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METHOD FOR EXTENDING THE BANDWIDTH OF THE 

RECTANGULAR WAVEGUIDES 

 

Valerică COSTIN1 

 

In this paper is presented a method for extending the bandwidth of the 

rectangular waveguides. It consists of introducing the steps, with sharp edges, in 

the cross section of the guide, along the propagation direction.  
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1. Introduction 

This paper proposes a method for extending the bandwidth of rectangular 

waveguides. It consists of using as many steps as necessary, with sharp edges, in 

the cross section of the guide, along the propagation direction, together with using 

of local coordinates for writing the expressions of magnetic and electric 

components of the wave in the regions of the waveguide. 

For example, the theoretical lowest cutoff frequency of a rectangular 

waveguide, with the cross sectional dimensions 𝑎×𝑏 = 29×13, is 𝑓𝑐−TE10 =
𝑐 2𝑎⁄ = 5.168 GHz. By introducing a single step in the cross section of this guide, 

as is shown in fig.3, the lowest cutoff frequency decreases to 𝑓𝑐−0 = 3.255 GHz. 

The coupled-integral equations technique is used, [1]. 

 

 

2. General theory 

Fig. 1 in this paper shows a waveguide with two steps in the cross section, 

along the propagation direction. The edges of the steps are sharp, with the measure 

of internal angles of 900. The regions 𝑅1, 𝑅2, and 𝑅3 can be distinguished in the 

cross section. Between the three regions there are two interfaces. The interface 𝑘  is 

situated between regions 𝑅𝑘 and 𝑅𝑘+1, 𝑘 = 1, 2. The heights of the regions are 

denoted 𝑏1, 𝑏2, 𝑏3. The widths of the regions are denoted 𝑙1, 𝑙2, 𝑙3.  

All metallic surfaces are assumed lossless in the following analysis, [1, page 

2257]. 

The 𝑂𝑥 axis is common for all three regions. Similarly, the propagation 

direction for all regions is 𝑂𝑧 axis. For 𝑦 have been used two local ordinate axes 

𝑂1𝑦1 and 𝑂2𝑦2. They are placed within the interfaces, the origins being in the 

middle of the apertures. 
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Fig. 1. Waveguide with two steps in the cross section; all dimensions are in mm; the sketch is not 

shown at scale. 

 

Along the propagation direction, at 𝑥 = 𝑥1 and 𝑥 = 𝑥2, there are step 

discontinuities having the apertures 2𝑑1 and 2𝑑2.  

The dimensions of the guide, together with the ordinates of the bottom walls 

are used in order to express the components of the wave in all the three regions. The 

ordinates of the bottom walls are: 𝑦1
−, 𝑦1

+ in 𝑂1𝑦1 ordinate axes, and 𝑦2
−, 𝑦2

+ in 𝑂2𝑦2.  

 
2.1 Transverse Electric Modes analysis 

In this paper are analyzed only Transverse Electric Modes.  

 

2.2 Mathematically expressions of the components of the wave 

The starting point for getting the expressions of axial and transverse 

components of the wave is the Helmholtz equations of axial components 𝐻𝑧
𝑅𝑘(𝑥, 𝑦𝑘) 

in all the three regions. The boundary conditions of the problem, for all the three 

regions, are vanishing of the tangential electric fields in the metallic walls of the 

guide.  

The separation of variables method is used in order to solve the problem in 

all the regions. In each region, the electrical components are expanded in modes 
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that satisfy all the boundary conditions of the region, except those in the planes of 

interfaces, [1, page 2257]. The results for all the regions are mentioned below: 

 

(1) 

𝐻𝑧
𝑅1(𝑥, 𝑦1) = ∑ 𝐴𝑛

𝑅1 cosh(𝛾1𝑛𝑥)

cosh(𝛾1𝑛𝑥1)

∞
𝑛=0 cos [

𝑛𝜋

𝑏1
(𝑦1 − 𝑦1

−)],    0 ≤ 𝑥 ≤

𝑥1 
 

𝐸𝑦
𝑅1(𝑥, 𝑦1) =

𝑗𝜔𝜇

𝑘𝑐
2 ∑ 𝐴𝑛

𝑅1𝛾1𝑛
sinh(𝛾1𝑛𝑥)

cosh(𝛾1𝑛𝑥1)
∞
𝑛=0 cos [

𝑛𝜋

𝑏1
(𝑦1 − 𝑦1

−)],    0 ≤ 𝑥 ≤

𝑥1 
 

𝐻𝑧
𝑅2(𝑥, 𝑦1) = ∑ [𝐴𝑛

𝑅2𝑒𝛾2𝑛𝑥∞
𝑛=0 + 𝐵𝑛

𝑅2𝑒−𝛾2𝑛𝑥]cos [
𝑛𝜋

𝑏1
(𝑦1 − 𝑦1

+)] ,   𝑥1 ≤

𝑥 ≤ 𝑥2 
 

𝐸𝑦
𝑅2(𝑥, 𝑦1) =

𝑗𝜔𝜇

𝑘𝑐
2 ∑ 𝛾2𝑛[𝐴𝑛

𝑅2∞
𝑛=0 𝑒𝛾2𝑛𝑥 − 𝐵𝑛

𝑅2𝑒−𝛾2𝑛𝑥] cos [
𝑛𝜋

𝑏1
(𝑦1 − 𝑦1

+)],   𝑥1 ≤

𝑥 ≤ 𝑥2 
  

𝐻𝑧
𝑅2(𝑥, 𝑦2) = ∑ [𝐴𝑛

𝑅2𝑒𝛾2𝑛𝑥∞
𝑛=0 + 𝐵𝑛

𝑅2𝑒−𝛾2𝑛𝑥]cos [
𝑛𝜋

𝑏2
(𝑦2 − 𝑦2

−)] ,   𝑥1 ≤

𝑥 ≤ 𝑥2 
 

𝐸𝑦
𝑅2(𝑥, 𝑦2) =

𝑗𝜔𝜇

𝑘𝑐
2 ∑ 𝛾2𝑛[∞

𝑛=0 𝐴𝑛
𝑅2𝑒𝛾2𝑛𝑥 − 𝐵𝑛

𝑅2𝑒−𝛾2𝑛𝑥] cos [
𝑛𝜋

𝑏2
(𝑦2 − 𝑦2

−)],  𝑥1 ≤

𝑥 ≤ 𝑥2 
 

𝐻𝑧
𝑅3(𝑥, 𝑦2) = ∑ 𝐴𝑛

𝑅3 cosh(𝛾3𝑛(𝑥−𝑎)

cosh(𝛾3𝑛𝑙3)
∞
𝑛=0 cos [

𝑛𝜋

𝑏3
(𝑦2 − 𝑦2

+)],    𝑥2 ≤

𝑥 ≤ 𝑎  
 

𝐸𝑦
𝑅3(𝑥, 𝑦2) =

𝑗𝜔𝜇

𝑘𝑐
2 ∑ 𝐴𝑛

𝑅3γ3𝑛
sinh(𝛾3𝑛(𝑥−𝑎))

cosh(𝛾3𝑛𝑙3)
cos [

𝑛𝜋

𝑏3
(𝑦2 − 𝑦2

+)]∞
𝑛=0 ,    𝑥2 ≤

𝑥 ≤ 𝑎. 

 
𝛾1𝑛

2 = (𝑛𝜋 𝑏1⁄ )2 − 𝑘𝑐
2,     𝛾2𝑛

2 = (𝑛𝜋 𝑏2⁄ )2 − 𝑘𝑐
2,     𝛾3𝑛

2 = (𝑛𝜋 𝑏3⁄ )2 − 𝑘𝑐
2.       

𝛾1𝑛, 𝛾2𝑛, 𝛾3𝑛, = propagation constants of the mode 𝑛 in the regions 𝑅1, 𝑅2, 𝑅3. 

𝑘𝑐= the cutoff wavenumber of the guide. 

 

Determining of the modal development coefficients 𝐴𝑛
𝑅1 , 𝐴𝑛

𝑅2 , 𝐵𝑛
𝑅2 , 𝐴𝑛

𝑅3  is 

described in section 5. 

 

3. Singularities of the electric fields tangent to the sharp edges 

The next step is finding out of the expressions of these components in the 

interfaces between the regions. To do this it should be observed that the transverse 

electrical fields of electromagnetic wave are singular in the vicinity of the sharp 

vertices, [1, page 2258].  
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Fig. 2 shows a waveguide with metallic walls, having the cross section 𝑎×𝑏. 

On the upper wall there is a sharp ridge having the measure of the internal angle 𝜙 

radians, [2, page 631]. 

 

 

 

 

 

 

 

 
Fig. 2. Waveguide with a sharp ridge between regions (1) and (2).  

 

The distance from the vertex of the ridge to a current point in the interface is denoted 

with 𝑟. The electric component of the wave, 𝐸𝑦, which is tangent to the interface, 

exhibits a singularity. According to the mentioned research works in [2, page 631], 

the electric field of the wave, tangent to the interface is of the form 𝑟−1+𝜏: 

 

𝐸𝑦(𝑥, 𝑦) = 𝑂(𝑟−1+𝜏) = 𝑂(𝑟𝜈−1 2⁄ ),    𝜈 = 𝜏 − 1 2⁄ ,      𝜏 = 𝜋 (2𝜋 − 𝜙)⁄ > 0.  (2) 
 

For the guide in fig. 1, the internal angles of the sharp edges of the steps in the two 

interfaces are 𝜋 2⁄  radians. Consequently,  𝐸𝑦(𝑥, 𝑦) = 𝑂(𝑟𝜈−1 2⁄ ) = 𝑂(𝑟−1 3⁄ ) =

𝑂(1 𝑟1 3⁄⁄ ) = 𝑂(1 𝑟𝜇𝑘⁄ ), where  𝜇𝑘 = 1 3⁄ . 

 

4. Basis and testing functions  

For the guide in fig.1, the electric fields in the interfaces can be described 

using two sets of basis functions.  

 

4.1 The basis functions and the functions that are describing the true 

distribution of the tangential electric fields in the interfaces  

a) Basis functions 

For the current interface, the basis functions that satisfy all edge and contour 

criteria, [1, page 2259], are given by the following relations: 

 

𝑋𝑗,𝜇𝑘
(𝑦𝑘) =

cos[(𝑗−1)𝜋(𝑦𝑘 2𝑑𝑘⁄ )]

[1−(𝑦𝑘 𝑑𝑘⁄ )2]𝜇𝑘
,         𝑌𝑗,𝜇𝑘

(𝑦𝑘) =
sin[𝑗𝜋(𝑦𝑘 2𝑑𝑘⁄ )]

[1−(𝑦𝑘 𝑑𝑘⁄ )2]𝜇𝑘
,       𝑗 = 1, 2, … . (3) 

 

In the two interfaces of the guide in fig. 1,  𝜇𝑘 = 1/3,  𝑘 = 1, 2. 

b) The functions used for describing electrical fields in interfaces 

These functions, denoted 𝑓1(𝑦1) and 𝑓2(𝑦2), are chosen such that to 

represent the true distribution of the electric fields in interfaces, [1, page 2257]. 

These functions will be zero on all metallic surfaces in interfaces and will be non 
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zero in the apertures of the interfaces. For the current interface, these functions are 

given by the expressions mentioned below in (4), [1, page 2258]: 

 

𝑓𝑘(𝑦𝑘) =
𝑗𝜔𝜇

𝑘𝑐
2 ∑ [𝑝𝑗,𝑘𝑋𝑗,𝜇𝑘

(𝑦𝑘) + 𝑞𝑗,𝑘𝑌𝑗,𝜇𝑘
(𝑦𝑘)]∞

𝑗=1 ,  𝑘 = 1, 2 ,     𝑗 = 1, 2, … .  (4) 

𝑓𝑘(𝑦𝑘) ≠ 0 for 𝑦𝑘 ∈ (−𝑑𝑘 , 𝑑𝑘),  𝑓𝑘(𝑦𝑘) = 0 for 𝑦𝑘 ∈ [𝑦𝑘
−, −𝑑𝑘  ] ∪ [𝑑𝑘 , 𝑦𝑘

+ + 𝑏𝑘+1 ].    
 

where 𝑝𝑗,𝑘 and 𝑞𝑗,𝑘 are the series expansion coefficients, 𝑘 = 1, 2. 

 

4.2 The testing functions of the magnetic components in interfaces 

The testing functions are obtained from the basis functions by simply adding 

𝜋 2⁄  to (𝑗 − 1)𝜋 or to 𝑗𝜋 in the arguments of basis functions, because 𝑯 leads 𝑬 by 

𝜋 2⁄  in respect to the propagation direction. In order to be differentiated from the 

basis functions, the index 𝑗 is replaced by 𝑖 and to avoid the confusions between 

basis functions and testing functions, even the letters are changed, so that the 

following notations are used: 

 

𝑅𝑖,𝜇𝑘
(𝑦𝑘) =

cos[(𝑖−
1

2
)𝜋(𝑦𝑘 2𝑑𝑘⁄ )]

[1−(𝑦𝑘 𝑑𝑘⁄ )2]𝜇𝑘
;  𝑇𝑖,𝜇𝑘

(𝑦𝑘) =
sin[(𝑖+

1

2
)𝜋(𝑦𝑘 2𝑑𝑘⁄ )]

[1−(𝑦𝑘 𝑑𝑘⁄ )2]𝜇𝑘
; 𝑖 = 𝑗 = 1, 2, …; 𝑘 = 1, 2.  (5) 

 

5. Determining the modal development coefficients and the components 

of the Fourier spectrum for the basis and testing functions  

The way to get the modal development coefficients 𝐴𝑛
𝑅1 , 𝐴𝑛

𝑅2 , 𝐵𝑛
𝑅2 , 𝐴𝑛

𝑅3 , is as 

follows: 

a) The equality between the electrical components of the wave in the regions 

adjacent to current interface 𝑘 and the corresponding function 𝑓𝑘(𝑦𝑘) is written, 𝑘 =

1, 2 ; 

b) The above equalities are multiplied by trigonometric functions from the 

orthogonal series corresponding to those of electrical components; 

c) Finally, the four equalities are integrated across the apertures of the interfaces.  

 

5.1 Determining the modal development coefficients  

There will be 4 coupled-integral equations and once they are manipulated 

they will get different forms. For this reason, the current number of each group of 

equations is followed by the figures 1−, 1+; 2−, 2+. For the interface 𝑘, 𝑘 = 1, 2, 

the upper minus sign means that the corresponding equation is written for the region 

in the left side of interface 𝑘, and the upper plus sign is for the equation of the region 

in the right side of same interface  𝑘. The equations are: 
          (6) 
          (6. 1−) 

∫ {∑ 𝐴𝑛
𝑅1𝛾1𝑛tanh(𝛾1𝑛𝑥1)∞

𝑛=0 cos [
𝑛𝜋

𝑏1
(𝑦1 − 𝑦1

−)]} cos [
𝑚𝜋

𝑏1
(𝑦1 − 𝑦1

−)] 𝑑𝑦1
𝑑1

−𝑑1
=

∫ {∑ [𝑝𝑗,1
cos[(𝑗−1)𝜋(𝑦1 2𝑑1⁄ )]

[1−(𝑦1 𝑑1⁄ )2]𝜇1
+ 𝑞𝑗,1

sin[𝑗𝜋(𝑦1 2𝑑1⁄ )]

[1−(𝑦1 𝑑1⁄ )2]𝜇1
]∞

𝑗=1 } cos [
𝑚𝜋

𝑏1
(𝑦1 − 𝑦1

−)]
𝑑1

−𝑑1
𝑑𝑦1,  
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(6. 1+) 

∫ {∑ 𝛾2𝑛[∞
𝑛=0 𝐴𝑛

𝑅2𝑒𝛾2𝑛𝑥1 − 𝐵𝑛
𝑅2𝑒−𝛾2𝑛𝑥1]cos [

𝑛𝜋

𝑏2
(𝑦1 − 𝑦1

+)]} cos [
𝑚𝜋

𝑏2
(𝑦1 − 𝑦1

+)] 𝑑𝑦1
𝑑1

−𝑑1
=

∫ {∑ [𝑝𝑗,1
cos[(𝑗−1)𝜋(𝑦1 2𝑑1⁄ )]

[1−(𝑦1 𝑑1⁄ )2]𝜇1
+ 𝑞𝑗,1

sin[𝑗𝜋(𝑦1 2𝑑1⁄ )]

[1−(𝑦1 𝑑1⁄ )2]𝜇1
]∞

𝑗=1 } cos [
𝑚𝜋

𝑏2
(𝑦1 − 𝑦1

+)] 𝑑𝑦1
𝑑1

−𝑑1
,  

(6. 2−) 

∫ {∑ 𝛾2𝑛[∞
𝑛=0 𝐴𝑛

𝑅2𝑒𝛾2𝑛𝑥2 − 𝐵𝑛
𝑅2𝑒−𝛾2𝑛𝑥2] cos [

𝑛𝜋

𝑏2
(𝑦2 − 𝑦2

−)]} cos [
𝑚𝜋

𝑏2
(𝑦2 − 𝑦2

−)] 𝑑𝑦2 =
𝑑2

−𝑑2

∫ {∑ [𝑝𝑗,2
cos[(𝑗−1)𝜋(𝑦2 2𝑑2⁄ )]

[1−(𝑦2 𝑑2⁄ )2]𝜇2
+ 𝑞𝑗,2

sin[𝑗𝜋(𝑦2 2𝑑2⁄ )]

[1−(𝑦2 𝑑2⁄ )2]𝜇2
]∞

𝑗=1 } cos [
𝑚𝜋

𝑏2
(𝑦2 − 𝑦2

−)] 𝑑𝑦2
𝑑2

−𝑑2
,    

(6. 2+) 

∫ {∑ −𝐴𝑛
𝑅3𝛾3𝑛tanh(𝛾3𝑛𝑙3)cos [

𝑛𝜋

𝑏3
(𝑦2 − 𝑦2

+)]∞
𝑛=0 } cos [

𝑚𝜋

𝑏3
(𝑦2 − 𝑦2

+)] 𝑑𝑦2 =
𝑑2

−𝑑2

∫ {∑ [𝑝𝑗,2
cos[(𝑗−1)𝜋(𝑦2 2𝑑2⁄ )]

[1−(𝑦2 𝑑2⁄ )2]𝜇2
+ 𝑞𝑗,2

sin[𝑗𝜋(𝑦2 2𝑑2⁄ )]

[1−(𝑦2 𝑑2⁄ )2]𝜇2
]∞

𝑗=1 } cos [
𝑚𝜋

𝑏3
(𝑦2 − 𝑦2

+)] 𝑑𝑦2
𝑑2

−𝑑2
.  

 

Changing the limits of integrals, from lower to upper walls of the guide, and 

using the relation 3.771.8, mentioned at page 442 in the reference work [4], the 

integrals can be calculated. Making the notations 𝛿𝑛0 = 1 for 𝑛 = 0, 𝛿𝑛0 = 0 for 

𝑛 ≠ 0 and 𝜈𝑘 = (1 2) −⁄ 𝜇𝑘, the results of the above integrals are: 
(7) 

 (7. 1−) 

𝐴𝑛
𝑅1𝛾1𝑛tanh(𝛾1𝑛𝑥1)(1 + 𝛿𝑛0)

𝑏1

2
= ∑ 𝑝𝑗,1𝑑1

1

2
√𝜋Γ (𝜈1 +

1

2
) cos (−

𝑛𝑦1
−

𝑏1
𝜋) [

𝐽𝜈1[
1

2
(𝑗−1+

𝑛(2𝑑1)

𝑏1
)𝜋]

[
1

2
(𝑗−1+

𝑛(2𝑑1)

𝑏1
)

𝜋

2
]
𝜈1 +∞

𝑗=1

𝐽𝜈1[
1

2
|𝑗−1−

𝑛(2𝑑1)

𝑏1
|𝜋]

[
1

2
|𝑗−1−

𝑛(2𝑑1)

𝑏1
|
𝜋

2
]
𝜈1 ] + ∑ 𝑞𝑗,1𝑑1

1

2
√𝜋Γ (𝜈1 +

1

2
) sin (−

𝑛𝑦1
−

𝑏1
𝜋) [

𝐽𝜈1[
1

2
(𝑗+

𝑛(2𝑑1)

𝑏1
)𝜋]

[
1

2
(𝑗+

𝑛(2𝑑1)

𝑏1
)

𝜋

2
]
𝜈1 −

𝐽𝜈1[
1

2
|𝑗−

𝑛(2𝑑1)

𝑏1
|𝜋]

[
1

2
|𝑗−

𝑛(2𝑑1)

𝑏1
|
𝜋

2
]
𝜈1 ]∞

𝑗=1 ,   

 
 (7. 1+) 

𝛾2𝑛[𝐴𝑛
𝑅2𝑒𝛾2𝑛𝑥1 − 𝐵𝑛

𝑅2𝑒−𝛾2𝑛𝑥1](1 + 𝛿𝑛0)
𝑏2

2
= ∑ 𝑝𝑗,1𝑑1

1

2
√𝜋Γ (𝜈1 +∞

𝑗=1

1

2
) cos (−

𝑛𝑦1
+

𝑏2
𝜋 ) [

𝐽𝜈1[
1

2
(𝑗−1+

𝑛(2𝑑1)

𝑏2
)𝜋]

[
1

2
(𝑗−1+

𝑛(2𝑑1)

𝑏2
)

𝜋

2
]
𝜈1 +

𝐽𝜈1[
1

2
|𝑗−1−

𝑛(2𝑑1)

𝑏2
|𝜋]

[
1

2
|𝑗−1−

𝑛(2𝑑1)

𝑏2
|
𝜋

2
]
𝜈1 ] + ∑ 𝑞𝑗,1𝑑1

1

2
√𝜋Γ (𝜈1 +∞

𝑗=1

1

2
) sin (−

𝑛𝑦1
+

𝑏2
𝜋 ) [

𝐽𝜈1[
1

2
(𝑗+

𝑛(2𝑑1)

𝑏2
)𝜋]

[
1

2
(𝑗+

𝑛(2𝑑1)

𝑏2
)

𝜋

2
]
𝜈1 −

𝐽𝜈1[
1

2
|𝑗−

𝑛(2𝑑1)

𝑏2
|𝜋]

[
1

2
|𝑗−

𝑛(2𝑑1)

𝑏2
|
𝜋

2
]
𝜈1 ],      

     
  
 (7. 2−)  

𝛾2𝑛[𝐴𝑛
𝑅2𝑒𝛾2𝑛𝑥2 − 𝐵𝑛

𝑅2𝑒−𝛾2𝑛𝑥2](1 + 𝛿𝑛0)
𝑏2

2
= ∑ 𝑝𝑗,2𝑑2

1

2
√𝜋Γ (𝜈2 +∞

𝑗=1

1

2
) cos (

−𝑛𝑦2
−

𝑏2
𝜋) [

𝐽𝜈2[
1

2
(𝑗−1+

𝑛(2𝑑2)

𝑏2
)𝜋]

[
1

2
(𝑗−1+

𝑛(2𝑑2)

𝑏2
)

𝜋

2
]
𝜈2 +

𝐽𝜈2[
1

2
|𝑗−1−

𝑛(2𝑑2)

𝑏2
|𝜋]

[
1

2
|𝑗−1−

𝑛(2𝑑2)

𝑏2
|
𝜋

2
]
𝜈2 ] + ∑ 𝑞𝑗,2𝑑2

1

2
√𝜋Γ (𝜈2 +∞

𝑗=1

1

2
) sin (

−𝑛𝑦2
−

𝑏2
𝜋) [

𝐽𝜈2[
1

2
(𝑗+

𝑛(2𝑑2)

𝑏2
)𝜋]

[
1

2
(𝑗+

𝑛(2𝑑2)

𝑏2
)

𝜋

2
]
𝜈2 −

𝐽𝜈2[
1

2
|𝑗−

𝑛(2𝑑2)

𝑏2
|𝜋]

[
1

2
|𝑗−

𝑛(2𝑑2)

𝑏2
|
𝜋

2
]
𝜈2 ],  

      (7. 2+)  



Method for extending the bandwidth of rectangular waveguides                     187 

−𝐴𝑛
𝑅3γ3𝑛tanh(𝛾3𝑛𝑙3)(1 + 𝛿𝑛0)

𝑏3

2
= ∑ 𝑝𝑗,2𝑑2

1

2
√𝜋Γ (𝜈2 +

1

2
) cos (

−𝑛𝑦2
+

𝑏3
𝜋) [

𝐽𝜈2[
1

2
(𝑗−1+

𝑛(2𝑑2)

𝑏3
)𝜋]

[
1

2
(𝑗−1+

𝑛(2𝑑2)

𝑏3
)

𝜋

2
]
𝜈2 +∞

𝑗=1

𝐽𝜈2[
1

2
|𝑗−1−

𝑛(2𝑑2)

𝑏3
|𝜋]

[
1

2
|𝑗−1−

𝑛(2𝑑2)

𝑏3
|
𝜋

2
]
𝜈2 ] + ∑ 𝑞𝑗,2𝑑2

1

2
√𝜋Γ (𝜈2 +

1

2
) sin (

−𝑛𝑦2
+

𝑏3
𝜋) [

𝐽𝜈2[
1

2
(𝑗+

𝑛(2𝑑2)

𝑏3
)𝜋]

[
1

2
(𝑗+

𝑛(2𝑑2)

𝑏3
)

𝜋

2
]
𝜈2 −

𝐽𝜈2[
1

2
|𝑗−

𝑛(2𝑑2)

𝑏3
|𝜋]

[
1

2
|𝑗−

𝑛(2𝑑2)

𝑏3
|
𝜋

2
]
𝜈2 ]∞

𝑗=1 .  

 

where 𝐽𝜈𝑘
 are Bessel functions of the first kind of order 𝜈𝑘, and Γ is function 

gamma. 
In [1, page 2261] is proved that only “two basis functions are sufficient”. 

Because in this paper have been used the same basis functions as in [1], it is also 

used the same numbers of terms for 𝑗, that is 𝑗 = 1, 2, and of course  𝑖 = 1, 2. 

 

5.2 The Fourier spectrum of the basis functions, mode 𝒏 

Two notations will be done in each equation of group (7). These notations 

represent the components of the Fourier spectrum of the basis functions 𝑋𝑗,𝜇𝑘
(𝑦𝑘) 

and 𝑌𝑗,𝜇𝑘
(𝑦𝑘), for the mode 𝑛, in the regions 𝑅𝑘 and 𝑅𝑘+1, regions adjacent to the 

interface 𝑘, 𝑘 = 1, 2, [1, page 2259].  

The components of the Fourier spectrum are: 𝑋̃𝑗,𝜇1

𝑅1 (𝑛), 𝑌̃𝑗,𝜇1

𝑅1 (𝑛), 𝑋̃𝑗,𝜇1

𝑅2 (𝑛), 𝑌̃𝑗,𝜇1

𝑅2 (𝑛), 

𝑋̃𝑗,𝜇2

𝑅2 (𝑛), 𝑌̃𝑗,𝜇2

𝑅2 (𝑛), 𝑋̃𝑗,𝜇2

𝑅3 (𝑛) and 𝑌̃𝑗,𝜇2

𝑅3 (𝑛). 

Below are presented only the expressions of the components of the Fourier 

spectrum, mode 𝑛, for the region 𝑅2, written in the system 𝑂2𝑦2: 
 

𝑋̃𝑗,𝜇2

𝑅2 (𝑛) =
(2𝑑2 𝑏2⁄ )

(1+𝛿𝑛0)

1

2
√𝜋Γ (𝜈2 +

1

2
) cos (−

𝑛𝑦2
−

𝑏2
𝜋) [

𝐽𝜈2[
1

2
(𝑗−1+

𝑛(2𝑑2)

𝑏2
)𝜋]

[
1

2
(𝑗−1+

𝑛(2𝑑2)

𝑏2
)

𝜋

2
]
𝜈2 +

𝐽𝜈2[
1

2
|𝑗−1−

𝑛(2𝑑2)

𝑏2
|𝜋]

[
1

2
|𝑗−1−

𝑛(2𝑑2)

𝑏2
|
𝜋

2
]
𝜈2 ],  

 

𝑌̃𝑗,𝜇2

𝑅2 (𝑛) =
(2𝑑2 𝑏2⁄ )

(1+𝛿𝑛0)

1

2
√𝜋Γ (𝜈2 +

1

2
) sin (−

𝑛𝑦2
−

𝑏2
𝜋) [

𝐽𝜈2[
1

2
(𝑗+

𝑛(2𝑑2)

𝑏2
)𝜋]

[
1

2
(𝑗+

𝑛(2𝑑2)

𝑏2
)

𝜋

2
]
𝜈2 −

𝐽𝜈2[
1

2
|𝑗−

𝑛(2𝑑2)

𝑏2
|𝜋]

[
1

2
|𝑗−

𝑛(2𝑑2)

𝑏2
|
𝜋

2
]
𝜈2 ].  

 

Introducing these notations in the group (7) of equations, the development 

coefficients 𝐴𝑛
𝑅1 , 𝐴𝑛

𝑅2 , 𝐵𝑛
𝑅2 , 𝐴𝑛

𝑅3  can be obtained. 

5.3 The Fourier spectrum for the testing functions, mode 𝒏 

According to the section 4.2 and to the relations (5), the components of the 

Fourier spectrum for the testing functions, mode 𝑛, can determined, by adding 1 2⁄  

to (𝑗 − 1) and to 𝑗 in the components of Fourier spectrum of basis functions.  These 

components are: 𝑅̃𝑖,𝜇1

𝑅1 (𝑛), 𝑇̃𝑖,𝜇1

𝑅1 (𝑛), 𝑅̃𝑖,𝜇1

𝑅2 (𝑛), 𝑇̃𝑖,𝜇1

𝑅2 (𝑛), 𝑅̃𝑖,𝜇2

𝑅2 (𝑛), 𝑇̃𝑖,𝜇2

𝑅2 (𝑛), 𝑅̃𝑖,𝜇2

𝑅3 (𝑛), and 𝑇̃𝑖,𝜇2

𝑅3 (𝑛).  

 

6. The fundamental equations of the guide 

The procedure for getting the fundamental equations of the guide in fig. 1 

is: 

a) The equality between the magnetic components of the wave in the interfaces is 

written, that is 𝐻𝑧
𝑅𝑘(𝑥 = 𝑥𝑘 , 𝑦𝑘) = 𝐻𝑧

𝑅𝑘+1(𝑥 = 𝑥𝑘 , 𝑦𝑘), 𝑘 = 1, 2; 
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b) The above groups of equalities are successively multiplied by the testing 

functions 𝑅𝑖,𝜇𝑘
(𝑦𝑘) and 𝑇𝑖,𝜇𝑘

(𝑦𝑘) and then integrated across the apertures of 

interfaces. 

The four equations, which are obtained, are mentioned below: 
(8) 

           (8.1R)  

∑ 𝑝𝑗,1
2
𝑗=1 ∑ (1 + 𝛿𝑛0) [𝑏1

𝑋̃𝑗,𝜇1

𝑅1 (𝑛)𝑅̃𝑖,𝜇1

𝑅1 (𝑛)

𝛾1𝑛tanh(𝛾1𝑛𝑙1)
+ 𝑏2

𝑋̃𝑗,𝜇1

𝑅2 (𝑛)𝑅̃𝑖,𝜇1

𝑅2 (𝑛)

𝛾2𝑛tanh(𝛾2𝑛𝑙2)
]∞

𝑛=0 + ∑ 𝑞𝑗,1
2
𝑗=1 ∑ (1 +∞

𝑛=0

𝛿𝑛0) [𝑏1

𝑌̃𝑗,𝜇1

𝑅1 (𝑛)𝑅̃𝑖,𝜇1

𝑅1 (𝑛)

𝛾1𝑛tanh(𝛾1𝑛𝑙1)
+ 𝑏2

𝑌̃𝑗,𝜇1

𝑅2 (𝑛)𝑅̃𝑖,𝜇1

𝑅2 (𝑛)

𝛾2𝑛tanh(𝛾2𝑛𝑙2)
] + ∑ 𝑝𝑗,2 ∑ (1 + 𝛿𝑛0) [−𝑏2

𝑋̃𝑗,𝜇2

𝑅2 (𝑛)𝑅̃𝑖,𝜇1

𝑅2 (𝑛)

𝛾2𝑛sinh(𝛾2𝑛𝑙2)
]∞

𝑛=0
2
𝑗=1 +

∑ 𝑞𝑗,2 ∑ (1 + 𝛿𝑛0) [−𝑏2

𝑌̃𝑗,𝜇2

𝑅2 (𝑛)𝑅̃𝑖,𝜇1

𝑅2 (𝑛)

𝛾2𝑛sinh(𝛾2𝑛𝑙2)
] = 0∞

𝑛=0
2
𝑗=1 ,       

  (8.1T) 

∑ 𝑝𝑗,1 ∑ (1 + 𝛿𝑛0) [𝑏1

𝑋̃𝑗,𝜇1

𝑅1 (𝑛)𝑇̃𝑖,𝜇1

𝑅1 (𝑛)

𝛾1𝑛tanh(𝛾1𝑛𝑙1)
+ 𝑏2

𝑋̃𝑗,𝜇1

𝑅2 (𝑛)𝑇̃𝑖,𝜇1

𝑅2 (𝑛)

𝛾2𝑛tanh(𝛾2𝑛𝑙2)
] + ∑ 𝑞𝑗,1

2
𝑗=1 ∑ (1 +∞

𝑛=0
∞
𝑛=0

2
𝑗=1

𝛿𝑛0) [𝑏1

𝑌̃𝑗,𝜇1

𝑅1 (𝑛)𝑇̃𝑖,𝜇1

𝑅1 (𝑛)

𝛾1𝑛tanh(𝛾1𝑛𝑙1)
+ 𝑏2

𝑌̃𝑗,𝜇1

𝑅2 (𝑛)𝑇̃𝑖,𝜇1

𝑅2 (𝑛)

𝛾2𝑛tanh(𝛾2𝑛𝑙2)
] + ∑ 𝑝𝑗,2 ∑ (1 + 𝛿𝑛0) [−𝑏2

𝑋̃𝑗,𝜇2

𝑅2 (𝑛)𝑇̃𝑖,𝜇1

𝑅2 (𝑛)

𝛾2𝑛sinh(𝛾2𝑛𝑙2)
]∞

𝑛=0
2
𝑗=1 +

∑ 𝑞𝑗,2 ∑ (1 + 𝛿𝑛0) [−𝑏2

𝑌̃𝑗,𝜇2

𝑅2 (𝑛)𝑇̃𝑖,𝜇1

𝑅2 (𝑛)

𝛾2𝑛sinh(𝛾2𝑛𝑙2)
] = 0∞

𝑛=0
2
𝑗=1 ,  

 
          (8.2R) 

∑ 𝑝𝑗,1 ∑ (1 + 𝛿𝑛0) [−𝑏2

𝑋̃𝑗,𝜇1

𝑅2 (𝑛)𝑅̃𝑖,𝜇2

𝑅2 (𝑛)

𝛾2𝑛sinh(𝛾2𝑛𝑙2)
] + ∑ 𝑞𝑗,1 ∑ (1 + 𝛿𝑛0) [−𝑏2

𝑌̃𝑗,𝜇1

𝑅2 (𝑛)𝑅̃𝑖,𝜇2

𝑅2 (𝑛)

𝛾2𝑛sinh(𝛾2𝑛𝑙2)
] +∞

𝑛=0
2
𝑗=1

∞
𝑛=0

2
𝑗=1

∑ 𝑝𝑗,2 ∑ (1 + 𝛿𝑛0) [𝑏2

𝑋̃𝑗,𝜇2

𝑅2 (𝑛)𝑅̃𝑖,𝜇2

𝑅2 (𝑛)

𝛾2𝑛tanh(𝛾2𝑛2)
+ 𝑏3

𝑋̃𝑗,𝜇2

𝑅3 (𝑛)𝑅̃𝑖,𝜇2

𝑅3 (𝑛)

γ3𝑛tanh(𝛾3𝑛𝑙3)
]∞

𝑛=0
2
𝑗=1 + ∑ 𝑞𝑗,2 ∑ (1 +∞

𝑛=0
2
𝑗=1

𝛿𝑛0) [𝑏2

𝑌̃𝑗,𝜇2

𝑅2 (𝑛)𝑅̃𝑖,𝜇2

𝑅2 (𝑛)

𝛾2𝑛tanh(𝛾2𝑛𝑙2)
+ 𝑏3

𝑌̃𝑗,𝜇2

𝑅3 (𝑛)𝑅̃𝑖,𝜇2

𝑅3 (𝑛)

γ3𝑛tanh(𝛾3𝑛𝑙3)
] = 0  

          (8.2T) 

∑ 𝑝𝑗,1 ∑ (1 + 𝛿𝑛0) [−𝑏2

𝑋̃𝑗,𝜇1

𝑅2 (𝑛)𝑅̃𝑖,𝜇2

𝑅2 (𝑛)

𝛾2𝑛sinh(𝛾2𝑛𝑙2)
] + ∑ 𝑞𝑗,1 ∑ (1 + 𝛿𝑛0) [−𝑏2

𝑌̃𝑗,𝜇1

𝑅2 (𝑛)𝑅̃𝑖,𝜇2

𝑅2 (𝑛)

𝛾2𝑛sinh(𝛾2𝑛𝑙2)
] +∞

𝑛=0
2
𝑗=1

∞
𝑛=0

2
𝑗=1

∑ 𝑝𝑗,2 ∑ (1 + 𝛿𝑛0) [𝑏2

𝑋̃𝑗,𝜇2

𝑅2 (𝑛)𝑅̃𝑖,𝜇2

𝑅2 (𝑛)

𝛾2𝑛tanh(𝛾2𝑛2)
+ 𝑏3

𝑋̃𝑗,𝜇2

𝑅3 (𝑛)𝑅̃𝑖,𝜇2

𝑅3 (𝑛)

γ3𝑛tanh(𝛾3𝑛𝑙3)
]∞

𝑛=0
2
𝑗=1 + ∑ 𝑞𝑗,2 ∑ (1 +∞

𝑛=0
2
𝑗=1

𝛿𝑛0) [𝑏2

𝑌̃𝑗,𝜇2

𝑅2 (𝑛)𝑅̃𝑖,𝜇2

𝑅2 (𝑛)

𝛾2𝑛tanh(𝛾2𝑛𝑙2)
+ 𝑏3

𝑌̃𝑗,𝜇2

𝑅3 (𝑛)𝑅̃𝑖,𝜇2

𝑅3 (𝑛)

γ3𝑛tanh(𝛾3𝑛𝑙3)
] = 0  

 

The letters R and T in the equations of the group (8) come from the fact the 

equalities between the magnetic components of the wave in the interfaces are 

multiplied successively by 𝑅𝑖,𝜇𝑘
(𝑦𝑘) and 𝑇𝑖,𝜇𝑘

(𝑦𝑘).     

Making suitable notations in the equations of the group (8), the system of 

equations (9) will be obtained, where 𝑖 = 𝑗 = 1, 2. That system of equations is: 
(9) 

∑ {𝑝𝑗,1[𝑈1]𝑖𝑗 + 𝑞𝑗,1[𝑉1]𝑖𝑗 + 𝑝𝑗,2[𝑊1]𝑖𝑗 + 𝑞𝑗,2[𝑋1]𝑖𝑗} = 02
𝑗=1 ,    
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∑ {𝑝𝑗,1[𝑈2]𝑖𝑗 + 𝑞𝑗,1[𝑉2]𝑖𝑗 + 𝑝𝑗,2[𝑊2]𝑖𝑗 + 𝑞𝑗,2[𝑋2]𝑖𝑗} = 02
𝑗=1 ,   

∑ {𝑝𝑗,1[𝑈3]𝑖𝑗 + 𝑞𝑗,1[𝑉3]𝑖𝑗 + 𝑝𝑗,2[𝑊3]𝑖𝑗 + 𝑞𝑗,2[𝑋3]𝑖𝑗} = 02
𝑗=1 ,   

∑ {𝑝𝑗,1[𝑈4]𝑖𝑗 + 𝑞𝑗,1[𝑉4]𝑖𝑗 + 𝑝𝑗,2[𝑊4]𝑖𝑗 + 𝑞𝑗,2[𝑋4]𝑖𝑗} = 02
𝑗=1 ,   

 

The cutoff wavenumbers of the TE modes are determined as the zeros of the 

determinant of the matrix in the system of equations (9), [1, page 2258]. “It is 

numerically more advantageous to locate the zero of the smallest singular value 

instead, as this allows the suppression of the poles that are otherwise present in the 

determinant”, [1, page 2258]. Getting the smallest singular value is described in [3].  

 

7. Numerical results 

The determinant 𝐷(𝑘) of the matrix in the system (9) of equations is 

graphically represented as a function of the wave numbers 𝑘, in the range 0 to 1 

rad/mm. The intersections of the graph with "𝑂𝑘" axis represent the cutoff 

wavenumbers of the guide. Doing so, for the lowest cutoff wavenumber of the guide 

in fig. 1 has been obtained the value 𝑘𝑐−0 = 0.06284 rad/mm and, for the 

corresponding lowest cutoff frequency has been obtained the value 𝑓𝑐−0 = 2.998 

GHz.  

 

8. Extending the bandwidth 

The theoretical lowest cutoff frequency of a rectangular waveguide with the 

cross sectional dimensions 𝑎×𝑏 = 29×13 is 𝑓𝑐−TE10 = 𝑐 2𝑎⁄ = 5.168 GHz. 

Introducing two steps in the cross section of this guide, but maintaining the same 

height of 13 mm in all the three regions and the same total internal width of 29 mm, 

the guide in fig. 1 has been obtained. For this guide, has been shown in section (7) 

that the lowest cutoff frequency has been decreased to 𝑓𝑐−0 = 2.998GHz, proving 

that the bandwidth has been extended. 

 

9. Validating the method 

Using the local coordinates, the method presented above has been applied 

to the guide analyzed in reference work [1, page 2257], even though that guide is a 

ridged one. The data in the work [1, page 2262] have been compared to the data 

obtained using the method exposed above. The results can be seen in the table 1. 
Table 1.  

The cutoff wavenumbers in the table are measured in rad/mm. 
  Mode 0 1 2 3 4 

Present 

method 
𝑘𝑐 0.09299 0.32971 0.33316 0.33518 0.38115 

[1,pag.2262] 𝑘𝑐 0.0926  0.3332  0.3811 

 Mode 5 6 7 8 9 

Present 

method 
𝑘𝑐 0.46904 0.52666 0.66527 0.69123 0.74546 
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[1,pag.2262] 𝑘𝑐  0.5263 0.6653 0.6916 0.7453 

 Mode 10 11 12 13 14 

Present 

method 
𝑘𝑐 0.74653 0.83028 0.93941 0.96122 0.99690 

[1,pag.2262] 𝑘𝑐  0.8295    

 

The data seem to be very close. It can be seen that in this paper have been used 5 

significant digits after the decimal point. 

 

 10. The importance of the method 

The waveguides with the cross sections in steps are more easily to be 

manufactured than the ridged waveguides. For example, the width of the ridge of 

the waveguide analyzed in [1] is of only 0.3 mm, which is very difficult to be 

obtained. 

The method can be used in order to design guiding structures with the 

desired bandwidth, acting upon the number of the steps, upon their locations in the 

cross section and upon the magnitude of apertures. For example, in fig. 3 is shown 

a waveguide with the same overall dimensions 𝑎×𝑏 = 29×13, like the guide in fig. 

1 but, with a single step placed at the middle of the cross section. The aperture of 

the guide in fig. 3 is of 3 mm, like the apertures of the guide in fig.1.  

The lowest cutoff wavenumber of the guide in fig. 3 is 𝑘𝑐−0 = 0.06823 

rad/mm and the corresponding lowest cutoff frequency is 𝑓𝑐−0 = 3.255 GHz. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. Wave guide with a single step in the cross section; 
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𝑘𝑐−0 = 0.06823, 𝑓𝑐−0 = 3.255 GHz. 

 

 The steps can be located anywhere in the cross section of the guide, 𝑙1 ≠
𝑙2 ≠ ⋯ ≠ 𝑙𝑛, so that the guides without any symmetry can be analyzed. For 

example, if in fig. 1, the widths of the regions 𝑙1, 𝑙2, 𝑙3, the aperture 2𝑑2 and the 

ordinate 𝑦2
+ are modified to the values  𝑙1 = 8, 𝑙2 = 12, 𝑙3 = 9, 2𝑑3 = 4.5 and 

𝑦2
+ = −2.25, while the heights of the three regions are kept at 13 mm than, the 

lowest cutoff frequency of that guide becomes 𝑓𝑐−0 = 3.277 GHz. 

The number of the steps in the cross section of a guide can be increased as 

much as necessary, in order to obtain the desired bandwidth. However, increasing 

the number of steps does not guarantee a lower cutoff wavenumber. 
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