(k+1) ◦ (Pv(k)) + e,

v(k+1) = v(k+1) ◦ (Qu(k)) + e,

the nonlinear block Gauss-Seidel (NBGS) iteration

u(k+1) = u(k+1) ◦ (Pv(k)) + e,

v(k+1) = v(k+1) ◦ (Qu(k+1)) + e
(8)

and the nonlinear block successive overrelaxation (NBSOR) iteration

u(k+1) ◦ (e− Pv(k)) = se+ (1− s)u(k) ◦ (e− Pv(k)) (0 < s ≤ 1),

v(k+1) ◦ (e−Qu(k)) = te+ (1− t)v(k) ◦ (e−Qu(k+1)) (0 < t ≤ 1).

The most attractive feature of the nonlinear block splitting iterations is that they

can obtain faster convergence with less computational complexity compared with

that of SI iteration. Especially, the NBGS iteration stands out among all nonlinear

block splitting methods as it surpasses others both in CPU time and convergence

rate. For other iterative methods with O(n2) complexity, we refer to [3], [16] for

example.

It should be pointed out that although the developed nonlinear block splitting

iterations beat the fixed-point iterations for NARE (1) far away from the critical

case, they still show the slow sublinear convergence rate when NARE (1) is in the

critical case. One approach to tackle this difficulty is employing a shift technique

[3] to transfer the NARE (1) to another equation which is no longer in the critical

case but shares the same minimal positive solution with (1). In this way one can

expect the nonlinear block splitting iterations recover their original convergence

speed but they fail to solve the NARE near the critical case, since the solution in
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the shifted NARE is not the desired one in the original NARE. In this paper, we are

bound for another way to enhance the overall convergence of the nonlinear block

splitting iterations in or near the critical case by inosculating a double Newton step.

The proposed hybrid algorithm mainly depends on two computational switches.

One plays the role to detect whether the current nonlinear block splitting iteration

needs turning to Newton’s iteration and the other can automatically determine a

double Newton step is required or not. In another word, these two switches make

the algorithm self-adaptive whenever the NARE is in (near) or far away from the

critical case. Particularly, Numerical experiments in the last section show that

when NARE (1) is near or in the critical case, our algorithm will work very well for

computing the minimal positive solution of NARE (1).

The rest of this paper is organized as follows. We propose the hybrid nonlinear

block splitting Newton method and construct its overall convergence in Section 2.

Section 3 is devoted to describing a double Newton step with the aim to accelerate

the new-presented method in the critical case. We do some numerical experiments

in Section 4 to indicate the effectiveness of our proposed algorithm.

Notations. Let Ir and I be the identity matrices of order r and n, respec-

tively. For a diagonal matrix D ∈ Rn×n and a vector d ∈ Rn, diag(D) represents

the vector whose elements are the diagonal entries of D and, diag(d) represents the

diagonal matrix whose diagonal entries are elements of d.

2. The hybrid nonlinear block splitting Newton method

In this section, we first give a concise Newton iterative scheme which is equiv-

alent to (4). Then we present the hybrid nonlinear block splitting Newton algorithm

to compute the minimal positive solution.

Let wT = (uT , vT ). By using the vectors given in (6), it is not difficult to see

that the NARE (1) can be rewritten as

R(w) =

[
u

v

]
−

[
diag(Pv) 0

0 diag(Qu)

][
u

v

]
−

[
e

e

]
= 0. (9)

By using Newton’s method to the equation (9), one can obtain a iterative scheme

in vector form [
I − diag(Pv(k)) −diag(u(k))P

−diag(v(k))Q I − diag(Qu(k))

][
u(k+1)

v(k+1)

]

=

[
0 −diag(u(k))P

−diag(v(k))Q 0

][
u(k)

v(k)

]
+

[
e

e

]
(10)

with matrices P and Q given in (7). As the iterative matrix sequence {X(k)}∞k=0

produced from (4) with the initial guess zero matrix is monotonically increasing
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and convergent to the minimal positive solution X∗ (see [10]), we know form (6)

that the sequence {w(k)}∞k=0 generated by (10) is also monotonically increasing and

convergent to w∗, the minimal positive solution of R(w) = 0.

It is worth noting that if computing the desired solution of NARE only by

Newton’s method, the computational cost at each iteration is relatively higher than

that of nonlinear block splitting methods. However when the current iteration

point is close enough to the desired solution, Newton’s method is more preferred

as result of its quadratic convergence. Therefore it is advisable to start with some

nonlinear block splitting iteration and then switch to the Newton step provided

that the residual error is down to a certain prescribed level. Since the numerical

performance of NBGS iteration (8) is the best among the family of nonlinear block

splitting iterations [2], we only describe NBGS-Newton algorithm as follows and

other hybrid methods can be derived in a similar manner.

Algorithm 2.1.

1. Set w(0) = 0.

2. For k = 1, 2, ...k0,

compute w(k+1) via NBGS iteration (8);

3. For k = k0, k0 + 1, ... until convergence,

solve (10) to obtain w(k+1).

To show the overall convergence in step 3 of Algorithm 2.1, we first take a

second to recall the monotonic convergence of NBGS iteration [2] and Newton’s

iteration [16].

Lemma 1. Let the sequence {w(k)}∞k=0 be produced by NBGS iteration (8) with

w(0) = 0. Then for k = 1, 2, ..., it holds that

0 ≤ w(k) < w(k+1) < w∗

and limk→∞w(k) = w∗.

Lemma 2. Let the sequence {w(k)}∞k=0 be produced by Newton’s iteration (10).

Then for k = 1, 2, ..., it holds that

0 ≤ w(k) < w(k+1) < w∗

and limk→∞w(k) = w∗.

We now establish the overall convergence of Algorithm 2.1.

Theorem 3. If {(w(k)}k0k=0 is produced by NBGS iteration (8) with w(0) = 0 and

{w(k)}∞k=k0+1 is generated by Newton’s method (10) with w(k0) as an initial point,

then

0 < w(1) < w(2) < ... < w(k0) ≤ w(k0+1) < ...,

and limk→∞w(k) = w∗.
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Proof. It follows from Lemma 1 that the sequence {w(k)}k0k=0 satisfies

0 ≤ w(1) < w(2) < ... < w(k0) < w∗.

Moreover for 1 ≤ k ≤ k0, by recalling the NBGS iteration scheme (8), NARE (9)

at w(k) admits

R(w(k)) =

[
I − diag(Pv(k)) 0

0 I − diag(Qu(k))

][
u(k)

v(k)

]
−

[
e

e

]

=

[
I − diag(Pv(k)) 0

0 I − diag(Qu(k))

][
u(k)

v(k)

]

−

[
I − diag(Pv(k−1)) 0

0 I − diag(Qu(k))

][
u(k)

v(k)

]

=

[
−(P (v(k) − v(k−1))) ◦ u(k)

0

]
≤ 0. (11)

Now the Newton’s method from the k0-th step yields

R′(w(k0))(w(k0+1) − w(k0)) = −R(w(k0)) ≥ 0,

which is equivalent to[
I − diag(Pv(k0)) −diag(u(k0))P

−diag(v(k0))Q I − diag(Qu(k0))

][
u(k0+1) − u(k0)

v(k0+1) − v(k0)

]
≥ 0. (12)

On the other hand, it follows from [10] that the matrix[
I − diag(Pv∗) −diag(u∗)P

−diag(v∗)Q I − diag(Qu∗)

]
is a nonsingular M-matrix or a singular irreducible M-matrix. Subsequently, the

matrix on left hand side of (12) must be a nonsingular M-matrix and all elements of

its inverse matrix are greater than or equal zero. Therefore, we have w(k0+1) ≥ w(k0).

Once such a fact holds true, we know from Lemma 2 that

w(k0) ≤ w(k0+1) < ...

and limk→∞w(k) = w∗.

The above theorem shows that the iterative sequence {w(k)}∞k=1 generated

by Algorithm 2.1 converges to the minimal positive solution of (9). But when

NARE (9) is in the critical case, Newton’s method will take on linear convergence

which results in more iterations in Algorithm 2.1. To accelerate the current Newton

iteration, we will give a double Newton step as stated in next section.



A hybrid method for Riccati equations in the critical case 27

3. Double Newton step for NARE in the critical case

When NARE (1) is in the critical case, i.e. the Frechet derivativeR′(w∗) at w∗

is singular, the convergence of Newton’s method become linear with a constant 1/2.

In this case, a double Newton step can be employed to speed up the convergence.

We first show an useful inequality referred as Banach lemma [14].

Lemma 4. If A and B are n× n matrices and B is an approximate inverse of A

(i.e. ||I −BA|| < 1), then A and B are both nonsingular and

||A−1|| ≤ ||B||
1− ||I −BA||

.

Theorem 5. Let w∗ be the minimal positive solution of R(w) = 0. Suppose that

R′(w∗) is singular. Let N = Ker(R′(w∗)) and X = Im(R′(w∗)) be the null space

and the range of R′(w∗), respectively. Let PN and PX be the projection on the null

space N and the range X . Assume Rn = N ⊕M with ⊕ denoting the direct sum.

Let {w(k)}∞k=k0
be generated by Newton’s method (10).

(i) If for k ≥ k0, w
(k) − w∗ ∈ N , then we have

w(k+1) − w∗ =
1

2
(w(k) − w∗), (13)

R(w(k+1)) =
1

4
R(w(k)). (14)

(ii) Assume for k ≥ 1

||(R′(w(k)))−1|| ≤ c1||w(k) − w∗||−1. (15)

If for sufficiently small ϵ > 0,

||PX (w
(k) − w∗)|| < ϵ||PN (w(k) − w∗)||,

then

||w(k) − 2(R′(w(k)))−1R(w(k))− w∗|| ≤ cϵ (16)

with some constant c independent of k and ϵ.

Proof. (i) Let w̄(k) = w(k) − w∗. Note R′(w∗)(w̄(k)) = 0 as w̄(k) ∈ N , we have the

expansion

R′(w(k))(w̄(k)) = R′(w∗)(w̄(k)) +R′′(w∗)(w̄(k), w̄(k))

= 2
(
R(w∗) +R′(w∗)(w̄(k)) +

1

2
R′′(w∗)(w̄(k), w̄(k))

)
= 2R(w(k)).

Then

w̄(k+1) = w̄(k) − (R′(w(k)))−1R(w(k)) =
1

2
w̄(k), (17)
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that is to say the equality (13) holds true. On the other hand, by (17) we have the

expansion of R(w(k+1)) at w∗

R(w(k+1)) = R′(w∗) +R′(w∗)(w̄(k+1)) +
1

2
R′′(w∗)(w̄(k+1), w̄(k+1))

=
1

4

(
R′(w∗) +R′(w∗)(w̄(k)) +

1

2
R′′(w∗)(w̄(k), w̄(k))

)
=

1

4
R(w(k)),

which means the equality in (14) is true.

(ii) Let ŵ(k) = w∗ + PN (w(k) − w∗). There must be a constant c2 > 0 such

that

||w(k) − ŵ(k)|| = ||PX (w
(k) − w∗)||

< ϵ||PN (w(k) − w∗)||
≤ c2ϵ||w(k) − w∗||. (18)

Then we have

||I − (R′(w(k)))−1R′(ŵ(k))||
≤ ||(R′(w(k)))−1|| · ||R′(w(k))−R′(ŵ(k))||
≤ c1||w(k) − w∗||−1c2||w(k) − ŵ(k)||
≤ c3ϵ (19)

with c3 = c1c2. Therefore, it follows from Lemma 4 that R′(ŵ(k)) is nonsingular

and

||(R′(ŵ(k)))−1|| ≤ 1

1− c3ϵ
||(R′(w(k)))−1||

≤ c4||w(k) − w∗||−1 (20)

with some constant c4 > 0, where the second inequality is valid because of (15).

On the other hand, by (18) we can find positive constants c5 and c6 such that

||R(ŵ(k))|| = ||R(ŵ(k))−R(w∗)||
≤ c5||ŵ(k) − w∗||
≤ c5(c2ϵ+ 1)||w(k) − w∗|| (21)

and

||R(ŵ(k))−R(w(k))|| ≤ c6||ŵ(k) − w(k)||
≤ c6c2ϵ||w(k) − w∗||. (22)
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Therefore we have the following estimate for the factorization

||(R′(ŵ(k)))−1R(ŵ(k))− (R′(w(k)))−1R(w(k))||
≤ ||((R′(ŵ(k)))−1 − (R′(w(k)))−1)R(ŵ(k))||

+||(R′(w(k)))−1(R(ŵ(k))−R(w(k)))||
≤ ||(R′(ŵ(k)))−1|| · ||R′(ŵ(k))(R′(w(k)))−1 − I|| · ||R(ŵ(k))||

+||(R′(w(k)))−1|| · ||R(ŵ(k))−R(w(k))||
≤ c̄ϵ

with some c̄ ≥ (c2ϵ+1)c3c4c5+ c1c2c6, where the last inequality holds true because

of (15), (19), (20), (21) and (22).

At last by (18) and

||w(k) − 2(R′(w(k)))−1R(w(k))− w∗||
≤ ||ŵ(k) − w(k)||

+||ŵ(k) − w∗ − 2((R′(w(k)))−1R(w(k)))||
≤ ||ŵ(k) − w(k)||

+2||(R′(ŵ(k)))−1R(ŵ(k))− (R′(w(k)))−1R(w(k))||,

(16) holds true readily.

We know from Theorem 5 (i) that the convergence of Newton’s method will

degrade to linearity with a constant 1/2 when R′(w∗) is singular. Fortunately in

such case, inequality (16) in Theorem 5 (ii) implies that a double Newton step can

make the current iteration point remarkable close to the desired solution, which

becomes the motivation for the acceleration of the Newton’s method by imposing

a double step. We describe the overall computational details in Algorithm 3.1 as

below.

Algorithm 3.1.

1. Choose parameters k0, ϵ, η1 > 0 and η2 > 0.

2. Set w(0) = 0, R(w(0)) = eT2n, r0 = ||R(w(0))||.
3. For k = 0, 1, 2, ..., do:

solve (8) to obtain w(k+1);

compute R(w(k)), rk = ||R(w(k))||;
if rk/r0 < η1 or k ≥ k0, goto step 4;

update current point w(k).

4. For p = k, k + 1, ..., do:

solve (10) to obtain w(p+1);

compute R(w(p+1)), rp+1 = ||R(w(p+1))||;
if rp+1/r0 < ϵ, then stop and w∗ ≈ w(p+1);
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Table 4.1 Test Results for (α, c) = (1e− 10, 1− (1e− 10)).

n Method NBGS NEWTON ALG.3.1

CPU 0.7344 0.1094 0.0781

64 IT 10000/0/0 0/19/0 273/10/0

RES 7.33e-09 1.99e-15 3.99e-15

CPU 2.4688 0.3594 0.2969

128 IT 10000/0/0 0/19/0 273/10/0

RES 2.22e-09 1.11e-15 1.11e-15

CPU 8.6563 3.5625 1.5156

256 IT 10000/0/0 0/19/0 273/10/0

RES 7.35e-09 2.88e-15 6.21e-15

CPU 29.453 25.250 14.935

512 IT 10000/0/0 0/18/0 274/10/0

RES 7.36e-09 7.54e-15 3.68e-14

if | rp+1

rp
− 1

4 | < η2, then w(p+1) = w(p) − 2(R′(w(p)))−1R(w(p))

and r = ||R′(w(p+1))||;
if r/r0 < ϵ, then stop and w∗ ≈ w(p+1).

Remark. The parameter k0 is to set the maximal number of the NBGS iteration

while η1 and η2 are employed to give the error tolerance of the NBGS iteration and

the double Newton iteration, respectively.

4. Numerical examples

In this section, we test the effectiveness of the proposed Algorithm 3.1 for

NARE (1) with various dimension n. The constants ci and wi in NARE are given by

a numerical quadrature formula on the interval [0, 1], which is obtained by dividing

[0,1] into n/4 subintervals of equal length and applying Gauss-Legendre quadrature

with 4 nodes to each subinterval. We coded Algorithm 3.1 in Matlab 7.1 with

k0 = 500, η1 = 10−5 and η2 = 10−6. We compared the performances of Algorithm

3.1 with that of NBGS iteration and the Newton’s iteration for problems near or in

the critical case with n = 64, 128, 256, 512.

The obtained results are listed in Table 4.1-4.4 where the “n” column gives

the sizes of the problem, the “CPU” row denotes the CPU time used in seconds, the

“IT” row represents “the maximal NBGS iteration/ the maximal Newton iteration/

the maximal double Newton iteration”. The “RES” row reports the relative residual

error

RES = ||R(w(k))||∞/||R(w(0))||∞,

where w(k) is the obtained approximative solution.

We see from Table 4.1-4.3 that, for NARE (1) near the critical case, the NBGS
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Table 4.2 Test Results for (α, c) = (1e− 13, 1− (1e− 13)).

n Method NBGS NEWTON ALG.3.1

CPU 0.7188 0.0938 0.0938

64 IT 10000/0/0 0/23/0 273/16/0

RES 7.46e-09 2.22e-15 3.10e-15

CPU 2.4375 0.4219 0.4063

128 IT 10000/0/0 0/22/0 274/16/0

RES 7.48e-09 7.10e-15 3.77e-15

CPU 8.640 3.4844 2.6404

256 IT 10000/0/0 0/22/0 274/15/0

RES 7.49e-09 7.99e-15 4.97e-14

CPU 32.109 28.765 18.421

512 IT 10000/0/0 0/22/0 274/15/0

RES 7.49e-09 1.21e-14 5.01e-14

Table 4.3 Test Results for (α, c) = (1e− 15, 1− (1e− 15)).

n Method NBGS NEWTON ALG.3.1

CPU 0.7969 0.0938 0.0469

64 IT 10000/0/0 0/24/0 273/5/1

RES 7.46e-09 4.21e-15 4.21e-15

CPU 2.3906 0.4688 0.2188

128 IT 10000/0/0 0/24/0 273/5/1

RES 7.48e-09 3.10e-15 4.66e-15

CPU 8.2656 3.5469 1.500

256 IT 10000/0/0 0/24/0 273/5/1

RES 7.49e-09 1.28e-14 7.77e-15

CPU 31.812 29.562 11.062

512 IT 10000/0/0 0/23/0 274/5/1

RES 7.49e-09 1.31e-14 9.10e-15
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Table 4.4 Test Results for (α, c) = (0, 1).

n Method NBGS NEWTON ALG.3.1

CPU 0.7344 0.0938 0.0313

64 IT 10000/0/0 0/24/0 273/5/1

RES 7.46e-09 3.77e-15 1.77e-15

CPU 2.4219 0.4219 0.2188

128 IT 10000/0/0 0/24/0 273/5/1

RES 7.48e-09 5.10e-15 2.66e-15

CPU 8.6563 3.5625 1.5156

256 IT 10000/0/0 0/23/0 273/5/1

RES 7.49e-09 1.37e-14 5.99e-15

CPU 31.718 29.818 10.968

512 IT 10000/0/0 0/23/0 274/5/1

RES 7.49e-09 1.28e-14 8.21e-15

iteration fail to attain the prescribed accuracy within 10000 iterations and the

proposed Algorithm 3.1 outperforms the Newton’s method in CPU time. Especially

for NARE (1) is very close to the critical case, numerical results in Table 4.3 indicate

Algorithm 3.1 beats other two algorithms both in CPU time and the relative residual

error. When NARE (1) is in the critical case, Table 4.4 also shows a similar result

to that of Table 4.3, which means the proposed Algorithm 3.1 is very efficient for

solving NARE (1) near or in the critical case.

5. Conclusion

We have presented a hybrid nonlinear block splitting double Newton method

to compute the minimal positive solution for a class of nonsymmetric algebraic

Riccati equations in the critical case. We also constructed the overall convergence

of the hybrid algorithm under mild conditions. Numerical experiments particu-

larly indicated that our algorithm is very effective for computing the solution of

nonsymmetric algebraic Riccati equations near or in the critical case.
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