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METHOD FOR EXTENDING THE BANDWIDTH OF THE
RECTANGULAR WAVEGUIDES

Valerica COSTIN!?

In this paper is presented a method for extending the bandwidth of the
rectangular waveguides. It consists of introducing the steps, with sharp edges, in
the cross section of the guide, along the propagation direction.
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1. Introduction

This paper proposes a method for extending the bandwidth of rectangular
waveguides. It consists of using as many steps as necessary, with sharp edges, in
the cross section of the guide, along the propagation direction, together with using
of local coordinates for writing the expressions of magnetic and electric
components of the wave in the regions of the waveguide.

For example, the theoretical lowest cutoff frequency of a rectangular
waveguide, with the cross sectional dimensions axb = 29x13, iS f,_tgi0 =
c¢/2a = 5.168 GHz. By introducing a single step in the cross section of this guide,
as is shown in fig.3, the lowest cutoff frequency decreases to f._, = 3.255 GHz.

The coupled-integral equations technique is used, [1].

2. General theory

Fig. 1 in this paper shows a waveguide with two steps in the cross section,
along the propagation direction. The edges of the steps are sharp, with the measure
of internal angles of 90°. The regions R,, R, and R5 can be distinguished in the
cross section. Between the three regions there are two interfaces. The interface k is
situated between regions R, and Ry.,, k = 1, 2. The heights of the regions are
denoted b,, b,, bs. The widths of the regions are denoted [,, 1,, 5.

All metallic surfaces are assumed lossless in the following analysis, [1, page
2257].

The Ox axis is common for all three regions. Similarly, the propagation
direction for all regions is Oz axis. For y have been used two local ordinate axes
0.y, and 0,y,. They are placed within the interfaces, the origins being in the
middle of the apertures.
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Fig. 1. Waveguide with two steps in the cross section; all dimensions are in mm; the sketch is not
shown at scale.

Along the propagation direction, at x = x; and x = x,, there are step
discontinuities having the apertures 2d, and 2d,.

The dimensions of the guide, together with the ordinates of the bottom walls
are used in order to express the components of the wave in all the three regions. The
ordinates of the bottom walls are: y;, y; in 0,y, ordinate axes, and y; , y5 in 0,y,.

2.1 Transverse Electric Modes analysis
In this paper are analyzed only Transverse Electric Modes.

2.2 Mathematically expressions of the components of the wave

The starting point for getting the expressions of axial and transverse
components of the wave is the Helmholtz equations of axial components H % (x, y,)
in all the three regions. The boundary conditions of the problem, for all the three
regions, are vanishing of the tangential electric fields in the metallic walls of the
guide.

The separation of variables method is used in order to solve the problem in
all the regions. In each region, the electrical components are expanded in modes
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that satisfy all the boundary conditions of the region, except those in the planes of
interfaces, [1, page 2257]. The results for all the regions are mentioned below:

_— 1)
Ry _ Vo Ry cosh(YinX nr R
) = B A SR0D o[ ] vsxs
X1
Ry _ JWl v Ry sinh(y1n%) nw -
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1
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Hy?(x,y,) = Dol Anre?sn® + Bize Vn¥]cos 22 (v, — y7)] 1 <
2
X < X,
R J R Ry — n -
Eyz(x’ }’2) = %;Z;o:o VZn[Anzeyznx _ ane anx] cos [b_: (}’2 —y; )]’ x; <
X <X,
HR (x,y,) = 3 AR3wcos[n—n( _ +)] X, <
z Ve n=0""  cosh(ysnls) by Y2~ Y2 z=
x<a
R3 _ JoU G R3 sinh(ysn(x-a)) nm o+
E, (x,y2) = 12 Yin=042n>Yan cosh(yanls) cos [b3 02 — 2 )]: X S
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Yin = (m/b)? —kZ,  yi, = (nm/by)? — k&, y3, = (nm/by)? — ki
Yin» Y2n Van, = Propagation constants of the mode n in the regions R,, R,, R.
k.= the cutoff wavenumber of the guide.
Determining of the modal development coefficients A%, A%, B2, 4% is
described in section 5.

3. Singularities of the electric fields tangent to the sharp edges

The next step is finding out of the expressions of these components in the
interfaces between the regions. To do this it should be observed that the transverse
electrical fields of electromagnetic wave are singular in the vicinity of the sharp
vertices, [1, page 2258].
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Fig. 2 shows a waveguide with metallic walls, having the cross section axb.
On the upper wall there is a sharp ridge having the measure of the internal angle ¢
radians, [2, page 631].

" a |

Fig. 2. Waveguide with a sharp ridge between regions (1) and (2).

The distance from the vertex of the ridge to a current point in the interface is denoted
with . The electric component of the wave, E,,, which is tangent to the interface,
exhibits a singularity. According to the mentioned research works in [2, page 631],
the electric field of the wave, tangent to the interface is of the form »~1+7:

E,(x,y) =0 ) =0(rv"¥?), v=1-1/2, t=mn/Q2n—¢)>0. (2)

For the guide in fig. 1, the internal angles of the sharp edges of the steps in the two
interfaces are =/2 radians. Consequently, E,(x,y) =0(r""¥?)=0("1?) =
o(1/r?) = o(1/r*), where w, =1/3.

4. Basis and testing functions
For the guide in fig.1, the electric fields in the interfaces can be described
using two sets of basis functions.

4.1 The basis functions and the functions that are describing the true

distribution of the tangential electric fields in the interfaces

a) Basis functions

For the current interface, the basis functions that satisfy all edge and contour
criteria, [1, page 2259], are given by the following relations:

_ cos[(j-1D)m(yg/2d)] _ sin[jm(yg/2dg)] .
X]';ﬂk(yk) - [1-(yr/dp)2]He Y},uk(yk) = 1=/ dp)?] "’ ] = 1,2, ... (3)
In the two interfaces of the guide in fig. 1, u, =1/3, k=1,2.

b) The functions used for describing electrical fields in interfaces

These functions, denoted f;(y;) and f,(y,), are chosen such that to
represent the true distribution of the electric fields in interfaces, [1, page 2257].
These functions will be zero on all metallic surfaces in interfaces and will be non
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zero in the apertures of the interfaces. For the current interface, these functions are
given by the expressions mentioned below in (4), [1, page 2258]:

fk(yk) = % 7:1[pj,ka,ﬂk(yk) + qj,kyj,[,tk(yk)]l k= 11 2 ’ ] = 1’ 2: e (4)
fix@i) # 0 for y, € (—dy, dy), fie) = 0 for yy € [y, —di 1 U [dy, yig + bysq |-

where p;, and g;, are the series expansion coefficients, k = 1, 2.

4.2 The testing functions of the magnetic components in interfaces

The testing functions are obtained from the basis functions by simply adding
n/2 10 (j — Dm or to jm in the arguments of basis functions, because H leads E by
m/2 in respect to the propagation direction. In order to be differentiated from the
basis functions, the index j is replaced by i and to avoid the confusions between
basis functions and testing functions, even the letters are changed, so that the
following notations are used:

sin i+l w(yr/2dp)| . .
T i) = w i=j=12.;k=1, 2. (5)

. _ cos(i-Dn(ye/2ap).
o V) = G T

5. Determining the modal development coefficients and the components
of the Fourier spectrum for the basis and testing functions
The way to get the modal development coefficients A%, %2 B*2 4%s s as
follows:
a) The equality between the electrical components of the wave in the regions
adjacent to current interface k and the corresponding function £, (y,) is written, k =
1, 2;
b) The above equalities are multiplied by trigonometric functions from the
orthogonal series corresponding to those of electrical components;
c) Finally, the four equalities are integrated across the apertures of the interfaces.

5.1 Determining the modal development coefficients

There will be 4 coupled-integral equations and once they are manipulated
they will get different forms. For this reason, the current number of each group of
equations is followed by the figures 1~, 1*; 27, 2*. For the interface k, k = 1, 2,
the upper minus sign means that the corresponding equation is written for the region
in the left side of interface k, and the upper plus sign is for the equation of the region
in the right side of same interface k. The equations are:

(6)
6.17)
dq

o AT Ay amtanh (y1a2) cos |3 0 = ) feos [35 0 = y)| dys =

d [0 [, coslG=DnGn/2ap] | sinljnGya/2apl|y . [mm,
o BT i S T + i TG ey <08 [y 0 =¥ o,
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Changing the limits of integrals, from lower to upper walls of the guide, and
using the relation 3.771.8, mentioned at page 442 in the reference work [4], the
integrals can be calculated. Making the notations §,,, = 1 for n = 0, §,,; = 0 for
n # 0 and v, = (1/2) — y, the results of the above integrals are:

)
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where J, are Bessel functions of the first kind of order v, and r is function
gamma.

In [1, page 2261] is proved that only “two basis functions are sufficient”.
Because in this paper have been used the same basis functions as in [1], it is also
used the same numbers of terms for j, that is j = 1, 2, and of course i =1, 2.

5.2 The Fourier spectrum of the basis functions, mode n

Two notations will be done in each equation of group (7). These notations
represent the components of the Fourier spectrum of the basis functions Xx;,, ()
and Y;,, (y), for the mode n, in the regions r, and R,.,, regions adjacent to the
interface k, k = 1, 2, [1, page 2259].

The components of the Fourier spectrum are: X% (n), ¥ (n), X2 (n), 72 (n),

SRy pR2 R3 SR3
Xf.#z (), Y, Jt2 (), Xlu (n) and YJ.uz ().

Below are presented only the expressions of the components of the Fourier
spectrum, mode n, for the region r,, written in the system 0,y,:

n(zdz))n] n(2d2)| ]

X 5 Jv 1 Jv _q,_n2d2)
X, () = Freaeai) (Vz )COS (—mﬂ) el 2[5

hono) b ) |G et |

(2d3) (2d2)
inzz(n) - (ZdZ/bZ) 1\/_F (VZ )Sin( "YZ Tl.') ]Vz[ ( +‘ﬂ IZJZZ )n] ]vz[ | = 2d2 n]l

(148n0) 2 by [ ( n(zdz) n'] [ | n(zdz) 77:]

Introducing these notations in the group (7) of equations, the development
coefficients 4%, 4% B2 4% can be obtained.

5.3 The Fourier spectrum for the testing functions, mode n

According to the section 4.2 and to the relations (5), the components of the
Fourier spectrum for the testing functions, mode n, can determined, by adding 1/2
to (j — 1) and to j in the components of Fourier spectrum of basis functions. These
components are: Ri: (n), T, (n), R{? (n), T2 (n), R{2 (n), T2 (n), RS (n), and T2 ().

6. The fundamental equations of the guide

The procedure for getting the fundamental equations of the guide in fig. 1
is:
a) The equality between the magnetic components of the wave in the interfaces is
written, that is HX*(x = x, yi) = HR ' (x = x4, 7). k = 1, 2;
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b) The above groups of equalities are successively multiplied by the testing
functions Rr;,, (v,) and T;, (y,) and then integrated across the apertures of
interfaces.

The four equations, which are obtained, are mentioned below:

(8)
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The letters R and T in the equations of the group (8) come from the fact the
equalities between the magnetic components of the wave in the interfaces are
multiplied successively by Rr; ., (v,) and T; ,, (v,.)-

Making suitable notations in the equations of the group (8), the system of
equations (9) will be obtained, where i = j = 1, 2. That system of equations is:

9)
Yi{pialULly + g1 VL] + pj (W1l + q;,[X1];} = 0,
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Y {pialU21y; + q;1[V2];; + pj.[W2]; + q;,[X2];;} = 0,
Yi{pjalU3ly + q;1[V3]i; + pj (W3l + q;,,[X3];;} = 0,
i {pjalUAL; + q;1 VAL + pj (WAL + q,,[X4];;} = 0,

The cutoff wavenumbers of the TE modes are determined as the zeros of the
determinant of the matrix in the system of equations (9), [1, page 2258]. “It is
numerically more advantageous to locate the zero of the smallest singular value
instead, as this allows the suppression of the poles that are otherwise present in the
determinant”, [1, page 2258]. Getting the smallest singular value is described in [3].

7. Numerical results

The determinant D (k) of the matrix in the system (9) of equations is
graphically represented as a function of the wave numbers k, in the range 0 to 1
rad/mm. The intersections of the graph with "Ok" axis represent the cutoff
wavenumbers of the guide. Doing so, for the lowest cutoff wavenumber of the guide
in fig. 1 has been obtained the value k._, = 0.06284 rad/mm and, for the
corresponding lowest cutoff frequency has been obtained the value f._, = 2.998
GHz.

8. Extending the bandwidth

The theoretical lowest cutoff frequency of a rectangular waveguide with the
cross sectional dimensions axb = 29%x13 is f,_tg10 = ¢/2a = 5.168 GHz.
Introducing two steps in the cross section of this guide, but maintaining the same
height of 13 mm in all the three regions and the same total internal width of 29 mm,
the guide in fig. 1 has been obtained. For this guide, has been shown in section (7)
that the lowest cutoff frequency has been decreased to f._, = 2.998GHz, proving
that the bandwidth has been extended.

9. Validating the method

Using the local coordinates, the method presented above has been applied
to the guide analyzed in reference work [1, page 2257], even though that guide is a
ridged one. The data in the work [1, page 2262] have been compared to the data
obtained using the method exposed above. The results can be seen in the table 1.

Table 1.
The cutoff wavenumbers in the table are measured in rad/mm.

Mode 0 1 2 3 4
Present k. 009299 | 032971 | 0.33316 |0.33518 | 0.38115
method
[1,pag.2262] k, 0.0926 0.3332 0.3811

Mode 5 6 7 8 9
Present k. 0.46904 | 0.52666 | 0.66527 | 0.69123 | 0.74546
method
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[1,pag.2262] k. 0.5263 0.6653 0.6916 0.7453
Mode 10 11 12 13 14

;r:ffgé k. 074653 | 0.83028 |0.93941 |0.96122 | 0.99690

1,0ag.2262] K 0.8295

[1.pag c

The data seem to be very close. It can be seen that in this paper have been used 5
significant digits after the decimal point.

10. The importance of the method

The waveguides with the cross sections in steps are more easily to be
manufactured than the ridged waveguides. For example, the width of the ridge of
the waveguide analyzed in [1] is of only 0.3 mm, which is very difficult to be
obtained.

The method can be used in order to design guiding structures with the
desired bandwidth, acting upon the number of the steps, upon their locations in the
cross section and upon the magnitude of apertures. For example, in fig. 3 is shown
a waveguide with the same overall dimensions axb = 29x13, like the guide in fig.
1 but, with a single step placed at the middle of the cross section. The aperture of
the guide in fig. 3 is of 3 mm, like the apertures of the guide in fig.1.

The lowest cutoff wavenumber of the guide in fig. 3 is k._, = 0.06823
rad/mm and the corresponding lowest cutoff frequency is f,_, = 3.255 GHz.

Y1
uy=1/3
Ry
) 2
] 0
- ¥ d, 90 L
1| % <y R
5 T ’
—d; K- b
et ’ 1
y; =—1.5 o <
vy =-115
2y
I, =145 [ I, =145
>
X = X4
a=29
o> x

Fig. 3. Wave guide with a single step in the cross section;
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k._o = 0.06823, f._, = 3.255 GHz.

The steps can be located anywhere in the cross section of the guide, [; #
l, # - #l,, so that the guides without any symmetry can be analyzed. For
example, if in fig. 1, the widths of the regions [;, [,, 5, the aperture 2d, and the
ordinate y; are modified to the values [, =8, [, =12, I3 =9, 2d; = 4.5 and
y§ = —2.25, while the heights of the three regions are kept at 13 mm than, the
lowest cutoff frequency of that guide becomes f,_, = 3.277 GHz.

The number of the steps in the cross section of a guide can be increased as
much as necessary, in order to obtain the desired bandwidth. However, increasing
the number of steps does not guarantee a lower cutoff wavenumber.
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