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SUB-RIEMANNIAN GEOMETRY AND OPTIMAL CONTROL ON

LORENZ-INDUCED DISTRIBUTIONS

Vladimir Balan1, Constantin Udrişte2 and Ionel Ţevy3

Within the framework of optimal control on non-holonomic distributions of
sub-Riemannian manifolds, several problems are studied, which are further applied to

Lorenz-induced distributions. The developed approach is original, and considers specific
geometric control objects, like: distributions and the related Riemann-Vrănceanu met-
rics, moving frames, auto-parallelism, infinitesimal deformations and adjointness. The
results concern single-time optimal control problems, and the optimal control problem of

nonholonomic geodesics. As illustrative example, the article develops a non-holonomic
analysis of the Lorenz dynamical system, which includes the study of the Lorenz - Pfaff
form, of the Lorenz moving frame and co-frame, and of the related Riemann-Vrănceanu

metric.
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1. Statement of problems

In this paper we formulate and solve problems involving four issues:
(i) the non-holonomic distributions optimal control theory; (ii) non-holonomic analysis

of dynamical systems; (iii) the geometrization of dynamical systems in the sense of bringing
them to non-holonomic distributions and including sub-Riemannian theory; (iv) adapting
optimal control problems on non-holonomic geodesics.

Most interesting original results focuses on the following topics: non-holonomic distri-
butions and parallelism, optimal control on distributions, optimal control via non-holonomic
geodesics, non-holonomic analysis of the Lorenz dynamical system, geodesics on Lorenz dis-
tributions.

We are convinced that the intersection of differential geometry, dynamical systems
theory and optimal control theory produce unexpected representations for the solutions of
concrete problems. Besides, all the references [1]-[31] at the end of the work are based
on ideas such as control theory from geometric viewpoint, non-holonomic kinematics, sub-
Riemannian geometry, stochastic optimal control, multitime optimal control etc.

2. Non-holonomic distributions and parallelism

Consider a pair of linearly independent vector fields X1, X2 defined on an open set
D ⊂ R3, which generate a nonholonomic (non-integrable) distribution

D = span{Xα(x)|α = 1, 2}.
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To find a Pfaff equation that describes this distribution, we introduce the 1-form ω associated
to the vector field X∗ = X1 ×X2,

ω = ωi dx
i, ωi = δijX

j
∗ . (2.1)

Due to the non-holonomy, the 1-form ω satisfies ω ∧ dω ̸= 0. Consequently, the distribution
D is defined alternatively by a Pfaff equation, i.e.,

D = Ker ω = {X ∈ X(D) | ω(X) = 0}.
A vector field X which belongs to the distribution D is uniquely decomposed as X(x) =
uα(x)Xα(x). In this case, the trajectories (the field lines) ofX are horizontal curves (integral
curves of the distributionD). We shall further use both the fact that a non-vanishing Pfaffian
form ω defines an integrable distribution, if and only if ω ∧ dω = 0,

and the expression of the exterior differential

dω(Y, Z) = Y ω(Z)− Zω(Y )− ω([Y,Z]),

where ω is a differential 1-form and Y,Z ∈ X(D). We shall further find a geometrical
structure compatible with the distribution D = Span {X1, X2}. To this aim, we use the
following result

Lemma 2.1. There exists a vector field X3 ∈ X(D), such that the vector fields X1, X2, X3

are linearly independent and

[X1, X2, X3]
−1 =

 ω1

ω2

ω3

 , (2.2)

where ω3 = ω given in (2.1).

Proof. The last row of the inverse matrix is proportional to the cross product X∗ = X1×X2.
We select X3 = ||X∗||−2X∗, such that the proportionality factor be 1. �

The vector fields Xi
a(x), x = (xi), i, a = 1, 3 determine a moving frame on (D, δab).

Using Vrănceanu’s idea ([30]), we associate to this frame the Riemannian-type structure
(D, gij , {Xi

a}), determined by a positive definite metric and a moving frame on D, the lat-
ter being assumed to be orthonormal relative to the metric. The contravariant Riemann-
Vrănceanu metric gij is then the tensor field defined by

δabXa ⊗Xb ≡ δabXi
a

∂

∂xi
⊗Xj

b

∂

∂xj
= gij(x)

∂

∂xi
⊗ ∂

∂xj
,

which has the explicit form
gij = δabXi

aX
j
b . (2.3)

Using (2.2) and (2.3), it follows that the moving co-frame {ω1, ω2, ω3} is orthonormal with
respect to the (contravariant) metric gij , and the moving frame {X1, X2, X3} is orthonormal
with respect to the (covariant) metric gij = δabω

a
i ω

b
j . Let

Γi
jk =

1

2
gih

(
∂gkh
∂xj

+
∂gjh
∂xk

− ∂gjk
∂xh

)
be the components of the Levi-Civita connection determined by the metric gij on D, let ωj,k

be the covariant derivative of ωi
1, and let

Γ∗i
jk = Γi

jk +Ωi
jk, Ωi

jk =
ωi

2
(ωj,k + ωk,j),

be the components of the induced (horizontal) linear connection on the distribution D. The
auto-parallelism of the two connections is subject to the following

1We shall further assume that ω is normalized, i.e., gijωiωj = 1
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Theorem 2.2. The auto-parallelism of a vector field in the distribution, with respect to the
connection Γi

jk, implies the auto-parallelism with respect to the connection Γ∗i
jk.

Proof. We have to prove that the auto-parallelism of a vector field in the distribution,
regarded as a vector field on the Riemannian manifold (D, gij), implies its horizontal auto-
parallelism. A vector field X = (Xi) on the Riemannian manifold (D, gij) is autoparallel
with respect to the Levi-Civita connection (or geodesic), if ∇XX = 0, or

Xi
,jX

j ≡ ∂Xi

∂xj
Xj + Γi

jkX
jXk = 0. (2.4)

Assume that the vector field X = (Xi) is in the distribution D, i.e, ωjX
j = 0. It is

horizontally autoparallel if ∇∗
XX = 0 or, taking into account (2.4),

∂Xi

∂xj
Xj + Γ∗i

jkX
jXk = 0 ⇔ Xi

,jX
j + ωiωj,kX

jXk = 0.

On the other hand, the condition ωjX
j = 0 implies

ωj,kX
j + ωjX

j
,k = 0 ⇒ ωj,kX

jXk + ωjX
j
,kX

k = 0.

The horizontal auto-parallelism condition can alternatively be written as

(δij − ωiωj)X
j
,kX

k = 0 ⇔ (gij − ωiωj)X
j
,kX

k = 0

and hence the statement holds true. �

Corollary 2.3. Suppose the vector field X∗ = X1 ×X2 is a Killing vector field on (D, gij).
Then the horizontal auto-parallelism on the distribution defined by the associated 1-from ω
is the auto-parallelism on the Riemannian manifold (D, gij).

Proof. The relations ωj,k + ωk,j = 0, straightforward infer Γ∗i
jk = Γi

jk. �

Open problems. 1. Being considered a vector field X, there exist an infinity of
connections Γi

jk such that X be autoparallel. Which of them are produced by a metric gij?

2. Being given a vector field X, do there exist two linearly independent vector fields
X1, X2, with X ∈ Span {X1, X2}, such that X be a geodesic vector field2 with respect to

the horizontal connection Γ∗i
jk?

3. Optimal control on distributions

In time, a battery of geometrical methods has been developed to address from a new
perspective some old problems in control theory [1]-[16], [29], [31]. We conduct our research
work in this direction being convinced that a lot of important open problems are on the
crossroads of Differential Geometry, Dynamical Systems, and Optimal Control Theory (see
also, [17]-[24]).

3.1. Infinitesimal deformations and adjointness

The distribution D can be described in terms of smooth vector fields (or generators),

D = span{Xα(x)|ωi(x)X
i
α(x) = 0, α = 1, 2, X1 ×X2 ̸= 0}, (3.1)

where ωi = δijX
j
∗ , X∗ = X1 × X2. Any vector field X ∈ D can be written in the form

X(x) = uα(x)Xα(x).

Let x(t) be a curve solution of the differential system ẋ(t) = X(x(t)) or

ẋ(t) = uα(x(t))Xα(x(t)).

2Here Xα are subject to the three parallelism conditions, ω satisfies the algebraic condition gijωiωj = 1,

while the number of unknowns (the components of Xα) is six.
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Let x(t; ϵ) be a differentiable variation of x(t), i.e.,

ẋ(t; ϵ) = uα(x(t; ϵ))Xα(x(t; ϵ)), x(t; 0) = x(t).

Denoting yi(t) =
∂xi

∂ϵ
(t; 0), we find both the single-time infinitesimal deformation system

ẏj(t) = Aj
k(x(t))y

k(t) (3.2)

and the single-time adjoint (dual) system

ṗk(t) = −Aj
k(x(t))pj(t), (3.3)

where Aj
k = ∂uα

∂xk X
j
α+uα ∂Xj

α

∂xk , with all the factors depending on x(t). The solution p = (pk)
of (3.3) is called the costate vector. The foregoing PDE systems (3.2) and (3.3) are adjoint
(dual), in the sense of constant inner product of solutions, i.e., the scalar product pk y

k is a
first integral.

3.2. The single-time maximum principle

We further consider the 2-dimensional distribution D on D, determined by {X1, X2}
as in (3.1). Let x(t), t ∈ I = [t0, t1] be an integral curve of the driftless control system

dx(t) = uα(x(t))Xα(x(t))dt, α = 1, 2.

An optimal control problem consists of maximizing the functional

I(u(·)) =
∫ t1

t0

L(t, x(t), u(t))dt+ h(x(t1)) (3.4)

subject to the constraints

dx(t) = uα(x(t))Xα(x(t))dt a.e., t ∈ I = [t0, t1], x(t0) = x0. (3.5)

We hereby assume that L : I × A × U → R is a C2 function, h : D → R is a C1 function,
X1,2 ∈ X(D) are C2 vector fields, where A ⊂ D ⊂ R3 is a bounded and closed subset which
contains the trajectory of the controlled system for t ∈ I, and x0 and x1 are the initial and
final states of the trajectory x(t) in the controlled system. Also, U is a bounded and closed
subset of R2, in which the control functions uα take values, and the mapping u = (u1, u2)
(called admissible) is piecewise smooth or piecewise analytic; the space U of all such maps
forms the set of admissible controls.

We further determine first order necessary conditions for an optimal pair (x, u). The
infinitesimal (Pfaff) deformation equation of the constraint dx(t) = uα(x(t))Xα(x(t))dt is
the system (3.2), and the adjoint Pfaff equation is the system (3.3).

The control variables may be open-loop - i.e., of the form uα(t), directly depending
on the time variable t, or closed-loop, feedback - i.e., of the form uα(x(t)), depending on t
by means of the state x(t). In both cases, the following result holds true:

Theorem 3.1 (Single-time maximum principle). Consider the Lagrangian 1-form

L(t, x(t), u(x(t)), p(t)) = L(t, x(t), u(x(t)))dt

+pi(t) [u
α(x(t))Xi

α(x(t))dt− dxi(t)],

and the associated Hamiltonian 1-form

H = [L(t, x(t), u(x(t))) + pi(t)u
α(x(t))Xi

α(x(t))]dt.



Sub-Riemannian geometry and optimal control on Lorenz-induced distributions 33

Assume that the problem of maximizing the functional (3.4) constrained by (3.5) has an
interior optimal solution û(t), which determines the optimal evolution x(t). Then along x(t)
there exists a costate vector p(t) = (pi(t)), such that

dxi =
∂H

∂pi
, x(t0) = x0. (3.6)

Moreover, the 1-form p(t) is the unique solution of the following Pfaff adjoint system

dpi = −∂H

∂xi
, p(t0) = p(t1) = 0 (3.7)

and the following critical point conditions are identically satisfied

Huα (t, x(t), u(t), p(t)) = 0, α = 1, 2. (3.8)

4. Optimal control via nonholonomic geodesics

LetXα, α = 1, 2 be two orthonormal vector fields which describe a distribution on the
Riemannian manifold (R3, gij). Informally, sub-Riemannian geometry is a type of geometry
in which the trajectories evolve tangent to a horizontal plane inside the tangent plane only.
The main theme of this subject is the study of geodesics which arise in such a geometry.

4.1. Open-loop control variables

A solution of the system ẋ(t) = uα(t)Xα(x(t)) is a horizontal curve. Since the kinetic
energy has the form

1

2
gij(x(t))ẋ

i(t)ẋj(t) =
1

2
δαβu

α(t)uβ(t),

the optimal control problem of nonholonomic geodesics can be written as a non-linear-
quadratic regulator problem,

min
u(·)

J(u(·)) = 1

2

∫ t1

t0

δαβu
α(t)uβ(t) dt

subject to the subject to the polydynamical driftless control system:

ẋ(t) = uα(t)Xα(x(t)), u(t) = (uα(t)), t ∈ [t0, t1]; x(t0) = x0.

We introduce the nonholonomic dual vector P = (Pa), a = 1, 2, 3 of the dual vector p =
(pi), i = 1, 2, 3 as Pa(t, x) = pi(t)X

i
a(x). To solve this problem we apply the maximum

principle for the Hamiltonian

H(x, p, u) := −1

2
δαβu

αuβ + Pαu
α, α, β = 1, 2.

Theorem 4.1. A horizontal vector field X, i.e., a vector field in a distribution {X1, X2},
is a geodesic vector field if and only if there exists a costate vector function p(t) = (pi(t))
such that the adjoint system

dpj
dt

(t) = δαβ Pα(t, x(t))
∂Pβ

∂xj
(t, x(t)), p(t0) = p(t1) = 0 (4.1)

the critical point condition

uα = Pα, (4.2)

and the following initial dynamics are satisfied:

ẋi(t) = δαβPα(t, x(t))X
i
β(x(t)), x(t0) = x0. (4.3)
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Proof. The adjoint dynamics

dpj
dt

= − ∂H

∂xj
= −uα ∂Pα

∂xj

is changed into nonholonomic adjoint dynamics

dPα

dt
=

dpi
dt

Xi
α + pi

∂Xi
α

∂xj
ẋj = −uβ ∂Pβ

∂xj
Xj

α + pi
∂Xi

α

∂xj
ẋj

= −uβ ∂Pβ

∂xj
Xj

α +
∂Pα

∂xj
uβXj

β = uβ

(
∂Pα

∂xj
Xj

β − ∂Pβ

∂xj
Xj

α

)
= uβp([Xβ ,Xα]).

We have to maximize the Hamiltonian H(x, p, u) with respect to the control variable u.
Since the critical points u of H are solutions of the algebraic system

∂H

∂uα
= −uα + Pα = 0,

the adjoint ODE system rewrites

dpj
dt

(t) = −δαβ Pα(t, x(t))
∂Pβ

∂xj
(t, x(t)),

and the initial dynamics becomes ẋi(t) = δαβPα(t, x(t))X
i
β(x(t)). Looking for a solution

of the form p(t) = K(t)x(t) or pi(t) = Kij(t)x
j(t), we find the feed-back control law (the

Kalman vector) uα = KijX
i
αx

j . Then, denoting KijX
i
α = Kαj and using Pα(t, x(t)) =

pi(t)X
i
α(x(t)), we find the feed-back control law uα(t) = Kαj(t)x

j(t) and the initial ODE
system can be written

ẋi(t) = δαβXi
α(x(t))Kβj(t)x

j(t),

whence the claim follows. �

Theorem 4.2 (optimal control is unitary, see also [16]). The optimal controls uα = piX
i
α

satisfy the ODE system u̇α = pi[Xβ , Xα]
i uβ. Consequently, the control u = (uα) is unitary,

i.e., 1
2δαβu

αuβ is a first integral.

Proof. Direct differentiation and use the adjoint dynamics and the initial dynamics. The
unitarity of the controls follows from the fact that the evolution u̇α of uα is described by a
linear ODE system with skew-symmetric right-hand side. �

Theorem 4.3. The distribution D is controllable (accessible) by geodesics (shortest paths).

Proof. Since the vector fields Xα, α = 1, 2 are linearly independent, the distribution D

is bracket generating. The Chow-Sussmann Theorem [16] shows that any two sufficiently
close points can be joined by a minimizing geodesic, i.e., a solution of the foregoing optimal
problem. �

4.2. Closed-loop control variables

A solution of the system ẋ(t) = uα(x(t))Xα(x(t)) is a horizontal curve. Since the
kinetic energy can be written

1

2
gij(x(t))ẋ

i(t)ẋj(t) =
1

2
δαβu

α(x(t))uβ(x(t)),

the optimal control problem of nonholonomic geodesics can be written as a non-linear-
quadratic regulator problem,

min
u(·)

J(u(·)) = 1

2

∫ t1

t0

δαβu
α(x(t))uβ(x(t)) dt

subject to the polydynamical driftless control system:

ẋ(t) = uα(x(t))Xα(x(t)), u(x(t)) = (uα(x(t))), t ∈ [t0, t1]; x(t0) = x0.
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Theorem 4.4. A trajectory x(t) of the vector field X = (Xj) is a geodesic in the distribution
X1, X2 if and only if there exists a costate vector function p(t) = (pi(t)) such that the adjoint
system

dpk
dt

(t) = −pj(t)
∂Xj

∂xk
(x(t)), p(t0) = p(t1) = 0

and the following decomposition holds:

Xj(x(t)) =
(
pi(t)X

i
1(x(t))

)
Xj

1(x(t)) +
(
pi(t)X

i
2(x(t))

)
Xj

2(x(t)).

Proof. We introduce the nonholonomic dual vector P = (Pa), a = 1, 2, 3 of the dual vector
p = (pi), i = 1, 2, 3 as Pa(t, x) = pi(t)X

i
a(x). To apply the maximum principle, we use the

Hamiltonian

H(x, p, u) := −1

2
δαβu

αuβ + Pαu
α, α, β = 1, 2.

We have to maximize the Hamiltonian H(x, p, u) with respect to the control variable u. The
critical points u of H are solutions of the algebraic system

∂H

∂uα
= −uα + Pα = 0.

It follows the adjoint dynamics

dpk
dt

= − ∂H

∂xk
= −1

2
pi(t)pj(t)

∂

∂xk
(δαβXi

α(x(t))X
j
β(x(t)))

which can be written as

dpk
dt

(t) = −pj(t)
∂Xj

∂xk
(x(t)), p(t0) = p(t1) = 0.

Then the initial dynamics becomes

ẋj(t) = pi(t)δ
αβXi

α(x(t))X
j
β(x(t))

or, ẋj(t) =
(
pi(t)X

i
1(x(t))

)
Xj

1(x(t)) +
(
pi(t)X

i
2(x(t))

)
Xj

2(x(t)), x(t0) = x0. The right hand
member of this ODE system is just the orthogonal projection of the adjoint vector p(t) on
the distribution.

Conversely, let X be a vector field on R3 in the distribution generated by two linearly
independent vector fields X1 and X2. The decomposition X(x) = u1(x)X1(x)+u2X2(x) is
unique, since u1(x) = ⟨X1(x), X(x)⟩ and u2(x) = ⟨X2(x), X(x)⟩, where the scalar product
is given by the metric gij . �

The existence and uniqueness Theorem shows that the previous initial and termi-
nal values problems have solutions. Therefore, our initial problem is solved via maximum
principle theory.

Corollary 4.5. The vector field X = (Xj) is a horizontally autoparallel in the distribution
X1, X2 if and only if

Xj(x)−
(
piX

i
1(x))

)
Xj

1(x)−
(
piX

i
2(x)

)
Xj

2(x) = 0

constrained by the system made from the original dynamical system and the adjoint system.

Corollary 4.6. (i) If the costate vector p = (pi) is of the form

pi(t) = gij(x(t))X
j(x(t))

and if the vector field X is unitary, i.e., gijX
iXj = 1, then X is autoparallel (geodesic) with

respect to the connection Γi
jk.

(ii) If the vector field X is autoparallel with respect to the connection Γi
jk and unitary

with respect to gij, then pi(t) = gij(x(t))X
j(x(t)) satisfies the adjoint system.
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Proof. (i) Assume that the costate vector has the form

pi(t) = gij(x(t))X
j(x(t)).

Replacing it in the dual system, we obtain

gki
∂Xi

∂xj
Xj + gijX

i ∂X
j

∂xk
+

∂gkj
∂xi

XiXj = 0.

We add the hypotheses gijX
iXj = 1. Taking the partial derivative with respect to xk, we

find gijX
i ∂Xj

∂xk = − 1
2
∂gij
∂xk X

iXj . Consequently,

gki
∂Xi

∂xj
Xj +

∂gkj
∂xi

XiXj − 1

2

∂gij
∂xk

XiXj = 0,

i.e., ∂Xi

∂xj X
j+Γi

jkX
jXk = 0, which infers that the vector field X is autoparallel with respect

to the connection Γi
jk.

(ii) The second statement is straightforward. �

Remark 4.7. The vector field X(x) = uα(x)Xα(x) is unitary with respect to the metric
gij if and only if δαβu

α(x)uβ(x) = 1. Consequently, for a unitary vector field X, the auto-
parallelism of X with respect to Γi

jk is equivalent to the adjointness of p.

Corollary 4.8. A given vector field X, in a distribution D = span{X1, X2}, is a geodesic

vector field (i.e., auto-parallel with respect to the horizontal connection Γ∗i
jk), if and only if

(gijX
iXj),k = ωk(ωi,j + ωj,i)X

iXj .

Proof. Replacing pi(t) = gij(x(t))X
j(x(t)) in the dual system, we obtain

gki
∂Xi

∂xj
Xj + gijX

i ∂X
j

∂xk
+

∂gkj
∂xi

XiXj = 0.

On the other hand, the auto-parallelism with respect to the horizontal connection Γ∗i
jk

means ∂Xi

∂xj X
j + Γ∗i

jkX
jXk = 0, or,

gki
∂Xi

∂xj
Xj +

∂gkj
∂xi

XiXj − 1

2

∂gij
∂xk

XiXj +
1

2
ωk(ωi,j + ωj,i)X

iXj = 0,

Eliminating the common terms, we find

−gijX
i ∂X

j

∂xk
− 1

2

∂gij
∂xk

XiXj +
1

2
ωk(ωi,j + ωj,i)X

iXj = 0

or (gijX
iXj),k = 2ωkωi,jX

iXj , which completes the proof. �

Corollary 4.9. A unit vector field X, in a distribution D = span{X1, X2}, is a geodesic

vector field (i.e., auto-parallel with respect to the horizontal connection Γ∗i
jk), if and only if

ωi,jX
iXj = 0.

Corollary 4.10. If a vector field X belongs to the distribution D and it is autoparallel
with respect to the connection Γi

jk , then X is autoparallel with respect to the horizontal

connection Γ∗i
jk.

Proof. Suppose ∇XX = 0 or Xi
,jX

j = 0. Since ωiX
i = 0, we obtain ωi,jX

i + ωiX
i
,j = 0.

Contracting by Xj , we find ωi,jX
iXj = 0. �
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5. Applications: the nonholonomic analysis of the Lorenz
dynamical system

5.1. Special Lorentz control distributions

The autonomous differential Lorenz system

ẋ = σ(y − x), ẏ = −xz + rx− y, ż = xy − bz,

where σ, r, b are real parameters, is the mathematical model for the dynamic turbulence of
a fluid. More precisely, the fluid evolves between two parallel plates which have distinct
temperature levels. The evolution of the fluid is described by the Navier-Stokes equation.
Developing in Fourier series in terms of the spatial coordinates and making the coefficients
equal to zero, we get the previous differential system, in which x is proportional to the
convective motion, y is proportional to the temperature, z is proportional to the drift from
linearity of the vertical temperature profile. Generally, we impose the conditions σ > 0, r >
0, b > 0, but usually σ = 10, b = 8

3 , and r varies. Let

L = σ(y − x)
∂

∂x
+ (−xz + rx− y)

∂

∂y
+ (xy − bz)

∂

∂z
(5.1)

be the Lorenz vector field. Since divL = −(1 + σ + b) < 0, the Lorenz flow is contractive.
We remark first that the Lorenz system is invariant relative to the symmetry (x, y, z) →

(−x,−y, z). The z−axis is invariant, since x(t) = 0, y(t) = 0, z(t) = z0 e
−bt, t ∈ R is a so-

lution of the system.
The Lorenz system exhibits chaotic behavior for r = 28 but displays knotted periodic

orbits for other values of r. For example, with r = 99.96, this becomes a T (3, 2) torus knot.
A saddle-node bifurcation occurs in the case when b(r − 1) = 0.

When σ ̸= 0 and b(r − 1) ≥ 0, the Lorenz flow has three equilibrium points.
The equilibrium point (0, 0, 0) corresponds to no convection, and the equilibrium points

(±
√
b(r − 1),±

√
b(r − 1), r − 1) correspond to steady convections. This pair is stable only

if

r < σ
σ + b+ 3

σ − b− 1
, (5.2)

which can hold only for positive r if σ > b+ 1.
When r = 28, σ = 10, and b = 8

3 , the Lorenz system has chaotic solutions (but not
all solutions are chaotic). In this case σ > b+ 1 and the right hand side in (5.2) is 470/19,
less than r. The Lorentz vector field (5.1) can be decomposed as L = u1X1 + U2X2, u1 =
x, u2 = 1, with

X1 = (−σ,−z, y), X2 = (σy, rx− y,−bz).

The domain D on which the 2-dimensional distribution D = Span{X1, X2} generated by
these vector fields is of maximal rank, is

D = R3 \ α(R), α(t) =

(
8t+ 3t3

224
, t,

3t2

8

)
. (5.3)

We note that on α(R) the Riemannian structure degenerates, and the dimension of D col-
lapses to one. The set of chaotic solutions make up the Lorenz attractor, a strange attractor
and a fractal of Hausdorff dimension between 2 and 3. Grassberger (1983) has estimated
the Hausdorff dimension to be 2.06± 0.01 and the correlation dimension to be 2.05± 0.01.

5.2. Lorenz distributions - 1

5.2.1. Lorenz 1-forms. The Lorenz vector field

L = σ(y − x)
∂

∂x
+ (−xz + rx− y)

∂

∂y
− (xy + bz)

∂

∂z
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is a linear combination of the form

L(x, y, z) = xX1(x, y, z) +X2(x, y, z),

where

X1 = −σ ∂
∂x − z ∂

∂y + y ∂
∂z , X2 = σy ∂

∂x + (rx− y) ∂
∂y − bz ∂

∂z .

Then

X1 ×X2 = (bz2 − rxy + y2)
∂

∂x
+ σ(y2 − bz)

∂

∂y
+ σ(−rx+ y + yz)

∂

∂z
.

The cross product X1 ×X2 generates the Lorenz 1-form

ω = ω1(x, y, z)dx+ ω2(x, y, z)dy + ω3(x, y, z)dz

= (bz2 − rxy + y2)dx+ σ(y2 − bz)dy + σ(−rx+ y + yz)dz.

This 1-form satisfies ω ∧ dω ̸= 0. Consequently, the Lorenz distribution

D1 = Ker (ω) = span{Xα(x, y, z)|ωi(x, y, z)X
i
α(x, y, z) = 0, α = 1, 2}

is nonholonomic.

5.2.2. Lorenz moving frames. To the vector fields X1, X2 we add the vector field

X3 =
1

σ(bz − y2)

∂

∂y
.

We identify these vector fields Xi
a with the columns of the matrix

(
Xi

a

)
=

 −σ σy 0
−z rx− y 1

σ(bz−y2)

y −bz 0

.
These are linearly independent vector fields on the subset D ⊂ R3, defined by the condition
det

(
Xi

a

)
= bz − y2 ̸= 0, determining a Lorenz moving frame. These vector fields are not

orthogonal in the Euclidean space
(
D ⊂ R3, δab

)
. On the region D ⊂ R3, we introduce the

inverse matrix

(ωa
i )=

 − bz
σ(bz−y2) 0 −y

bz−y2

−y
σ(bz−y2) 0 −1

bz−y2

−(bz2 − rxy + y2) σ(bz − y2) σ(rx− y − yz)

.
The rows of the matrix (ωa

i ) determine the Lorenz 1-forms (Lorenz moving co-frame):

ω1 = − bz
σ(bz−y2) dx− y

bz−y2 dz, ω
2 = − y

σ(bz−y2) dx− 1
bz−y2 dz

ω3 = ω = −(bz2 − rxy + y2)dx+ σ(bz − y2)dy + σ(rx− y − yz)dz.

5.2.3. Riemann-Vrănceanu metrics. Let Xi
a(x), x = (xi), i, a = 1, 3 be the Lorenz moving

frame on the Euclidean manifold
(
D ⊂ R3, δab

)
. Vrănceanu’s idea [30], associates to this

frame only one Riemannian manifold with a positive definite metric and a moving orthonor-
mal frame

(
D ⊂ R3, gij , X

i
a

)
. The contravariant Riemann-Vrănceanu metric gij is the tensor

field given by

δabXa ⊗Xb = δabXi
a

∂

∂xi
⊗Xj

b

∂

∂xj
= gij(x)

∂

∂xi
⊗ ∂

∂xj
.

Its symmetric associated matrix has the explicit form

(gij) = (δabXi
aX

j
b ) =

 σ2 + y2 + z2 −σ2y − z(rx− y)− byz − z
σ(bz−y2)

· · · σ2y2 + (rx− y)2 + b2z2 rx−y
σ(bz−y2)

· · · · · · 1
σ2(bz−y2)2

.
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The Lorenz moving co-frame is orthonormal with respect to the contravariant metric gij ,
while the Lorenz moving frame is orthonormal with respect to the covariant metric3 gij .

5.3. Lorenz distributions - 2

5.3.1. Lorenz 1-forms. The Lorenz vector field

L = σ(y − x)
∂

∂x
+ (−xz + rx− y)

∂

∂y
+ (xy − bz)

∂

∂z

is a linear combination of the form

L(x, y, z) = Y1(x, y, z) + xY2(x, y, z),

where

Y1 = σ(y − x) ∂
∂x + (rx− y) ∂

∂y − bz ∂
∂z , Y2 = −z ∂

∂y + y ∂
∂z .

Then

Y1 × Y2 = (−bz2 + rxy − y2)
∂

∂x
− σy(y − x)

∂

∂y
+ σz(x− y)

∂

∂z
.

The cross product Y1 × Y2 generates the Lorenz 1-form

η = η1dx+ η2dy + η3dz

= (−bz2 + rxy − y2)dx− σy(y − x)dy + σz(x− y)dz.

This 1-form satisfies η ∧ dη ̸= 0. Consequently, the Lorenz distribution

D2 = Ker η = span{Yα(x, y, z)| ηi(x, y, z)Y i
α(x, y, z) = 0, α = 1, 2}

is nonholonomic.

5.3.2. Lorenz moving frames. To the vector fields Y1, Y2 we supplement the vector field

Y3 =
1

σy(x− y)

∂

∂y
.

We identify these vector fields Y i
a with the columns of the matrix

(
Y i
a

)
=

 −σ(x− y) 0 0
rx− y −z 1

σy(x−y)

−bz y 0

.
These are linearly independent vector fields on the subset D ⊂ R3, defined by the condition
det

(
Y i
a

)
= y(x − y) ̸= 0, determining a Lorenz moving frame. These vector fields are not

orthogonal in the Euclidean space
(
D ⊂ R3, δab

)
.

On the region D ⊂ R3, we introduce the inverse matrix

(ηai )=

 − 1
σ(x−y) 0 0

− bz
σy(x−y) 0 1

y

−bz2 + rxy − y2 σy(x− y) σz(x− y)

.
The lines of the matrix (ηai ) determine the Lorenz 1-forms (Lorenz moving co-frame):

η1 = − 1

σ(x− y)
dx, η2 = − bz

σy(x− y)
dx+

1

y
dz

η3 = η = (−bz2 + rxy − y2)dx+ σy(x− y)dy + σz(x− y)dz.

3In the present case, the components of the covariant metric have a much more complicated form than
the contravariant one.
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5.3.3. Riemann-Vrănceanu metrics. Let Y i
a , i, a = 1, 3 be the Lorenz moving frame on

the Euclidean manifold
(
D ⊂ R3, δab

)
. Using Vrănceanu’s idea [30], we associate to this

frame only one Riemannian manifold
(
D ⊂ R3, gij , Y i

a

)
(with a positive definite metric and

a moving frame), in which the frame is orthonormal. The contravariant Riemann-Vrănceanu
metric gij is the tensor field defined by

δabYa ⊗ Yb = δabY i
a

∂

∂xi
⊗ Y j

b

∂

∂xj
= gij(x)

∂

∂xi
⊗ ∂

∂xj
,

where
(gij) = (δabY i

aY
j
b )

=

 σ2(x− y)2 + (rx− y)2 + b2z2 −z(rx− y)− byz rx−y
σy(x−y)

−z(rx− y)− byz z2 + y2 − z
σy(x−y)

rx−y
σy(x−y)

1
σ(x−y)

1
σ2y2(x−y)2

.
The Lorenz moving co-frame is orthonormal with respect to the (contravariant) metric gij .
The Lorenz moving frame is orthonormal with respect to the covariant metric gij .

5.4. Geodesics on Lorenz distributions

Let D1 be the Lorenz distribution with the related geometry as in Section 4.2. Let
L be the Lorenz vector field (in the Lorenz distribution) and its length ∥L∥2g = 1 + x2 with
respect to the Riemannian metric g in subsection 4.2.3. The associated unit vector field
is ξ = 1

∥L∥g
L. As any unit vector field, ξ is a complete vector field, i.e., its field lines are

defined on R. It is also a horizontal vector field and hence the solutions of the dynamical
system ẋ(t) = ξ(x(t)), including the chaotic orbit, are horizontal curves. We shall further
address the question whether these curves are geodesics of a certain Riemannian-Vrănceanu
metric structure.

To this aim, we first consider the decomposition

ξ = v1X1 + v2X2, v
1 =

u1√
u12 + u22

, v2 =
u2√

u12 + u22

of the Lorenz unit vector field, where X1 and X2 are linearly independent excepting a set
of measure zero. According the Theorem 3.4, a normalized Lorenz field line is a geodesic in
the distribution {X1, X2} if and only if

pi(t)X
i
1(x(t)) = v1(x(t)), pi(t)X

i
2(x(t)) = v2(x(t)), (4.4)

where x(t), p(t) is a solution of the ODE system made by the Lorenz dynamical system and
the adjoint system.

According the Corollary 3.9, the field lines of the Lorenz unit vector field ξ are not
horizontal geodesics since ωi,j ξ

iξj ̸= 0. The computations in coordinates being ”blocked”
by the difficulty of concretely writing the connection components Γi

jk, we perform them by

using the components with respect to the orthonormal frame {Xa | a = 1, 2, 3}. Particularly,
the components of the 1-form ω are ω1 = 0, ω2 = 0, ω3 = 1 and the Ricci coefficients are
γa
bc = ωa(∇Xb

Xc). In this way, we find

ωi,j ξ
iξj = ωα,β v

αvβ = −γ3
αβ v

αvβ ̸= 0, α, β = 1, 2.

Similar statements are true for the Lorenz distribution D2.

Let us change our point of view. We further consider the decomposition L = u1X1 +
u2X2 of the Lorenz vector field L, where X1 and X2 are linearly independent excepting a
set of measure zero. According the Theorem 3.4, a Lorenz field line is a geodesic in the
distribution {X1, X2} if and only if

pi(t)X
i
1(x(t)) = u1(x(t)), pi(t)X

i
2(x(t)) = u2(x(t)), (4.4)
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where x(t), p(t) is a solution of the ODE system made by the Lorenz dynamical system and
the adjoint system.

All Lorenz field lines are horizontal geodesics if and only if we can find a decomposition
such that

Lj(x)−
(
piX

i
1(x)

)
Xj

1(x)−
(
piX

i
2(x)

)
Xj

2(x) = 0,

if x(t), p(t) is a solution of the ODE system made by the Lorenz dynamical system and the
adjoint system.

There exists an infinity of decompositions of the Lorenz vector field. Theorem 3.4
suggests a possible procedure to find such a decomposition and its associated geometry, in
which the Lorenz trajectories are horizontal geodesics. From (4.4) we find, for instance,
p1 = p1(x, u

1, u2, p3) and p2 = p2(x, u
1, u2, p3). We introduce them in the adjoint ODEs

and we obtain equations determining u1(x(t)), u2(x(t)), p3(t).

6. Conclusions and further research

In the framework of sub-Riemannian geometry, we presented several associated opti-
mal control problems and developed an original general nonholonomic setting for the Lorenz
system. In this framework, we use the Pontryaguin Maximum Principle, which both states
necessary conditions for optimal trajectories, and yields explicit expressions for the Hamil-
tonian system in terms of the optimal controls.

Section 1 and Subsection 3.2 describe a possible procedure to find a decomposition
and its associated geometry, in which all Lorenz trajectories are horizontal geodesics.

In this respect, physics, mechanics, robotics, automation, economics, chemistry and
biology provide a remarkable source of problems, which can be reformulated within the
foregoing formalism. The applications of the described geometric techniques can eventually
unveil properties for the solutions of such problems, especially regarding their control design
and stabilization.
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[20] C. Udrişte, Nonholonomic approach of multitime maximum principle, Balkan J. Geom. Appl. 14, 2

(2009), 111-126.
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