
U. P. B. Sci. Bull., Series A, Vol. 71, Iss. 3, 2009                                                  ISSN 1223-7027  

RELATIVISTIC RESULTS OBTAINED BY CLASSICAL 
ARGUMENTS 

 
Alexandru LUPAŞCU1 

 
Problema reflecţiei luminii pe o suprafaţă în mişcare este tratată printr-un 

calcul nerelativist obţinându-se aceleaşi rezultate ca în teoria relativităţii restrânse. 
Se studiază variaţiile frecvenţei undei reflectate şi ale unghiului de reflecţie în 
funcţie de unghiul de incidenţă şi de viteza suprafeţei. Se discută efectul Doppler 
relativist în acelaşi context. 

 
We present the problem of reflection at a moving surface and show that 

relativistic results may be deduced from simple non-relativistic computations. The 
variations of the frequency of the reflected wave and of the reflected angle are 
studied as functions of the incident angle and of the velocity of the surface. In the 
same framework we discuss relativistic Doppler effect. 

 
Keywords: reflection at a moving boundary, Special relativity, non-relativistic  
                   computations 
 

1. Introduction 
 
The Special Relativity (SR) was introduced by Einstein in 1905 in order to 

explain the electromagnetism of moving bodies. It complies with all 
electromagnetic equations and elucidates all the experiments done with moving 
bodies since the middle of the XIX-th century till now, in particular those 
attempting to measure the influence of the source velocity with respect to the 
observer. 

This paper does not have the purpose to contradict SR. It challenges only 
the way we understand some results of light interaction with moving media. More 
specifically we show that the same results given by relativistic arguments for 
reflection at a moving surface could be obtained also by non-relativistic 
computations. This is a rather unexpected result, the common belief being that 
non-relativistic formulae are at best only approximations of those of SR, with their 
validity restricted to small velocities. In the same context we discuss the 
connection between relativistic Doppler effect and the reflection at a moving 
surface. 

The second chapter contains a sketch of the famous Michelson-Morley 
experiment which set forth a striking feature of reflection at a moving surface, 
namely that the Snell-Descartes laws are invalid. Not only the reflection angle is 
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not equal to the incident one, but the frequencies of the two beams differ as well. 
We present the relativistic explanation of these relations, as well as a non-
relativistic demonstration of the results. The fourth part contains graphical 
behaviour of the interesting relations. The final chapter includes some comments. 
We outline here the problem of refraction at a moving surface. 

 
2. Reflection of light at a moving mirror 
 
2.1. The Michelson-Morley experiment revisited 
 
The Michelson-Morley experiment is so famous that we shall not describe it 

thouroughly. Fig. 1 presents only a part of this experiment, namely the transverse 
propagating beam. The light comes from the left and splits, half being reflected 
and half transmitted in the point A. One of the fractions goes along AC, in the 
direction in which Earth moves with velocity V. The other part travels along AB, 
is reflected back in B and attains the point C in the same time in which the entire 
device moves with the Earth from A to C. 

 

 
Fig. 1. The geometry of the transverse light ray in the Michelson-Morley experiment.  
 
In Fig. 1 we have underlined an obvious feature of this reflection-refraction 

phenomenon: the reflection angles are not equal to the incident ones. Even if the 
angles are greatly exaggerated on the drawing it may be seen that the angles of 
reflection are not equal to the incident angles: ri θθ ≠  and ri θθ ′≠′ . Is this an 
accurate result? Or we may think that the angles are equal and the rays just deviate 
a little from the centre of the beam-splitter?  

In fact during the reflection at a moving surface the reflection angle is no 
more equal to the incident angle, as is the case for stationary media. The well 
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known Snell law for refraction changes also. Besides, the frequencies of reflected 
and refracted waves are different from the frequency of the incident ray.  

 
2.2. Relativistic proof for the reflection at a moving boundary 
 
We follow here Sommerfeld [1]. It is obvious that the reflected and 

refracted quantities should depend on the incident angle, but also on the angle 
between the surface and the direction in which points the velocity of the surface 
movement. A detailed computation is rather tedious. Two important situations 
appear:  

a) the mirror moves in a direction tangential to its plane surface; it 
may be shown that the laws of reflection and refraction do not 
change in this case 

b) the mirror moves in the direction perpendicular to its surface; here 
the results are different from the usual Snell laws. 

Therefore we shall present a simplified version of the situation, where the 
interface moves in a normal direction, as in Fig.2 below.  

 

 
Fig 2. Simplified version of the reflection at a moving mirror. 

 
The general case is obtained from the final relations (4) and (5) by replacing 

the velocity V by its normal component to the surface. Obviously we assume that 
the velocity is constant. 

In SR the calculus begins by defining two reference systems: one associated 
with the light source considered at rest and designated by the letter S and the other 
moving with the mirror and denoted by S’. The idea of the explanation is to work 
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in the reference system S’ which moves with the mirror. In this system hold the 
usual laws of Snellius and Descartes: the reflection angle equals the incidence one 
and the beams have the same frequency. We shall shortly discuss the transmitted 
beam in the final chapter. In this system the wave 4-vector of the incident light is 
written as: 
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′′=′′′′
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ikkkikkk ii
ωθθ ,0,sin,cos,,, 4321  (1) 

Here ck ω′=′  is the modulus of the wave-vector, ω′  is the frequency of 
the wave in the S’ system and c is the velocity of light in vacuum. After reflection 
on the mirror at rest in S’, the only change is the sign of the 1k ′ component and so 
the four-vector …’r of the reflected light is  
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Now we go back to the laboratory reference system S by an inverse Lorentz 
transformation and get the components of …r, the reflected wave four-vector: 

( )rrr kikk 411 ′−′= βγ  rr kk 22 ′=  rr kk 33 ′=  ( )rrr kikk 144 ′+′= βγ  (3) 

Here cV /=β and 211 βγ −= . We introduce in Eq. (3) the components 
from Eq. (2). After some algebra, we find eventually for the reflected frequency: 
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The result for the angle of reflection is: 
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In the preceding relations 0ω  is the frequency of the incident beam. 
 
2.3. Classical proof for the reflection at a moving boundary 
 
We present here a non-relativistic proof of the above results. This 

demonstration is based on the continuity of the electromagnetic field across the 
surface between two media. To be specific, tangential components of the electric 
field are continuous on an interface without superficial current densities.  

Assume a plane electromagnetic wave with frequency 0ω  travels in a 
medium with the refractive index 1n  and is incident at an angle iθ  to a plane 
surface of a transparent body with the refractive index 2n . The surface moves in 
the positive direction of the x axis, i.e. perpendicular to the surface. Hence its 
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position is given by the equation Vty = . The reflection and transmission angles 
are denoted by rθ  and tθ , the frequencies of the two waves by rω  and tω  
respectively. As we work in pre-relativistic physics the time is uniform in all 
systems. Let’s postpone the transmitted wave for a while. 

The phases of the plane waves in the incident and reflected rays are equal. 
This result is written as 

( ) ( )⎥⎦
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The coefficients of t, as well as those of x must be equal. We get: 
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and 
    rri nn θωθω sinsin 110 =    (8) 

Usual trigonometry gives the equation: 
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The two roots are real. The first one is the known result 0ωω =r  and using 
Eqs. (7) one gets the Snell law for reflection ir θθ = ; due to the Doppler effect 
this result must be discarded. The other root is exactly the relation (4), obtained 
above by relativistic arguments. Using this value in (7) one finds the reflection 
angle, which is given by the same relation (5) as before.  

So, our non-relativistic approach gives precisely the results obtained from 
Special Relativity. It is strange enough that such an intricate relativistic result may 
be obtained from classical considerations. Usually non-relativist relations are just 
approximations of the accurate relativist results, correct only at low velocities. In 
our situation the paradox is enhanced because we study electromagnetic fields. 
We shall return later to this situation. 

 
3. Graphical variation of important physical quantities 

In this chapter we present graphically the variation of the reflection angle 
rθ  and of the frequency of the reflected beam rω  for a mirror moving 

perpendicular to its plane surface. The two independent variables are the incident 
angle iθ  and the ratio cV=β . 
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Fig. 3. Variation of the reflection angle rθ as a function of the incident angle iθ , with 

β =V/c as a parameter. The arrows designate points where  0cosor,2/ == rr θπθ  
 
The bisector 0=β  represents the usual Snellius-Descartes law ir θθ = . But 

for moving media the dependence ( )constirr == βθθθ ,  is nonlinear. The 
reflection angle becomes 2π  at certain values of the incident angle smaller than 

2π , values indicated on Fig. 3 by small arrows. These values are obviously 
given by the equation ( ) 02cos1 2 =−+ βθβ i , obtained by cancelling the 
numerator of (5). For 3.0=β  reflection parallel to the surface appears at an 
incident angle of roughly 57º; for this angle drops to about 6 º for b=0.9. Another 
numerical example is ( ) 212,4

ππθθ =−= rr . As an angle of reflection greater 

than 2/π  has no physical meaning, we have continued the curves with a straight 
horizontal line. This occurrence appears only at positive values of the velocity, i.e. 
when the surface moves away from the light source. All happens as if the surface 
would “refuse” to reflect light; the reflected beam is similar to the whispering 
modes in wave-guides. 

Fig. 4 shows another view of the variation of the reflection angle, this time the 
continuous function ( )βθθθ ,irr = . The ridge on this graph continued by the 
horizontal region in the upper right corner represents points where 2πθ =r .  
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Fig. 4. Variation of the reflection angle rθ  as a function of the incident angle iθ  and of the 

velocity of the interface β . We let the interface move in both directions. 
 

 
Fig. 5. The ratio between the frequency of the reflected light and that of the incident light, 

denoted by ω , versus the incident angle iθ  and the velocity β  of the interface.  
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Fig. 5 presents the variation of the frequency of the reflected beam as a 
function of the incident angle and of the surface velocity. 

For usual velocities the frequency does not differ too much from that of the 
incident light. Significant changes appear for 25.0>β . Take for example 

98.0=β ; for incidence at an angle of 45º the reflected beam has a frequency 14.5 
times larger than the incident light. If 98.0−=β , that is if the surface moves 
towards the incident light, the frequency is enhanced by reflection 84 times. In the 
last chapter we shall present a situation when such high velocities where actually 
attained in experiments.  

 
4. Discussion 
 
Our results are contained in relations (4) and (5). These are not new results, 

they may be found in any classic textbook on special relativity. However, the 
important point is not the formulae in themselves, but the way we have deduced 
them. On one hand they are extremely relativistic relations, accurate to very high 
velocities of the bodies in movement. On the other hand they are concerned with 
light. It would have been normal to treat them only in the realm of Special 
Relativity. However, we have shown that exactly the same relations are 
consequences of a completely non-relativistic treatment.  

The situation seems to be a paradox. A classical approach should give only 
non-relativistic results. These ought to be only approximations to relativistic 
relations. The former are just approximations of the latter for slow motion. It 
seems not to be the situation here.  

Let’s try to explain this fact. The starting point of the demonstration given 
in paragraph 2.3 is the continuity of the electromagnetic field across the surface 
between two media and the relation (6). They are pre-relativistic achievements of 
electromagnetism. Special Relativity itself is based on classical electrodynamics. 
Therefore it is quite normal than the two theories agree.  

There is another point we have to discuss. Why did we not treat the problem 
of the transmitted light? Isn’t it the refracted beam a plane wave itself? Apparently 
we could have written instead of Eq. (6) the following more complex equality: 
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Hence the transmitted wave would be handled as the reflected one. But in 
fact this is not an acceptable approach. Electrodynamics of moving media must be 



Classical aspects of the special theory of relativity                            103 

treated using relativist four-vectors, as e.g. in [2]. It appears that Eq, (6’) is not 
correct. Therefore we have limited ourselves to reflected radiation. 

As can be readily seen from figures 3 to 5 the influence of the movement is 
significant only at very high velocities; one has to deal with mirrors traveling at 
speeds greater than say c/4. At the end of chapter 3 we have declared that such 
movements were in fact experimentally detected. Indeed, during experiments 
made with very intense and very short laser pulses incident upon solid thin foils 
electrons are pushed away from the target [3, 4]. Almost all the electrons are 
driven out in the direction of the light pulse, being expelled from the sample. 
Some of them are attracted back by the remaining ions from the target and travel 
backwards. Therefore one deals with two “flying mirrors” made by electrons in 
vacuum. The velocities of such flying mirrors are big enough to measure light 
with frequency 12 times larger than that of the laser: if the incident light is in the 
visible range, in the experiments was detected radiation in the X-domain. As can 
be seen from Eq. (4) and Fig. (5) backward electrons are more efficient in 
increasing the frequency of the reflected light. These flying mirrors must be 
imagined as thin sheets of matter. They have two interfaces with the vacuum 
around. These surfaces are by no means plane and parallel. One may think that the 
preceding analysis applies to the first surface between vacuum and electrons. 
However, after a study of the transmission light through the electron leaf, it would 
be interesting to consider also the reflection on the second interface, between 
electrons and vacuum. 

The dependence between the reflected and the incident frequencies given in 
Eq. (5) could be compared with the relativistic Doppler effect. The frequency 
measured by an observer traveling with velocity cV oo β=  is given by (see [2]): 

    
21

cos1

β

θβ
ωω

−

−
=′ o
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where 0θ  is the angle between the direction of the light and the direction in which 
moves the observer (or the light source). As a particular occurrence, take the case 
when the source and the observer move at right angle, 2πθ =o . One finds the 
famous transverse Doppler effect which does not exist in pre-relativistic physics: 

    ( )
β
βωπω

+
−

=′
1
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The question is if the relations (10) and (11) may be deduced from relation 
(5). In this case our demonstration of Eq. (5) could be used to induce – in a pre-
relativistic way – a formula for the transverse Doppler effect. Actually relations 
(5) and (10) are not the same. Even so, one could infer from Eq. (5) a relation 
which, for low velocities, would give numerical results similar to those of Eq. 
(10). It seems that the two problems deal with different physics. But we must 
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remember that in any actual experiments, in particular in that of Ives and Stilwell 
[5], light is reflected by mirrors in relative movement with respect to the light 
source. Light is also transmitted through different windows until it reaches 
detectors, so in order to understand correctly this instance refracted light has to be 
thoroughly studied. 
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