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SUB-RIEMANNIAN GEOMETRY AND OPTIMAL CONTROL ON
LORENZ-INDUCED DISTRIBUTIONS

Vladimir BALAN', Constantin UDRISTE® and Ionel TEVY?®

Within the framework of optimal control on non-holonomic distributions of
sub-Riemannian manifolds, several problems are studied, which are further applied to
Lorenz-induced distributions. The developed approach is original, and considers specific
geometric control objects, like: distributions and the related Riemann-Vranceanu met-
rics, moving frames, auto-parallelism, infinitesimal deformations and adjointness. The
results concern single-time optimal control problems, and the optimal control problem of
nonholonomic geodesics. As illustrative example, the article develops a non-holonomic
analysis of the Lorenz dynamical system, which includes the study of the Lorenz - Pfaff
form, of the Lorenz moving frame and co-frame, and of the related Riemann-Vranceanu
metric.
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1. Statement of problems

In this paper we formulate and solve problems involving four issues:

(i) the non-holonomic distributions optimal control theory; (ii) non-holonomic analysis
of dynamical systems; (iii) the geometrization of dynamical systems in the sense of bringing
them to non-holonomic distributions and including sub-Riemannian theory; (iv) adapting
optimal control problems on non-holonomic geodesics.

Most interesting original results focuses on the following topics: non-holonomic distri-
butions and parallelism, optimal control on distributions, optimal control via non-holonomic
geodesics, non-holonomic analysis of the Lorenz dynamical system, geodesics on Lorenz dis-
tributions.

We are convinced that the intersection of differential geometry, dynamical systems
theory and optimal control theory produce unexpected representations for the solutions of
concrete problems. Besides, all the references [1]-[31] at the end of the work are based
on ideas such as control theory from geometric viewpoint, non-holonomic kinematics, sub-
Riemannian geometry, stochastic optimal control, multitime optimal control etc.

2. Non-holonomic distributions and parallelism

Consider a pair of linearly independent vector fields X, X5 defined on an open set
D C R3, which generate a nonholonomic (non-integrable) distribution

D = span{ X, (2)|a =1, 2}.
IProfessor, Department of Mathematics and Informatics, Faculty of Applied Sciences, University Po-
LITEHNICA of Bucharest, Splaiul Independentei 313, Romania, E-mail: vbalan@mathem.pub.ro

2Professor, idem, E-mail: udriste@mathem.pub.ro
3Professor, idem, E-mail: tevy@mathem.pub.ro

29



30 Vladimir BALAN, Constantin UDRISTE, Ionel TEVY

To find a Pfaff equation that describes this distribution, we introduce the 1-form w associated
to the vector field X, = X x Xo,
W = Ww; dCEi, Wi = 5”Xi (21)
Due to the non-holonomy, the 1-form w satisfies w A dw # 0. Consequently, the distribution
D is defined alternatively by a Pfaff equation, i.e.,
D= Ker w={X € X(D) | w(X) = 0}.

A vector field X which belongs to the distribution D is uniquely decomposed as X (x) =
u®(x) X (). In this case, the trajectories (the field lines) of X are horizontal curves (integral
curves of the distribution D). We shall further use both the fact that a non-vanishing Pfaffian
form w defines an integrable distribution, if and only if w A dw = 0,

and the expression of the exterior differential
(Y, Z) = Yo(Z) — Zu(Y) — (Y, Z)),
where w is a differential 1-form and Y,Z € X(D). We shall further find a geometrical

structure compatible with the distribution D = Span{X;,X,}. To this aim, we use the
following result

Lemma 2.1. There exists a vector field X5 € X(D), such that the vector fields X1, X2, X3
are linearly independent and

[Xl,XQ,Xg]_l = OJ2 s (22)

3

where w® = w given in (2.1).

Proof. The last row of the inverse matrix is proportional to the cross product X, = X; x Xo.
We select X3 = || X,||72X,, such that the proportionality factor be 1. O

The vector fields X! (x),» = (2%), i, a = 1,3 determine a moving frame on (I, 6,3)-
Using Vranceanu’s idea ([30]), we associate to this frame the Riemannian-type structure
(D, gij, {X.}), determined by a positive definite metric and a moving frame on D, the lat-
ter being assumed to be orthonormal relative to the metric. The contravariant Riemann-
Vranceanu metric g* is then the tensor field defined by

.0 0 y 0 0
ab — sab yi J — 44
X, @Xp =6 Xaaxi(g)Xbaxj_g (x)axi@)axj,
which has the explicit form ‘
g9 =5 Xix]. (2.3)

Using (2.2) and (2.3), it follows that the moving co-frame {w!,w? w3} is orthonormal with
respect to the (contravariant) metric g*/, and the moving frame { X7, X5, X3} is orthonormal
with respect to the (covariant) metric g;; = §abwfw?. Let

i :1 in ((O9kn | Ogjn _ 99k

L) Oxd ~ Oxk Oz
be the components of the Levi-Civita connection determined by the metric g;; on D, let w;
be the covariant derivative of w;!, and let

i

. . ] . w
i i i i . .
ik = Ui+ Qs Qo = o (Wi + Wiy,

be the components of the induced (horizontal) linear connection on the distribution D. The
auto-parallelism of the two connections is subject to the following

14We shall further assume that w is normalized, i.e., gijwiwj =1
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Theorem 2.2. The auto-parallelism of a vector field in the distribution, with respect to the

connection F;-k, implies the auto-parallelism with respect to the connection F*;-k.

Proof. We have to prove that the auto-parallelism of a vector field in the distribution,
regarded as a vector field on the Riemannian manifold (D, g;;), implies its horizontal auto-
parallelism. A vector field X = (X?) on the Riemannian manifold (I, g;;) is autoparallel
with respect to the Levi-Civita connection (or geodesic), if VxX =0, or

S 0X?

T J =
XX = OxI
Assume that the vector field X = (X7) is in the distribution D, i.e, w; X/ = 0. It is
horizontally autoparallel if VX = 0 or, taking into account (2.4),

0X'
Oxl
On the other hand, the condition w; X7 = 0 implies
wjkaj + ijf'k =0 = w]‘7kaXk + ijiXk =0.
The horizontal auto-parallelism condition can alternatively be written as
((5; - inJj)X?ka =0 ~ (g” - wle)kaXk =0

and hence the statement holds true. O

X7+ T X/ Xk = 0. (2.4)

X 4T XX =0 & XLXT 40w XIXF =0,

Corollary 2.3. Suppose the vector field X, = X1 x Xy is a Killing vector field on (D, g;5).
Then the horizontal auto-parallelism on the distribution defined by the associated 1-from w
is the auto-parallelism on the Riemannian manifold (D, g;;).

Proof. The relations wj ; + wg,; = 0, straightforward infer F*;k = F;k O
Open problems. 1. Being considered a vector field X, there exist an infinity of

connections F; & such that X be autoparallel. Which of them are produced by a metric g;;?

2. Being given a vector field X, do there exist two linearly independent vector fields
X1, X9, with X € Span {Xl‘, X5}, such that X be a geodesic vector field? with respect to
the horizontal connection I'*};?

3. Optimal control on distributions

In time, a battery of geometrical methods has been developed to address from a new
perspective some old problems in control theory [1]-[16], [29], [31]. We conduct our research
work in this direction being convinced that a lot of important open problems are on the
crossroads of Differential Geometry, Dynamical Systems, and Optimal Control Theory (see
also, [17]-[24]).

3.1. Infinitesimal deformations and adjointness
The distribution D can be described in terms of smooth vector fields (or generators),
D = span{ X, (2)|wi(z) X (z) =0, « = 1,2, X1 x X5 # 0}, (3.1)

where w; = (5in£, X, = X1 X X5. Any vector field X € D can be written in the form
X(z) = u*(z) Xo(z).
Let z(t) be a curve solution of the differential system #(¢) = X (z(t)) or

(t) = u(x(t)) Xa(2(1).

2Here X, are subject to the three parallelism conditions, w satisfies the algebraic condition gijwiwj =1,
while the number of unknowns (the components of X ) is six.
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Let x(t; €) be a differentiable variation of z(t), i.e.,

z(t;€) = u*(x(t; €)) Xa(z(t;€)), (t;0) = x(t).

Denoting y'(t) = 8; (t;0), we find both the single-time infinitesimal deformation system
€
9 (1) = A (2(0)y* (¢) (3.2)
and the single-time adjoint (dual) system
Pr(t) = = AL (x()p; (1), (3.3)

where Ai = g%:X J+u” %)x(,é , with all the factors depending on x(¢). The solution p = (pg)

of (3.3) is called the costate vector. The foregoing PDE systems (3.2) and (3.3) are adjoint
(dual), in the sense of constant inner product of solutions, i.e., the scalar product py y* is a
first integral.

3.2. The single-time maximum principle

We further consider the 2-dimensional distribution D on D, determined by {X1, X2}
as in (3.1). Let x(t), t € I = [to,t1] be an integral curve of the driftless control system

dx(t) = u®(x(t) Xo(z(t))dt, a = 1, 2.

An optimal control problem consists of maximizing the functional

1) = [ Lt u(t)de + hla(t) (3.4)

to

subject to the constraints
dz(t) = u®(z(t)) Xa(z(t))dt ae., tel=Ilty,t1], z(tg) = xo. (3.5)

We hereby assume that L : I x A x U — R is a C? function, h : D — R is a C! function,
X1, € X(D) are C? vector fields, where A C D C R? is a bounded and closed subset which
contains the trajectory of the controlled system for ¢t € I, and xg and z; are the initial and
final states of the trajectory x(t) in the controlled system. Also, U is a bounded and closed
subset of R?, in which the control functions u® take values, and the mapping u = (u', u?)
(called admissible) is piecewise smooth or piecewise analytic; the space U of all such maps

forms the set of admissible controls.

We further determine first order necessary conditions for an optimal pair (z,w). The
infinitesimal (Pfaff) deformation equation of the constraint dxz(t) = u®(z(t))Xq(x(t))dt is
the system (3.2), and the adjoint Pfaff equation is the system (3.3).

The control variables may be open-loop - i.e., of the form u®(t), directly depending
on the time variable ¢, or closed-loop, feedback - i.e., of the form u®(x(¢)), depending on t
by means of the state z(t). In both cases, the following result holds true:

Theorem 3.1 (Single-time maximum principle). Consider the Lagrangian 1-form
Lt x(t), u(z(t),p(t)) = Lt z(t), u(z(t)))dt
+pi(t) [u (2(4)) X5 (2(8))dt — da' (1)),
and the associated Hamiltonian 1-form

H = [L(t, 2 (t), u(z(t))) + pi(H)u® (x() Xg (2(1))]dt.
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Assume that the problem of mazimizing the functional (3.4) constrained by (3.5) has an
interior optimal solution G(t), which determines the optimal evolution x(t). Then along x(t)
there exists a costate vector p(t) = (p;(t)), such that

. O0H

dz' = e x(tg) = xp. (3.6)

Moreover, the 1-form p(t) is the unique solution of the following Pfaff adjoint system

0H
dp; = ———, p(to) = p(t1) =0 3.7
p 5y P(to) = p(t1) (3.7)
and the following critical point conditions are identically satisfied

Huo (t,2(t), u(t),p(t)) =0, a =1,2. (3.8)

4. Optimal control via nonholonomic geodesics

Let X,, a = 1,2 be two orthonormal vector fields which describe a distribution on the
Riemannian manifold (R3, g;;). Informally, sub-Riemannian geometry is a type of geometry
in which the trajectories evolve tangent to a horizontal plane inside the tangent plane only.
The main theme of this subject is the study of geodesics which arise in such a geometry.

4.1. Open-loop control variables

A solution of the system #(t) = u®(t) X4 (x(t)) is a horizontal curve. Since the kinetic
energy has the form
1 VY, 1
5955 (x(1))a* ()27 (t) = 55aﬁua(t)u5(t),
the optimal control problem of nonholonomic geodesics can be written as a non-linear-

quadratic regulator problem,
IS
min J(u(-)) = 7/ Sapu®(t)ul (t) dt

u() 2 Jt
subject to the subject to the polydynamical driftless control system:

z(t) = u*(t) Xa(x(t)), u(t) = (u(t)), t € [to, t1]; z(to) = xo.

We introduce the nonholonomic dual vector P = (P,), a = 1,2,3 of the dual vector p =
(pi), i = 1,2,3 as P,(t,z) = p;(t)Xi(x). To solve this problem we apply the maximum
principle for the Hamiltonian

1
H(l‘,p, U) = _560(,8”&'“'8 + Paua, a,B=1,2.

Theorem 4.1. A horizontal vector field X, i.e., a vector field in a distribution {X1, X2},
is a geodesic vector field if and only if there exists a costate vector function p(t) = (p;(t))
such that the adjoint system

dpj _ saB 8PB o -
— (0 =0 Pa(t,2(t)) w(t,m(t))a p(to) =p(t1) =0 (4.1)
the critical point condition
u® = P,, (4.2)

and the following initial dynamics are satisfied:

#(t) = 67 P (b, 2()) X} (2(1)), @(to) = 0. (4.3)
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Proof. The adjoint dynamics
dpj _ _OH _ 0P
dt ij 8xj
is changed into nonholonomic adjoint dynamics
dPa dpi 1 8XZ g GPB 1
_ Xt ) azji __ B X7
at qp e TP x u atp

* Oxi oxI
OPs 3 4 OPa oy _ (ap @ xq _ O Xg;) — (X5, X)),

0X4
o

— 4P

oxI oxI 0w P Qwi
We have to maximize the Hamiltonian H(x,p,u) with respect to the control variable w.
Since the critical points u of H are solutions of the algebraic system

STZ =—-u*+ P, =0,

the adjoint ODE system rewrites
Wi 1) = 5 Putt, () 22 1, 2(1)),
and the initial dynamics becomes &(t) = §*F Py (t,z(t)) X}(z(t)). Looking for a solution
of the form p(t) = K(t)z(t) or p;(t) = K;;(t)x’ (t), we find the feed-back control law (the
Kalman vector) u® = K;;X!27. Then, denoting K;; X! = K,; and using P,(t,z(t)) =
pi(t) X% (z(t)), we find the feed-back control law u®(t) = K,;(t)z’(t) and the initial ODE
system can be written

@' (t) = 077 X g, (x(t)) Kg; (t)a? (¢),

whence the claim follows. O

Theorem 4.2 (optimal control is unitary, see also [16]). The optimal controls u* = p; X
satisfy the ODE system 0 = p;[Xg, Xo|' uP. Consequently, the control u = (u®) is unitary,
i.e., %(5a5uau5 is a first integral.

Proof. Direct differentiation and use the adjoint dynamics and the initial dynamics. The
unitarity of the controls follows from the fact that the evolution @* of u® is described by a
linear ODE system with skew-symmetric right-hand side. O

Theorem 4.3. The distribution D is controllable (accessible) by geodesics (shortest paths).

Proof. Since the vector fields X,, a = 1,2 are linearly independent, the distribution D
is bracket generating. The Chow-Sussmann Theorem [16] shows that any two sufficiently
close points can be joined by a minimizing geodesic, i.e., a solution of the foregoing optimal
problem. O

4.2. Closed-loop control variables

A solution of the system z(t) = u®(xz(t))Xo(x(t)) is a horizontal curve. Since the
kinetic energy can be written
1 i 1 o
59i ()& (13 (8) = 2 0apu (x(t))u” (2(t),

the optimal control problem of nonholonomic geodesics can be written as a non-linear-
quadratic regulator problem,

I
min J(u(-)) = - Sapu® (z(t))u? (x(t)) dt
u(-) 2 Ji,
subject to the polydynamical driftless control system:

(1) = u(x(t)) Xa(2(t), u(z(t)) = (u(z(1))), ¢ € [to,ta]; x(to) = zo.



Sub-Riemannian geometry and optimal control on Lorenz-induced distributions 35

Theorem 4.4. A trajectory z(t) of the vector field X = (X7) is a geodesic in the distribution
X1, X2 if and only if there exists a costate vector function p(t) = (pi(t)) such that the adjoint
system
dpk an
R = —ps (1) —
B ()= —pi() 5

and the following decomposition holds:
XI(@(t) = (pi()X1(x(1)) X{ (1) + (ps(t) X5(2(2))) X3 ((1)).

Proof. We introduce the nonholonomic dual vector P = (P,), a = 1,2,3 of the dual vector
p=(pi),i=1,2,3 as Py(t,z) = p;(t)X}(x). To apply the maximum principle, we use the
Hamiltonian

(z(t)), p(to) = p(t1) =0

1
H(z,p,u) = —3 Sapuu’ + Pou®, a,f=1,2.

We have to maximize the Hamiltonian H(x, p,u) with respect to the control variable u. The
critical points u of H are solutions of the algebraic system

OH
w = _Ua + Pa = 0
It follows the adjoint dynamics
dpg OH 1 0 nB i ;
B ok *ipi(t)pj(t)w(fs BXa(I(t))X/Jg(l’(t)))
which can be written as
dpi X7

P (1) = —pi(t) 5 (2(0)), plto) = plt2) =0.
Then the initial dynamics becomes
&7 (t) = pi()0*7 X (x(t)) X} (2 (1))

or, #7(t) = (pi(t)X{(2(t))) X{(z(t)) + (pi(t) X5(2(t))) X3(x(t)), z(to) = zo. The right hand
member of this ODE system is just the orthogonal projection of the adjoint vector p(t) on
the distribution.

Conversely, let X be a vector field on R? in the distribution generated by two linearly
independent vector fields X; and X5. The decomposition X (z) = u'(z)X1(z) +u?Xa(x) is
unique, since u!(r) = (X1(v), X (2)) and u?(x) = (X2(x), X (2)), where the scalar product
is given by the metric g;;. O

The existence and uniqueness Theorem shows that the previous initial and termi-
nal values problems have solutions. Therefore, our initial problem is solved via maximum
principle theory.

Corollary 4.5. The vector field X = (X7) is a horizontally autoparallel in the distribution
X1, Xs if and only if

X (@) = (p:Xi(2))) X{(2) = (piX5(x)) X3(2) = 0
constrained by the system made from the original dynamical system and the adjoint system.
Corollary 4.6. (i) If the costate vector p = (p;) is of the form
pi(t) = gij(x(t)) X (x(t))

and if the vector field X is unitary, i.e., g;; X' X7 =1, then X is autoparallel (geodesic) with
respect to the connection F;k.

(i1) If the vector field X is autoparallel with respect to the connection F;k and unitary
with respect to g;j, then p;(t) = g;j(x(t)) X7 (x(t)) satisfies the adjoint system.
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Proof. (i) Assume that the costate vector has the form

pi(t) = gi(x()) X7 (a(1)).
Replacing it in the dual system, we obtain

X! Z@X Og;j
ki Oz '+ 9i; X oxk + BRG
k

We add the hypotheses g;; X iXJ = 1. Taking the partial derivative with respect to z*, we

find g;; X" 32 9x7 — ;gj;,g XX, Consequently,

XX9=0.

oX' AGrj 1 Og;
i— X7 ¢ JXIXT — %
I i o 2 Ozt
]1 X7 X ¥ —= 0, which infers that the vector field X is autoparallel with respect
to the connection F;k

XixJ =0,

ie., 2X

(ii) The second statement is straightforward. O

Remark 4.7. The vector field X (z) = u®(z)Xo(x) is unitary with respect to the metric
gij if and only if 6,5u®(z)u”(z) = 1. Consequently, for a unitary vector field X, the auto-
parallelism of X with respect to F; & is equivalent to the adjointness of p.

Corollary 4.8. A given vector field X, in a distribution D = Span{Xl,Xg} is a geodesic
vector field (i.e., auto-parallel with respect to the horizontal connection T'*' k) if and only if

(ginin),k = wk(wi,j + wj,i)Xin-
Proof. Replacing p;(t) = g;j(x(t)) X7 (z(t)) in the dual system, we obtain

X! 0Xi 0
gkza JX + UX27+ Gk

X'X7 =
drk " B 0

On the other hand, the auto-parallelism with respect to the horizontal connection F*;k
means ZX- X7 4+ T XIX* =0, or,

Xt . Ogij 1 0g; 1 ——
i— X7+ I XiXT — 9XIXT 4 = i )X X7 =0,
9k oI ox? 2 Oxk + 2 wr (Wi j + wjii)
Eliminating the common terms, we find
X' Hx 9ok 3 oub X At g wklwiy w) XIXT =0
or (ginin)7k = 2wyw; ;X X7, which completes the proof. O

Corollary 4.9. A unit vector field X, in a distribution D = span{Xl,Xg} s a geodesic
vector field (i.e., auto-parallel with respect to the horizontal connection F*lk) if and only if
wiijin =0.

Corollary 4.10. If a vector field X belongs to the distribution D and it is autoparallel

with respect to the connection ij , then X is autoparallel with respect to the horizontal

connection F*jk
Proof. Suppose VxX = 0 or X’ X7 = 0. Since w;X* = 0, we obtain w; ; X* +w; X; = 0
Contracting by X7, we find w; ; X"X7 = 0. O
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5. Applications: the nonholonomic analysis of the Lorenz
dynamical system

5.1. Special Lorentz control distributions
The autonomous differential Lorenz system
t=o0(y—z), y=—xz+re—y, Z2=uzy— bz,

where o, r,b are real parameters, is the mathematical model for the dynamic turbulence of
a fluid. More precisely, the fluid evolves between two parallel plates which have distinct
temperature levels. The evolution of the fluid is described by the Navier-Stokes equation.
Developing in Fourier series in terms of the spatial coordinates and making the coefficients
equal to zero, we get the previous differential system, in which x is proportional to the
convective motion, y is proportional to the temperature, z is proportional to the drift from
linearity of the vertical temperature profile. Generally, we impose the conditions o > 0,7 >
0,b > 0, but usually ¢ =10, b = %, and r varies. Let

L:J(yfz)%+(fxz+rxfy)§y+(zy7bz)% (5.1)
be the Lorenz vector field. Since div L = —(1 + o + b) < 0, the Lorenz flow is contractive.

We remark first that the Lorenz system is invariant relative to the symmetry (z,y, z) —
(—x,—y,z). The z—axis is invariant, since x(t) = 0, y(t) = 0, 2(t) = zge %, t € R is a so-
lution of the system.

The Lorenz system exhibits chaotic behavior for r = 28 but displays knotted periodic
orbits for other values of r. For example, with r = 99.96, this becomes a T'(3, 2) torus knot.
A saddle-node bifurcation occurs in the case when b(r — 1) = 0.

When ¢ # 0 and b(r — 1) > 0, the Lorenz flow has three equilibrium points.
The equilibrium point (0,0,0) corresponds to no convection, and the equilibrium points
(£+/b(r — 1), £+/b(r — 1),7 — 1) correspond to steady convections. This pair is stable only
if

c+b+3
oc—b—-1’
which can hold only for positive r if ¢ > b+ 1.

When r =28, 0 = 10, and b = %, the Lorenz system has chaotic solutions (but not
all solutions are chaotic). In this case o > b+ 1 and the right hand side in (5.2) is 470/19,
less than r. The Lorentz vector field (5.1) can be decomposed as L = ur X1 4+ Us Xy, ul =

z,u? =1, with

r<o (5.2)

X1 =(—0,—2,y9), Xa= (oy,rz—1y,—bz).
The domain D on which the 2-dimensional distribution D = Span{X;, X2} generated by
these vector fields is of maximal rank, is

8t + 33  3¢2
i ) (5.3)

D=R3\ a(R), aft)= (2247@ o

We note that on a(R) the Riemannian structure degenerates, and the dimension of D col-
lapses to one. The set of chaotic solutions make up the Lorenz attractor, a strange attractor
and a fractal of Hausdorff dimension between 2 and 3. Grassberger (1983) has estimated
the Hausdorff dimension to be 2.06 + 0.01 and the correlation dimension to be 2.05 & 0.01.

5.2. Lorenz distributions - 1

5.2.1. Lorenz 1-forms. The Lorenz vector field

0 0 0
L= U(y—x)% + (—xz—|—m:—y)6—y — (a:y—&—bz)@
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is a linear combination of the form
L(Ia Y, Z) = :CXl(xv Y, Z) + X2($7 Y, Z)7
where
Xi=-0Z - Za% +yL, Xo=oyZ + (ra— y)a% — bz

Then

X x Xo = (b22 —ray + 3,12)2 +o(y® - bz)2 +o(—re+y+ yz)2

Ox Oy 0z’
The cross product X; X X5 generates the Lorenz 1-form
w :w1($7yvz)d$+w2($’yyz)dll+w3(ﬂfvyvz)dz
= (022 —ray + y?)dw + o(y? — bz)dy + o(—rz +y + y2)dz.

This 1-form satisfies w A dw # 0. Consequently, the Lorenz distribution

Dy = Ker (w) = span{ X, (z,y, 2)|wi(z,y, 2) X\ (z,y,2) =0, a = 1,2}

is nonholonomic.

5.2.2. Lorenz moving frames. To the vector fields X7, X5 we add the vector field

1 7
Xg=———5- —.
P o(bz—12) Oy
We identify these vector fields X with the columns of the matrix
—0 oy 0
(Xo)=| —= "~y smom
Y —bz 0

These are linearly independent vector fields on the subset D C R?, defined by the condition
det (X fl) = bz — y? # 0, determining a Lorenz moving frame. These vector fields are not
orthogonal in the Euclidean space (D C R3, 6ab). On the region D C R3, we introduce the
inverse matrix

__ bz 0 -y
o(bz—y?) bz—y?
_ -1

(W)= ] 0 oy
—(b2* —rzy +y?) o(bz—y?) olrz—y—yz)
The rows of the matrix (w{) determine the Lorenz 1-forms (Lorenz moving co-frame):

1
dx — e dz

1 _ bz
(=T dx

_ Yy
bz—y?

2 _ ___y
dz, w* = (=)

W =w=—(b22 —ray +y?)dr + o(bz — y*)dy + o(rz — y — yz)dz.

5.2.3. Riemann-Vrdnceanu metrics. Let X! (x),z = (2%), i, a = 1,3 be the Lorenz moving
frame on the Euclidean manifold (D C R3, 5ab). Vranceanu’s idea [30], associates to this
frame only one Riemannian manifold with a positive definite metric and a moving orthonor-
mal frame (D C R3, 9ijs X, fl) The contravariant Riemann- Virdnceanu metric g™ is the tensor
field given by
X, ® Xy = 670X aii ® Xj % = g"(z) 9 9
Its symmetric associated matrix has the explicit form
o+’ + 22 -0y —2(rx —y) — byz (=)
(g7) = (03X X]) = e o?y? + (rz — y)? + b22? L

Ozt © oxI’
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The Lorenz moving co-frame is orthonormal with respect to the contravariant metric g™/,
while the Lorenz moving frame is orthonormal with respect to the covariant metric® g;;.

5.3. Lorenz distributions - 2

5.3.1. Lorenz 1-forms. The Lorenz vector field

0 0 0
L= a(y—x)% + (—acz—i—rx—y)a—y + (xy — bz)a

is a linear combination of the form
L(z,y,2) = Yi(z,y, 2) + 2Ya(z, y, 2),
where
Yi =0y — :c)[_% + (rz — y)a% — bz%, Ys = _Za% + y%.
Then
Yix Y = (b2 4 vy = )5~ ouly ) + 03~ )5
The cross product Y7 X Y5 generates the Lorenz 1-form
N =mdz +nedy + n3dz
= (=b2% +roy — y?)dx — oy(y — x)dy + oz(x — y)d=.
This 1-form satisfies n A dn # 0. Consequently, the Lorenz distribution
Dy = Kern = span{Y,(z,y, 2)| ni(z,y, 2) Y. (z,y,2) =0, a = 1,2}

is nonholonomic.

5.8.2. Lorenz moving frames. To the vector fields Y7, Y> we supplement the vector field

B 1 0
~oy(z—y) Iy’
We identify these vector fields Y,! with the columns of the matrix
—o(x—y) O 0
Vi) =| r-v = Soy
—bz y 0

These are linearly independent vector fields on the subset D C R3, defined by the condition
det (Ya’) = y(x — y) # 0, determining a Lorenz moving frame. These vector fields are not
orthogonal in the Euclidean space (D C R3, 6ab).

On the region D C R3, we introduce the inverse matrix

1
, G . i
(771 ): “oy(z—y) 0 y

bz +ray —y* oyl —y) oz(z—y)
The lines of the matrix (n?) determine the Lorenz 1-forms (Lorenz moving co-frame):

1 1
n'=—-————dz, n* = —bizdx—i—fdz
o(z —y) oy(z —y) y

0 =n=(=bz* + ray — y*)dz + oy(z — y)dy + oz(x — y)dz.

3In the present case, the components of the covariant metric have a much more complicated form than
the contravariant one.
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5.3.3. Riemann-Vrdnceanu metrics. Let Y i, a = 1,3 be the Lorenz moving frame on
the Euclidean manifold (D C R3,6ab). Using Vranceanu’s idea [30], we associate to this
frame only one Riemannian manifold (D C R®, g%, V) (with a positive definite metric and
a moving frame), in which the frame is orthonormal. The contravariant Riemann- Vranceanu
metric g¥ is the tensor field defined by

0V, @ Y, = 6°°Y}! A
ot

i 9% _ iy 9 o 9
©Y; oz Y (@) ot © Oxd’

where - o
(g7) = (8°°Y}Yy)
o2z —y)?2 + (re —y)? + %22 —z(roz —vy) — byz Loy

) ) ay(zz—y)
= —z(rxr—miyy) —byz z —i—y —W
oy(z—y) o(z—y) o?y*(z—y)?

The Lorenz moving co-frame is orthonormal with respect to the (contravariant) metric g% .
The Lorenz moving frame is orthonormal with respect to the covariant metric g;;.

5.4. Geodesics on Lorenz distributions

Let D1 be the Lorenz distribution with the related geometry as in Section 4.2. Let
L be the Lorenz vector field (in the Lorenz distribution) and its length || L2 = 1 4 z* with
respect to the Riemannian metric g in subsection 4.2.3. The associated unit vector field
is & = mL. As any unit vector field, £ is a complete vector field, i.e., its field lines are
defined on R. It is also a horizontal vector field and hence the solutions of the dynamical
system &(t) = &(x(t)), including the chaotic orbit, are horizontal curves. We shall further
address the question whether these curves are geodesics of a certain Riemannian-Vranceanu
metric structure.

To this aim, we first consider the decomposition

1 2
U 9 u

of the Lorenz unit vector field, where X; and X, are linearly independent excepting a set
of measure zero. According the Theorem 3.4, a normalized Lorenz field line is a geodesic in
the distribution {X7, X5} if and only if

pi(t) Xi(2(t)) = v (x(1)), pi(t) X3(2(1)) = v*(x(1)), (4.4)
where z(t), p(t) is a solution of the ODE system made by the Lorenz dynamical system and
the adjoint system.

According the Corollary 3.9, the field lines of the Lorenz unit vector field £ are not
horizontal geodesics since w; j £°¢7 # 0. The computations in coordinates being ”blocked”
by the difficulty of concretely writing the connection components F;- x> we perform them by
using the components with respect to the orthonormal frame {X, | a = 1,2, 3}. Particularly,
the components of the 1-form w are w; = 0,ws; = 0,ws = 1 and the Ricci coefficients are
7. = w*(Vx,Xc). In this way, we find

Wi, j &g = Wa,B v = —vzﬁ v £0,a,8=1,2.

Similar statements are true for the Lorenz distribution Ds.

&= vl X, —|—1)2X2, vl =

Let us change our point of view. We further consider the decomposition L = u' X; +
u2X, of the Lorenz vector field L, where X; and X, are linearly independent excepting a
set of measure zero. According the Theorem 3.4, a Lorenz field line is a geodesic in the
distribution {X71, X5} if and only if

pi(O) X1 (2(t)) = u' (2(t)), pi()X5(2(?)) = u?(x(t)), (4.4)
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where z(t), p(t) is a solution of the ODE system made by the Lorenz dynamical system and
the adjoint system.

All Lorenz field lines are horizontal geodesics if and only if we can find a decomposition
such that

L' (z) — (piXi(2)) X{(2) — (piX3(x)) X3(z) =0,
if (¢), p(t) is a solution of the ODE system made by the Lorenz dynamical system and the
adjoint system.

There exists an infinity of decompositions of the Lorenz vector field. Theorem 3.4
suggests a possible procedure to find such a decomposition and its associated geometry, in
which the Lorenz trajectories are horizontal geodesics. From (4.4) we find, for instance,
p1 = p1(x,ut,u? p3) and pos = pao(x,ul,u? p3). We introduce them in the adjoint ODEs
and we obtain equations determining u!(x(t)), u?(x(t)), p3(t).

6. Conclusions and further research

In the framework of sub-Riemannian geometry, we presented several associated opti-
mal control problems and developed an original general nonholonomic setting for the Lorenz
system. In this framework, we use the Pontryaguin Maximum Principle, which both states
necessary conditions for optimal trajectories, and yields explicit expressions for the Hamil-
tonian system in terms of the optimal controls.

Section 1 and Subsection 3.2 describe a possible procedure to find a decomposition
and its associated geometry, in which all Lorenz trajectories are horizontal geodesics.

In this respect, physics, mechanics, robotics, automation, economics, chemistry and
biology provide a remarkable source of problems, which can be reformulated within the
foregoing formalism. The applications of the described geometric techniques can eventually
unveil properties for the solutions of such problems, especially regarding their control design
and stabilization.
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