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RELATIVISTIC RESULTS OBTAINED BY CLASSICAL
ARGUMENTS

Alexandru LUPASCU'

Problema reflectiei luminii pe o suprafatd in migcare este tratatd printr-un
calcul nerelativist obtinandu-se aceleasi rezultate ca in teoria relativitatii restranse.
Se studiaza variatiile frecventei undei reflectate si ale unghiului de reflectie in
functie de unghiul de incidenta §i de viteza suprafetei. Se discuta efectul Doppler
relativist in acelasi context.

We present the problem of reflection at a moving surface and show that
relativistic results may be deduced from simple non-relativistic computations. The
variations of the frequency of the reflected wave and of the reflected angle are
studied as functions of the incident angle and of the velocity of the surface. In the
same framework we discuss relativistic Doppler effect.

Keywords: reflection at a moving boundary, Special relativity, non-relativistic
computations

1. Introduction

The Special Relativity (SR) was introduced by Einstein in 1905 in order to
explain the electromagnetism of moving bodies. It complies with all
electromagnetic equations and elucidates all the experiments done with moving
bodies since the middle of the XIX-th century till now, in particular those
attempting to measure the influence of the source velocity with respect to the
observer.

This paper does not have the purpose to contradict SR. It challenges only
the way we understand some results of light interaction with moving media. More
specifically we show that the same results given by relativistic arguments for
reflection at a moving surface could be obtained also by non-relativistic
computations. This is a rather unexpected result, the common belief being that
non-relativistic formulae are at best only approximations of those of SR, with their
validity restricted to small velocities. In the same context we discuss the
connection between relativistic Doppler effect and the reflection at a moving
surface.

The second chapter contains a sketch of the famous Michelson-Morley
experiment which set forth a striking feature of reflection at a moving surface,
namely that the Snell-Descartes laws are invalid. Not only the reflection angle is
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not equal to the incident one, but the frequencies of the two beams differ as well.
We present the relativistic explanation of these relations, as well as a non-
relativistic demonstration of the results. The fourth part contains graphical
behaviour of the interesting relations. The final chapter includes some comments.
We outline here the problem of refraction at a moving surface.

2. Reflection of light at a moving mirror
2.1. The Michelson-Morley experiment revisited

The Michelson-Morley experiment is so famous that we shall not describe it
thouroughly. Fig. 1 presents only a part of this experiment, namely the transverse
propagating beam. The light comes from the left and splits, half being reflected
and half transmitted in the point 4. One of the fractions goes along AC, in the
direction in which Earth moves with velocity V. The other part travels along AB,
is reflected back in B and attains the point C in the same time in which the entire
device moves with the Earth from 4 to C.
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Fig. 1. The geometry of the transverse light ray in the Michelson-Morley experiment.

In Fig. 1 we have underlined an obvious feature of this reflection-refraction
phenomenon: the reflection angles are not equal to the incident ones. Even if the
angles are greatly exaggerated on the drawing it may be seen that the angles of
reflection are not equal to the incident angles: 6, #6, and 6; #6,.. Is this an

accurate result? Or we may think that the angles are equal and the rays just deviate
a little from the centre of the beam-splitter?

In fact during the reflection at a moving surface the reflection angle is no
more equal to the incident angle, as is the case for stationary media. The well
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known Snell law for refraction changes also. Besides, the frequencies of reflected
and refracted waves are different from the frequency of the incident ray.

2.2. Relativistic proof for the reflection at a moving boundary

We follow here Sommerfeld [1]. It is obvious that the reflected and
refracted quantities should depend on the incident angle, but also on the angle
between the surface and the direction in which points the velocity of the surface
movement. A detailed computation is rather tedious. Two important situations
appear:

a) the mirror moves in a direction tangential to its plane surface; it
may be shown that the laws of reflection and refraction do not
change in this case

b) the mirror moves in the direction perpendicular to its surface; here
the results are different from the usual Snell laws.

Therefore we shall present a simplified version of the situation, where the

interface moves in a normal direction, as in Fig.2 below.

v

Fig 2. Simplified version of the reflection at a moving mirror.

The general case is obtained from the final relations (4) and (5) by replacing
the velocity V by its normal component to the surface. Obviously we assume that
the velocity is constant.

In SR the calculus begins by defining two reference systems: one associated
with the light source considered at rest and designated by the letter S and the other
moving with the mirror and denoted by S’. The idea of the explanation is to work
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in the reference system S’ which moves with the mirror. In this system hold the
usual laws of Snellius and Descartes: the reflection angle equals the incidence one
and the beams have the same frequency. We shall shortly discuss the transmitted
beam in the final chapter. In this system the wave 4-vector of the incident light is
written as:

: @'
o=k, kY, kS, ik )= (k’cos@i, k'sin@,, 0, i—j (1)
c
Here k'=w'/c is the modulus of the wave-vector, @' is the frequency of
the wave in the S’ system and c is the velocity of light in vacuum. After reflection
on the mirror at rest in S’, the only change is the sign of the k| component and so

the four-vector ...”" of the reflected light is

...’r=(—k’cosé’i, k'sin 6., 0, iﬂj )
C

Now we go back to the laboratory reference system S by an inverse Lorentz
transformation and get the components of ...", the reflected wave four-vector:

W=k i) k=R K=k k=R i) G

Here f=V/candy = l/\ll — B* . We introduce in Eq. (3) the components
from Eq. (2). After some algebra, we find eventually for the reflected frequency:

. (1+,[)’2)—2ﬂcost9i

W, =, 2 4
1-5
The result for the angle of reflection is:
1+ % Jeos 9, — 2
cosé’,=(+'8 )COS =28 (5)

(1+,82)— 2B cosb;

In the preceding relations @, is the frequency of the incident beam.

2.3. Classical proof for the reflection at a moving boundary

We present here a non-relativistic proof of the above results. This
demonstration is based on the continuity of the electromagnetic field across the
surface between two media. To be specific, tangential components of the electric
field are continuous on an interface without superficial current densities.

Assume a plane electromagnetic wave with frequency @ travels in a

medium with the refractive index »; and is incident at an angle 6; to a plane

surface of a transparent body with the refractive index n,. The surface moves in
the positive direction of the x axis, i.e. perpendicular to the surface. Hence its
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position is given by the equation y =Vz. The reflection and transmission angles
are denoted by 6, and@,, the frequencies of the two waves by w, and @,

respectively. As we work in pre-relativistic physics the time is uniform in all
systems. Let’s postpone the transmitted wave for a while.

The phases of the plane waves in the incident and reflected rays are equal.
This result is written as

a)o[t—ﬂ(xsiné’i +Vtcost9i)} = a),[t—n—l(xsinﬁr —Vtcos@,)} (6)
c c

The coefficients of ¢, as well as those of x must be equal. We get:

wo[l—ﬂVcosﬁij:wr(l+ﬂVcosé’,) 7
c c
and

wyn, sin@; = w,n, sino, (®)

Usual trigonometry gives the equation:
(l—nlzﬂz)a)rz —2w,(1-n,Bcos8, o, +a)§(1—2n1ﬁcos6’i +n12ﬂ2)= 0 )
The two roots are real. The first one is the known result @, = @, and using
Egs. (7) one gets the Snell law for reflection 8, =6;; due to the Doppler effect

this result must be discarded. The other root is exactly the relation (4), obtained
above by relativistic arguments. Using this value in (7) one finds the reflection
angle, which is given by the same relation (5) as before.

So, our non-relativistic approach gives precisely the results obtained from
Special Relativity. It is strange enough that such an intricate relativistic result may
be obtained from classical considerations. Usually non-relativist relations are just
approximations of the accurate relativist results, correct only at low velocities. In
our situation the paradox is enhanced because we study electromagnetic fields.
We shall return later to this situation.

3. Graphical variation of important physical quantities

In this chapter we present graphically the variation of the reflection angle
0, and of the frequency of the reflected beam @, for a mirror moving

14

perpendicular to its plane surface. The two independent variables are the incident
angle 6, and the ratio S =V/c.
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Fig. 3. Variation of the reflection angle 6, as a function of the incident angle 8; , with
B =V/c as a parameter. The arrows designate points where 6, =z /2,0r cosd, =0

The bisector # =0 represents the usual Snellius-Descartes law 6, = 6, . But
for moving media the dependence 6, =0, (6’1, p= consl) i1s nonlinear. The
reflection angle becomes 7/2 at certain values of the incident angle smaller than
7/2, values indicated on Fig. 3 by small arrows. These values are obviously
given by the equation (1 +p° )cos 0. —2p =0, obtained by cancelling the
numerator of (5). For £ =0.3 reflection parallel to the surface appears at an
incident angle of roughly 57°; for this angle drops to about 6 ° for 5=0.9. Another
numerical example is 8, =6, (%, V2 - 5= % . As an angle of reflection greater
than 7 /2 has no physical meaning, we have continued the curves with a straight
horizontal line. This occurrence appears only at positive values of the velocity, i.e.
when the surface moves away from the light source. All happens as if the surface
would “refuse” to reflect light; the reflected beam is similar to the whispering

modes in wave-guides.
Fig. 4 shows another view of the variation of the reflection angle, this time the

continuous function 6, =6, (9,-, /)’). The ridge on this graph continued by the

horizontal region in the upper right corner represents points where 8, = /2.
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Fig. 4. Variation of the reflection angle 6, as a function of the incident angle 6, and of the

velocity of the interface . We let the interface move in both directions.
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Fig. 5. The ratio between the frequency of the reflected light and that of the incident light,

denoted by @, versus the incident angle #; and the velocity § of the interface.
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Fig. 5 presents the variation of the frequency of the reflected beam as a
function of the incident angle and of the surface velocity.
For usual velocities the frequency does not differ too much from that of the

incident light. Significant changes appear for |ﬂ|>0.25. Take for example

f =0.98; for incidence at an angle of 45° the reflected beam has a frequency 14.5
times larger than the incident light. If # =-0.98, that is if the surface moves

towards the incident light, the frequency is enhanced by reflection 84 times. In the
last chapter we shall present a situation when such high velocities where actually
attained in experiments.

4. Discussion

Our results are contained in relations (4) and (5). These are not new results,
they may be found in any classic textbook on special relativity. However, the
important point is not the formulae in themselves, but the way we have deduced
them. On one hand they are extremely relativistic relations, accurate to very high
velocities of the bodies in movement. On the other hand they are concerned with
light. It would have been normal to treat them only in the realm of Special
Relativity. However, we have shown that exactly the same relations are
consequences of a completely non-relativistic treatment.

The situation seems to be a paradox. A classical approach should give only
non-relativistic results. These ought to be only approximations to relativistic
relations. The former are just approximations of the latter for slow motion. It
seems not to be the situation here.

Let’s try to explain this fact. The starting point of the demonstration given
in paragraph 2.3 is the continuity of the electromagnetic field across the surface
between two media and the relation (6). They are pre-relativistic achievements of
electromagnetism. Special Relativity itself is based on classical electrodynamics.
Therefore it is quite normal than the two theories agree.

There is another point we have to discuss. Why did we not treat the problem
of the transmitted light? Isn’t it the refracted beam a plane wave itself? Apparently
we could have written instead of Eq. (6) the following more complex equality:

a)o{t—n?l(xsinei +Vtcos6; )} = a){t—n?l(xsinﬁ,, —Vtcos0, )} =
(6)
a){t—n—z(xsin 6, +Vtcosb, )}
c

Hence the transmitted wave would be handled as the reflected one. But in
fact this is not an acceptable approach. Electrodynamics of moving media must be
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treated using relativist four-vectors, as e.g. in [2]. It appears that Eq, (6) is not
correct. Therefore we have limited ourselves to reflected radiation.

As can be readily seen from figures 3 to 5 the influence of the movement is
significant only at very high velocities; one has to deal with mirrors traveling at
speeds greater than say c/4. At the end of chapter 3 we have declared that such
movements were in fact experimentally detected. Indeed, during experiments
made with very intense and very short laser pulses incident upon solid thin foils
electrons are pushed away from the target [3, 4]. Almost all the electrons are
driven out in the direction of the light pulse, being expelled from the sample.
Some of them are attracted back by the remaining ions from the target and travel
backwards. Therefore one deals with two “flying mirrors” made by electrons in
vacuum. The velocities of such flying mirrors are big enough to measure light
with frequency 12 times larger than that of the laser: if the incident light is in the
visible range, in the experiments was detected radiation in the X-domain. As can
be seen from Eq. (4) and Fig. (5) backward electrons are more efficient in
increasing the frequency of the reflected light. These flying mirrors must be
imagined as thin sheets of matter. They have two interfaces with the vacuum
around. These surfaces are by no means plane and parallel. One may think that the
preceding analysis applies to the first surface between vacuum and electrons.
However, after a study of the transmission light through the electron leaf, it would
be interesting to consider also the reflection on the second interface, between
electrons and vacuum.

The dependence between the reflected and the incident frequencies given in
Eq. (5) could be compared with the relativistic Doppler effect. The frequency
measured by an observer traveling with velocity V, = S c is given by (see [2]):

1-—
o = o, 1-fcosd, (10)

VI-p°
where 6, is the angle between the direction of the light and the direction in which

moves the observer (or the light source). As a particular occurrence, take the case
when the source and the observer move at right angle, 6, = z/2. One finds the

famous transverse Doppler effect which does not exist in pre-relativistic physics:

o (x/)=w, [ 2 (11
1+

The question is if the relations (10) and (11) may be deduced from relation

(5). In this case our demonstration of Eq. (5) could be used to induce — in a pre-
relativistic way — a formula for the transverse Doppler effect. Actually relations
(5) and (10) are not the same. Even so, one could infer from Eq. (5) a relation
which, for low velocities, would give numerical results similar to those of Eq.
(10). It seems that the two problems deal with different physics. But we must
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remember that in any actual experiments, in particular in that of Ives and Stilwell
[5], light is reflected by mirrors in relative movement with respect to the light
source. Light is also transmitted through different windows until it reaches
detectors, so in order to understand correctly this instance refracted light has to be
thoroughly studied.
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