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ACCELERATED RHSS ITERATION METHODS FOR SADDLE-POINT

LINEAR SYSTEMS

Reza Behzadi1, Farshid Abdollahi2

Bai and Benzi (2016) recently studied a class of regularized Hermitian and
skew-Hermitian splitting (RHSS) methods for the solution of large, sparse linear systems
in saddle-point form. In this paper, we establish a class of accelerated regularized Her-
mitian and skew-Hermitian splitting (ARHSS) iteration methods for large sparse saddle
point linear systems by making use of the regularized Hermitian and skew-Hermitian
splitting (RHSS) iteration technique. These methods involve two iteration parameters
whose special choices can recover the known preconditioned HSS iteration methods, as
well as yield new ones. Theoretical analysis shows that the new methods converge un-
conditionally to the unique solution of the saddle point problem. In addition, theoretical
properties of the preconditioned Krylov subspace methods such as GMRES are inves-
tigated when the ARHSS iterations are employed as their preconditioners. Numerical
experiments confirm the correctness of the theory and the effectiveness of the methods.
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1. Introduction

We consider the iterative solution of large sparse saddle point linear systems of the
form

Ax ≡
(

B E
−E∗ O

)(
y
z

)
=

(
f
g

)
≡ b (1)

where B ∈ Cp×p is Hermitian positive definite, O ∈ Cq×q is zero, E ∈ Cp×q has full column
rank, p ≥ q, f ∈ Cp and g ∈ Cq . These assumptions guarantee the existence and uniqueness
of the solution of the system of linear equations (1). Here and in the sequel, we indicate by
(.)∗ the conjugate transpose of either a vector or a matrix of suitable dimension, and we let
n = p+ q.

Such systems typically result from mixed or hybrid finite-element approximations
of second-order elliptic problems, elasticity problems or the Stokes equations [8] and from
Lagrange multiplier methods [9]. There exists an extensive literature concerning structured
preconditionners [2, 10, 11, 12] and iterative methods [14, 15, 16, 17, 18] for these problems.
Since the above problem is large and sparse, iterative methods for solving equation (1)
are effective because of storage requirements and preservation of sparsity. The best known
and the oldest methods is Uzawa algorithms [21]. The well-known SOR method, which is
a simple iterative method that is popular in engineering applications, cannot be applied
directly to system (1) because of the singularity of the block diagonal part of the coefficient
matrix. Recently, several versions for generalizing the SOR method to system (1) have been
proposed [22, 23]. Also, Bai et al. [4] presented the Hermitian/skew-Hermitian splitting
(HSS) method to solve non-Hermitian positive definite system of linear equations. After
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that, this method gains peoples attention and proposed different variants of the method.
We refer to Benzi et al. [13] for a comprehensive survey.

Recently, Bai and Benzi in [1] proposed a class of regularized Hermitian and skew-
Hermitian splitting (RHSS) methods for the solution of large, sparse linear systems in saddle-
point form. These methods can be used as stationary iterative solvers or as preconditioners
for Krylov subspace methods. They establish unconditional convergence of the stationary
iterations.

Bai and Benzi split the coefficient matrix A ∈ Cn×n in (1) into

A =

(
B O
O Q

)
+

(
O E

−E∗ −Q

)
= H+ + S−

=

(
O E

−E∗ Q

)
+

(
B O
O −Q

)
= S+ +H−. (2)

wherein Q ∈ Cq×q is Hermitian positive semidefinite matrix. They call the collection of these
two splittings a regularized Hermitian and skew-Hermitian (RHS) splitting. Also, they call
Q the regularization matrix as the matrix Q plays a regularizing role in the HS splitting.
So according to this splitting, they proposed RHSS iteration method. In order to further
improve the convergence behavior of the RHSS iteration method, in this paper we propose
accelerated RHSS (ARHSS) method. These methods are two-parameter generalizations of
the RHSS iteration methods and they can recover the RHSS methods as well as yielding
new ones by suitable choices of the two arbitrary parameters.

The organization of the paper is as follows. In Section 2 we present the algorith-
mic description of the ARHSS iteration method. In Section 3, we prove the unconditional
convergence of the ARHSS iteration method and we analyze clustering properties of the
eigenvalues of the ARHSS-preconditioned matrix in Section 4. Finally, a numerical exper-
iment on saddle point problems arising from the discretization of the Stokes equations are
presented to illustrate the feasibility and effectiveness of this method and preconditioners.

2. The ARHSS Iterative Method

In this section, we derive the ARHSS iteration method for the saddle-point linear
system (1) for the saddle-point matrix A ∈ Cn×n. By applying the regularized Hermitian
and skew-Hermitian (RHS) splitting to (2), we then obtain the iteration scheme{

(Λ +H+)x
(k+ 1

2 ) = (Λ− S−)x
(k) + b,

(Λ + S+)x
(k+1) = (Λ−H−)x

(k+ 1
2 ) + b,

(3)

where

Λ =

(
αI O
O βI

)
,

with α and β positive constants, or in their blockwise forms and after straightforward com-
putations, we can rewrite(

αI +B 1
α (αI +B)E

−E∗ βI +Q

)(
y(k+1)

z(k+1)

)
=

(
αI −B − 1

α (αI −B)E
E∗ βI +Q

)(
y(k+

1
2 )

z(k+
1
2 )

)
+ 2

(
f
g

)
. (4)

Remark 2.1. Note that when Q = (β − α)I + Q̃, the RHSS method becomes the ARHSS
method. Also, note that when α = β, the ARHSS methods automatically reduces to the
RHSS method.

We obtain the accelerated regularized HSS (or in short, ARHSS) iteration method for
solving the saddle-point linear system (4) as follows.

The ARHSS Iteration Method:
Given an initial guess x(0) = (y(0)∗, z(0)∗)(∗) ∈ Cn×n. For k = 0, 1, 2, ..., until {x(k)} =
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{(y(k)∗, z(k)∗)(∗)} ⊂ Cn×n converges, compute the next iterate x(k+1) = (y(k+1)∗, z(k+1)∗)(∗)

by solving the linear system (4), where α and β are given positive constants.
From (4), we easily know that the ARHSS iteration method can be equivalently

rewritten as (
y(k+1)

z(k+1)

)
= L(α, β)

(
y(k)

z(k)

)
+ C(α, β)

(
f
g

)
(5)

where

L(α, β) =

(
αI +B 1

α (αI +B)E
−E∗ βI +Q

)−1 (
αI −B − 1

α (αI −B)E
E∗ βI +Q

)
(6)

and

C(α, β) = 2

(
αI +B 1

α (αI +B)E
−E∗ βI +Q

)−1

.

Here, L(α, β) is the iteration matrix of the ARHSS iteration. In fact, (5) may also result
from the splitting

A = M(α, β)−N(α, β)

of the coefficient matrix A, with

M(α, β) =
1

2

(
αI +B 1

α (αI +B)E
−E∗ βI +Q

)

N(α, β) =
1

2

(
αI −B − 1

α (αI −B)E
E∗ βI +Q

)
In actual computations, at each iterate of the ARHSS iterations, we need to solve a linear
system with the coefficient matrix M(α, β).

By making use of block-triangular factorization of the matrixM(α, β), we can straight-
forwardly obtain the following algorithmic version of the ARHSS iteration method.

Given an initial guess x(0) = (y(0)∗, z(0)∗)(∗) ∈ Cn×n and two positive constants α and
β. For k = 0, 1, 2, ..., until {x(k)} = {(y(k)∗, z(k)∗)(∗)} ⊂ Cn×n converges, compute the next
iterate x(k+1) = (y(k+1)∗, z(k+1)∗)(∗) according to the following procedure:

1− solve y(k+
1
2 ) from the linear sub-system

(αI +B)y(k+
1
2 ) = αy(k) − Ez(k) + f ;

2− compute

f (k+ 1
2 ) = (αI −B)y(k+

1
2 ) + f and g(k+

1
2 ) = (αI +Q)z(k) + E∗y(k) + 2g;

3− solve z(k+1) ∈ Cq from the linear sub-system(
βI +Q+

1

α
E∗E

)
z(k+1) =

1

2
E∗f (k+ 1

2 ) + f (k+ 1
2 );

4− compute

y(k+1) =
1

α

(
−Ez(k+1) + f (k+ 1

2 )
)
.

So, at each of the ARHSS iteration steps, we have to solve two subsystems of linear equations
with the coefficient matrix (αI+B) and one subsystem of linear equations with the coefficient
matrix (βI +Q+ 1

αE
∗E). The latter matrix can be expected to be better conditioned than

(αI +Q+ 1
αE

∗E), arising in the RHSS iteration method, consider the following Lemma.

Lemma 2.1. Let Q ∈ Cq×q be Hermitian positive semi-definite matrix, E ∈ Cp×q is a
rectangular matrix of full column rank and β > α > 0. Then

Cond(βI +Q+
1

α
E∗E) 6 Cond(αI +Q+

1

α
E∗E).
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Proof. Let A = αI +Q+ 1
αE

∗E, so βI +Q+ 1
αE

∗E = (β −α)I +A. Since A is Hermitian,
suppose λ1(A) ≥ λ2(A) ≥ · · · ≥ λn(A) are the eigenvalues of A. Then we get

(β − α)λ1(A) ≥ (β − α)λn(A)

(β − α)λ1(A) + λ1(A)λn(A) ≥ (β − α)λn(A) + λ1(A)λn(A)

λ1(A) ((β − α) + λn(A)) ≥ λn(A)((β − α) + λ1(A))

λ1(A)

λn(A)
≥ (β − α) + λ1(A)

(β − α) + λn(A)

So,

Cond(A) =
λ1(A)

λn(A)
≥ (β − α) + λ1(A)

(β − α) + λn(A)
= Cond((β − α)I +A).

�
Remark 2.2. Alternatively, the ARHSS iteration method can be regarded as a special case
of the PHSS iteration method developed in [6] with the particular preconditioning matrix

P =

(
I O

O β
αI +

1
αQ

)
.

3. Convergence analysis and the ARHSS Preconditioner

In this section, we prove the unconditional convergence of the ARHSS iteration
method. also we consider two preconditioner for Krylov subspace methods applied to the
nonsingular saddle point problem (1).

Theorem 3.1. ([1])Let B ∈ Cp×p be Hermitian positive definite, E ∈ Cp×q be of full
column rank, and α > 0 be a given constant. Assume that Q ∈ Cq×q is a Hermitian positive
semidefinite matrix. Then the RHSS iteration method converges unconditionally to the exact
solution of the saddle point linear system (1).

In the following theorem, we prove the unconditional convergence of the ARHSS
iteration method.

Theorem 3.2. Let B ∈ Cp×p be Hermitian positive definite, E ∈ Cp×q be of full column
rank, and α, β > 0 be given constants. Assume that Q ∈ Cq×q is a Hermitian positive
semidefinite matrix. Then the ARHSS iteration method converges unconditionally to the
exact solution of the saddle-point linear system (1), i.e., ρ(L(α, β)) < 1, where ρ(L(α, β))
is denote the spectral radius of the iteration matrix of the ARHSS iteration.

Proof. If β > α, according to ARHS splitting, we obtain

A = (Λ +H+)− (Λ− S−)

=

(
αI +

(
B O

O Q̃

))
−
(
αI +

(
O E

−E∗ −Q̃

))
(7)

and

A = (Λ + S+)− (Λ−H−)

=

(
αI +

(
O E

−E∗ Q̃

))
−
(
αI +

(
B O

O −Q̃

))
(8)

where Q̃ = (β−α)I+Q. Relations (7) and (8) are exactly RHS splitting, and Q̃ is Hermitian
positive semidefinite matrix, so by using Theorem 3.1 for α > 0, this split is converges to
the exact solution of the saddle point linear system (1).
If β 6 α, according to ARHS splitting, we get

A = (Λ +H+)− (Λ− S−)

=

(
βI +

(
B O

O Q̃

))
−
(
βI +

(
O E

−E∗ −Q̃

))
(9)
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and

A = (Λ + S+)− (Λ−H−)

=

(
βI +

(
O E

−E∗ Q̃

))
−
(
βI +

(
B O

O −Q̃

))
(10)

where Q̃ = (α − β)I + Q. Relations (9) and (10) are exactly RHS splitting, and Q̃ is
Hermitian positive semidefinite matrix, so by using to Theorem 3.1 for β > 0, this split
is converges to the exact solution of the saddle point linear system (1), Then we obtain
ρ(L(α, β)) < 1. �

As is well known, for some cases, Krylov subspace methods, like GMRES [19], are
all likely to suffer from slow convergence for large scale linear systems that arise from some
typical applications. Preconditioning is a key ingredient for the useful of Krylov subspace
methods in some applications. The efficiency of Krylov subspace methods is effected by the
spectral distribution of the coefficient matrix and the degree of its polynomial. Precondition-
ing attempts to improve the spectral properties of the coefficient matrix A by transforming
the linear system Ax = b into another system M−1Ax = M−1b with more favourable prop-
erties for iterative solution. By preconditioning, we expect that the preconditioned matrix
will have a smaller spectral condition number or the preconditioned matrix has a mini-
mum polynomial of small degree. Now, we analyze spectral properties of the preconditioned
matrix M(α, β)−1A.

Theorem 3.3. Let B ∈ Cp×p be Hermitian positive definite, B ∈ Cp×q be of full column
rank, and α, β > 0 be given constants. Assume that B ∈ Cq×q is a Hermitian positive
semidefinite matrix. If Q = I, α is fixed and β is close to ∞, then the eigenvalues of the
preconditioned matrix A(α, β) = M(α, β)−1A are clustered 0+ and 2−.

Proof. Let λ be an eigenvalue of the matrix M(α, β)−1A. So there exists a nonzero vector
x such that

Ax = λM(α, β)x. (11)

Let x =

(
y
z

)
. Then the equation (11) can be equivalently written as{

2(By + Ez) = λ(αI +B)(y + 1
αEz),

−2E∗y = λ(−E∗y + (βI +Q)z)
(12)

We know that y ̸= 0. the second equality in (12) gives

z = (
λ− 2

λ
)(βI +Q)−1E∗y. (13)

Let E(β) = E(βI +Q)−1E∗. Substituting (13) into the first equality in (12), after suitable
manipulations we get

λ2(αI +B)(αI + E(β))y − 2λ((αI +B)(αI + E(β))− α(αI − E(β))y
+ 4αE(β)y = 0 (14)

With the change of variable

ỹ = (αI + E(β))y,

the equality (14) can be rewritten as

λ2(αI +B)ỹ − 2λ
(
(αI +B)− α(αI − E(β))(αI + E(β))−1

)
ỹ

+ 4αE(β)(αI + E(β))−1ỹ = 0. (15)

By multiplying both sides of (15) from left with ỹ∗ and we adopt the notation,

ν = ỹ∗Bỹ and δ(α, β) = ỹ∗(αI − E(β))(αI + E(β))−1ỹ,

we obtain

(α+ ν)λ2 − 2 (α+ ν − αδ(α, β))λ+ 2α(1− δ(α, β)) = 0.
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The two roots of this quadratic equation are

λ1,2 =
α(1− δ(α, β)) + ν ±

√
ν2 − α2(1− δ2)

α+ ν
. (16)

ν is bounded and for α, β > 0, also δ(α, β) is bounded ( |δ(α, β)| ≤ 1 ), and so limβ→∞ δ(α, β) =
1. By taking limits in the formula (16), we see that limβ→∞ λ1 = 0 and limβ→∞ λ2 = 2. �

In order to get a better approximation of the coefficient matrix A, we propose an
improved RHSS preconditioner (IRHSS preconditioner) as the following:

M̃(α, β) =

(
B E + 1

αBE
−E∗ βI +Q

)
(17)

Acturally, in order to analyze conveniently, we have eliminated the factor 1
2 for M̃(α, β),

we also know that this factor has no effect on the preconditioned linear system, but it has
impact on the eigenvalue distribution of the preconditioned matrix. Therefore, in order to
compare with the spectrum distributions of other preconditioners, we add the factor 1

2 to

M̃(α, β) in our following numerical experiments, we still denote it by M̃(α, β).

We find that the difference between the preconditioner M̃(α, β) and the coefficient
matrix A is given by

Ñ(α, β) = M̃(α, β)−A =

(
O 1

αBE
O βI +Q

)
(18)

which is better approximation than the preconditioner M(α, β). Now, we analyze the spec-

trum properties of the preconditioned matrix M̃(α, β)−1A.

Theorem 3.4. Let the preconditioner M̃(α, β) be defined as in (14). Then the precondi-

tioned matrix M̃(α, β)−1A has the following properties:

i. M̃(α, β)−1A has an eigenvalue 1 with multiplicity at least n, and the corresponding
eigenvectors are of the form (ei, 0), where ei, i = 1, 2, ..., p, are the linearly independent
vectors in Cp.

ii. The remaining eigenvalues of M̃(α, β)−1A are given by µi, where µi, i = 1, 2, ..., q, are

the eigenvalues of matrix (βI+Q)−1E∗B̃−1E with B̃ = B+ 1
α (αI+B)E(βI+Q)−1E∗,

and the corresponding eigenvalue vectors are of the form ( 1
λ̃−1

B̃−1Ez̃; z̃), where z̃ is

an eigenvector of (βI +Q)−1E∗B̃−1E.

Proof. From (14), it has

M̃(α, β) =

(
I E + 1

αBE
O βI +Q

)(
B̃ O

−(βI +Q)−1E∗ I

)
where B̃ = B + 1

α (αI +B)E(βI +Q)−1E∗, and B̃ is nonsingular. Then, we can obtain

M̃(α, β)−1 =

(
B̃−1 O

(βI +Q)−1E∗B̃−1 I

)(
I −(E + 1

αBE)(βI +Q)−1

O (βI +Q)−1

)
or

M̃(α, β)−1

=

(
B̃−1 −B̃−1(E + 1

αBE)(βI +Q)−1

(βI +Q)−1E∗B̃−1 (βI +Q)−1 − (βI +Q)−1E∗B̃−1(E + 1
αBE)(βI +Q)−1

)
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From (18) and the above equation, it has

M̃(α, β)−1A = I − M̃(α, β)−1Ñ(α, β)

=

(
I O
O I

)
−
(

O −B̃−1E

O I − (βI +Q)−1E∗B̃−1E

)
=

(
I B̃−1E

O (βI +Q)−1E∗B̃−1E

)
Thus, we can assert that the preconditioned matrix M̃(α, β)−1A has at least n eigenvalues

equal to 1, and the other eigenvalues are equal to the ones of (βI +Q)−1E∗B̃−1E.

Now, we analyze the corresponding eigenvectors of them. Let λ̃ be an eigenvalue of
M̃(α, β)−1A, (ỹ∗, z̃∗)∗ be the corresponding eigenvector. Then we obtain(

I B̃−1E

O (βI +Q)−1E∗B̃−1E

)(
ỹ
z̃

)
= λ̃

(
ỹ
z̃

)
,

and so {
ỹ + B̃−1Ez̃ = λ̃ỹ

(βI +Q)−1E∗B̃−1Ez̃ = λ̃z̃.
(19)

If z̃ = 0, the first equation in (19) implies that λ̃ = 1, otherwise, ỹ = 0, this eliminate with

the fact that (ỹ∗, z̃∗)∗ is an eigenvector. Conversely, if λ̃ = 1, from the first equation of (19),

it holds B̃−1Ez̃ = 0, substituting it into the second equation of (19), we obtain z̃ = 0. Thus,
eigenvectors corresponding to eigenvalue 1 are of the form (ỹ; 0), moreover, we can replace

ỹ by ei, i = 1, 2, ..., p, the coordinate vectors of Cp. In the case that λ̃ ̸= 1, from the first
equation of (19), we get

ỹ =
1

λ̃− 1
B̃−1Ez̃,

and by using the second equation of (19), it follows that the eigenvectors corresponding to

nonunit eigenvalues are of the form ( 1
λ̃−1

B̃−1Ez̃; z̃), where z̃ is the eigenvector of matrix

(βI +Q)−1E∗B̃−1E. �

For Krylov subspace methods, such as GMRES, from the proposition 2 in [7], we
know that the solution x(k) produced by GMRES at step k is exact if and only if the degree
of the minimal polynomial of the initial residual vector r0 = M̃(α, β)−1b− M̃(α, β)−1Ax(0)

is equal to k. This means the GMRES method will terminate when the degree of the
minimal polynomial is attained. Moreover, based on the proposition 6.2 in [19], the degree
of the minimal polynomial of the initial residual vector is equal to the dimension of the
corresponding Krylov subspace K(M̃(α, β)−1A, r(0)). Therefore, we analyze the degree of
the minimal polynomial of the initial residual vector r(0).

Theorem 3.5. The degree of the minimal polynomial of the preconditioned matrix M̃(α, β)−1A

is at most q+1. Thus, the dimension of the Krylov subspace K(M̃(α, β)−1A, r(0)) is at most
q + 1.

Proof. Based on the form of the preconditioned matrix M̃(α, β)−1A and the eigenvalue dis-

tribution described in Theorem 3.4, we know that the characteristic polynomial of M̃(α, β)−1A
is

(M̃(α, β)−1A− I)n
m∏
i=1

(M̃(α, β)−1A− θiI).



160 R. Behzadi, F. Abdollahi

By expanding the above polynomial (M̃(α, β)−1A− I)
∏m

i=1(M̃(α, β)−1A− θiI), we get

(M̃(α, β)−1A− I)
m∏
i=1

(M̃(α, β)−1A− θiI) =

(
O B̃−1E

∏m
i=1(∆− θiI)

O (∆− I)
∏m

i=1(∆− θiI)

)
(20)

wherein ∆ = (βI+Q)−1E∗B̃−1E. Since the θi(i = 1, 2, ..., q) are eigenvalues of ∆, it follows
that

m∏
i=1

(∆− θiI) = 0.

Thus, the degree of the minimal polynomial of M̃(α, β)−1A is at most q + 1, which means

that the dimension of the corresponding Krylov subspace K(M̃(α, β)−1A, r(0)) is at most
q + 1.

If the matrix ∆ has k distinct eigenvalues θi of multiplicity δi, we can write the
characteristic polynomial of M̃(α, β)−1A as

(M̃(α, β)−1A− I)n−1

[
m∏
i=1

(M̃(α, β)−1A− θiI)
(δi−1)

]

×(M̃(α, β)−1A− I)

m∏
i=1

(M̃(α, β)−1A− θiI).

By expanding (M̃(α, β)−1A − I)
∏m

i=1(M̃(α, β)−1A − θiI), we can get the same form as
(20). �

Theorem 3.5 indicates that, if the preconditioned Krylov subspace iteration methods
with an optimal or Galerkin property [19] are used to solve the preconditioned saddle point

linear system with coefficient matrix M̃(α, β)−1A, they will converge to the exact solution
of the original linear system within at most q + 1 iterations or less.

4. Numerical results

In this section, we present a numerical example arising from the Stokes problem
to examine the convergence behavior of the ARHSS iteration method for solving saddle
point problems. That is compared with the HSS preconditioner and RHSS preconditioner.
All computations are carried out in MATLAB (version 8.3.0.532 (R2014a)) on a personal
computer with 2.60 GHz central processing unit (Intel(R) Core(TM) i5-4210) and 4.00G
memory. Starting with zero initial guesses, we compare the tested methods from the point
of view of the total iteration steps (denoted by ’IT’) and elapsed CPU times in seconds
(denoted by ’CPU’). All iteration processes are terminated when the current residuals satisfy
∥ b−Ax(k) ∥2≤ 10−5× ∥ b ∥2, with x(k) the current approximation solutions.

Example 4.1. [20] Consider the Stokes problem: Find u and p such that{
−∆u+∇p = f̃ ,
∇.u = 0,

(21)

under the boundary and the normalization conditions u = 0 on ∂Ω and
∫
Ω

= 0, where

Ω = (0, 1)×(0, 1) ⊂ R2, ∂Ω is the boundary of Ω, ∆ is the componentwise Laplacian operator,
∇ and ∇. denote the gradient and the divergence operators, u is a vector-valued function
representing the velocity, f̃ is a vector-valued function that represent the external forces
applied to the fluid and p is a scalar function representing the pressure. By discretizing this
problem with the upwind finite-difference scheme, we obtain the saddle-point linear system
(1), in which

B =

(
I ⊗Υ+Υ⊗ I O

O I ⊗Υ+Υ⊗ I

)
and E =

(
I ⊗Ψ
Ψ⊗ I

)
,
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with

Υ =
1

h2
tridiag(−1, 2,−1) ∈ Rm×m and Ψ =

1

h
tridiag(−1, 1, 0) ∈ Rm×m,

and f = (1, . . . , 1)T ∈ R2m2

and g = (0, . . . , 0)T ∈ Rm2

being constant vectors. Here
h = 1

m+1 represents the discretization stepsize and ⊗ denotes the Kronecker product symbol.

In order to give better performance, before solving the Example 1, we first scale
the coefficient matrix A by the matrix D = diag(diag(B), I), which results its nonzero
diagonal entries are all equal to 1. In our implementations, we use the Cholesky factorization
to solve the sub-systems with the coefficient matrices αI + B, αI + 1

αE
∗E, βI + Q and

βI + Q + 1
αE

∗E in both HSS, RHSS methods and ARHSS method. And we choose the
regularization matrix Q = γE∗E to implement the ARHSS iteration methods, where γ is
a regularization parameter. In addition, we choose Q = I for GMRES method while it use
preconditioners M(α, β) and M̃(α, β).

In Table 1, we list performances of the HSS, RHSS methods and ARHSS method for
Example 1 with different size. The results indicate that the ARHSS method is better than
the RHSS method and HSS method.

Table 1. IT, CPU and RES for Example 1

Method Index m = 16 m = 32 m = 64
HSS αopt 0.38 0.27 0.21

IT 91 149 245
CPU 0.041 0.125 0.622

RHSS αopt 0.18 0.14 0.10
γopt 4 3 3
IT 59 100 152
CPU 0.032 0.099 0.322

ARHSS αopt 0.18 0.14 0.1
βopt 0.10 0.13 0.15
γopt 4 3 3
IT 55 95 131
CPU 0.013 0.074 0.097

Table 2. Results for Example 1 as preconditiners with m=16.

Method α β IT CPU RES
GMRES(10) – – 204 3.12 7.28e-06
HSS-GMRES(10) 0.01 – 10 2.41 6.23e-06
RHSS-GMRES(10) 0.01 – 8 1.23 6.23e-06
ARHSS-GMRES(10) 0.01 100 7 1.00 1.23e-06
IARHSS-GMRES(10) 0.01 150 3 0.12 8.53e-07

In Table 2,3, we use the preconditioned GMRES method with different preconditioners
to solve Example 5.1. From these results, we find that ARHSS-GMRES and IARHSS-
GMRES are better than RHSS-GMRES method, and the iteration counts and CPU time
decrease with the decreasing of m for both three preconditioned GMRES methods.
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Table 3. Results for Example 1 as preconditiners with m=32.

Method α β IT CPU RES
GMRES – – 352 21.08 9.256e-6
HSS-GMRES 0.01 – 120 15.10 5.574e-6
RHSS-GMRES 0.01 – 43 10.50 9.256e-6
ARHSS-GMRES 0.01 100 15 8.14 9.256e-6
IARHSS-GMRES(10) 0.01 200 4 7.21 9.256e-7
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