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THE COMPLETE TIMOSHENKO FORM OF TORQUE
INFLUENCE ON ROTORS LATERAL VIBRATIONS

Cristian M. STANICA?, Mihai V. PREDOI?, Valentin SILIVESTRU?, lon STROE*

The torque carried by a slender rotor has an important influence on the
lateral vibration frequencies of the rotor. At this time there in no existing
rotordynamics formulation of the torque effect on the lateral vibrations using the
more precise Timoshenko beam theory. The present article is proposing to fill this
gap and complete the rotordynamics theory with the torque terms containing the
shear effect derived from Timoshenko beam theory.
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1. Introduction

The first to come with a formulation of the torque influence on the slender
rotors lateral vibration was Zorzi and Nelson following the experimental
observations of Galomb and Eshleman.[1][2] Earlier studies showed that the
torgque can produce the failure of slender rotors (shafts) by lateral buckling. This is
an extreme case which teach us that even the torque does not achieve the
magnitude needed to results in lateral buckling there is an influence, a
contribution of this on the lateral displacements of the rotor when subjected to
other loads and, in order to obtain correct results for these other cases, this
contribution of torque should be precisely accounted for. Zorzi and Nelson solved
this problem using the more easy approach of Bernoully Euler beam theory [3]
which provide a rather good result but neglects the shear effect, thus rendering
results less precise than the Timoshenko beam theory. Today the state of the art
solving for the rotordynamics problem involves using the most precise theory
which is the Timoshenko beam formulation. Therefore the complete formulation
of the torque effect including the shear is required but not available in the present
literature. For example a relative recent work on the subject edited by Cambridge
University [6] lists just the Euler formulation of the torque effect on the lateral
rotordynamic vibrations.
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2. Theoretical aspects

In the effort to derive the relations describing the variation of the
fundamental frequency of slender rotors as a function of torque and axial loading
the extreme cases are considered. It was shown by previous experiments and
demonstrated by Euler [4] and Greenhill [4] that for an amount of compressive
axial load and or torque the buckling of the beam will occur.

According to Eshleman and Eubanks [2] the fundamental frequency of a
slender rotor (shafts) does not remain constant during load increasing but it is
varying and in the case of compressive and torque loads it is decreasing
proportional until the buckling phenomena occurs. So the buckling can be
redefined as an extreme case of loading when the fundamental frequency of the
loaded rotating shaft become zero Hertz. The formula for which the buckling
under constant axial load occurs is given by Euler as

P=k-7z2-%, a=E-1 . (1)

The values for k are 1 for short bearings, 4 for long bearings, between 1
and 4 for different combinations of bearings and 0.25 for cantilever rotor.[4]

Regarding the buckling under torque Greenhill gives the following
formula

o

M :ik-ﬂ'-l— (2

The values for k are >1 for short bearings, 2.861 for long bearings,
between 1 and 2.861 for different combinations of bearings and between zero to 1
for cantilever rotor depending of particularities of the application.

A combined case is demonstrated by Ziegler [4] where the torque and
tangential compressive load are combining and depending on each other. Using
the notations
M P

Mg’ P P,

where with the Mg is the buckling torque in the absence of compressive

load and Py is the buckling compressive load in the absence of torque, results the

relation between buckling torque M and buckling compressive load P when both
are simultaneous acting on the beam is

m

(3)

m?+p=1. (4)

Eshleman and Eubanks [2] using as a base the work of Golomb and
Rosenberg [4] devised a method to assess the variation of the first fundamental
frequency of rotating shaft depending of the amount of torque carried by the shaft.
They are providing a rather complex representation of the boundary conditions for
a slender rotor in a form of a differential equation accounting for transverse shear,
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rotating inertia, gyroscopic moments and torque. This is considered in two
theoretical cases, for short bearing and for long bearings the intermediate bearings
remaining to be considered between the two previous extreme cases.

One important conclusion of Eshleman and Eubanks in their study is that
considering Bernoulli-Euler theoretical representation of slender shafts a serious
error [2] is introduced in the model and the consideration of shear stresses is
mandatory in order to work with exact and safe results.

In order to develop a theoretical tool which can manage the complexity of
today aerospace and industrial applications Zorzi and Nelson developed a finite
element theoretical extension to Bernoulli Euler beam formulation in order to
account for torque and thus to avoid the gross error arising in assessing the natural
frequencies for the highly loaded slender shafts.[1]

As the experience showed this theory proved to be quite successful.
Nevertheless the more precise Timoshenko beam theory is used in precise
calculations of the critical speeds of the shafts. This theory is intrinsically build to
account for the shear stresses influence regarding shaft lateral displacements and
natural frequencies. As, from the best knowledge of the authors of this article, at
this time there in no such extension to the Timoshenko theory accounting for the
torque highly loaded slender shafts. Therefore this article main purpose is to fill
this theoretical gap and provide a complete Timoshenko theory formulation
regarding the finite element calculation of critical speeds of rotating slender shafts
and their lateral vibration amplitude A short presentation of the Timoshenko beam
theory shows in the figure 1 a rotating element of the considered beam with the
sign conventions used for displacements at the both ends.

Vi v2

Fig. 1. Timoshenko rotating beam element
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The strategy used in finite elements theory is to solve the problem using a
finite number of grid points and then extrapolate this results in the rest of the
problem domain. Referring to just one finite element this involves calculating
displacements first in the element nodes and then find the wanted value for
displacement or stress in every point of the element domain. This can be done
using the so called shape function. These shape functions are grouped in the shape
functions matrix ¥ so that for a considered one-dimensional element presented in
the figure 1, for every point on the element there is a value of the s coordinate
along the element. Therefore the displacements in every point of the element u(s),
v(s), 0x(s),0y(s) can be expressed using the shape functions as functions of the
displacements at the element grid points (in this case the element two extreme
points) U1, vi,U2,v2,0x1, Oy1, 6x2 and Oyo.
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One additional consequence of the Timoshenko beam theory is the
particular shape of the stiffness matrix expressed for one beam element as

_El
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where
_ 12-E-I
LU A ~ 12
k-A-G-1° 7)

This stiffness matrix is then integrated in the equation of equilibrium. A
general expression of this equation using a noninertial reference system is
provided by Vollan and Komzsik in [5] as follows,

[MI{g}+([D]+22[C]){g}+

+([K]-Q*[2]+Q°[K ]+ Q[ K, ]){g} - {F} = {0}.

The elegance of Vollan approach is that his noninertial theory is built
around the classical rotating frame theory by simply adding to the classical
stiffness matrix the lines and columns resembling the noninertial character. The
objective of this article is not to deal explicitly with these noninertial terms but
with the development of the classical subset of the stiffness matrix which is
applicable in all the cases, rotating or fully noninertial analysis reference frames.

In order to account for the influence of the torque carried by slender rotors,
an addition to the stiffness matrix [K] is needed which will be noted [Kt]. This
will be proportional with the torque and will be subtracted from the stiffness
matrix such to simulate the softening effect regarding lateral displacements and
lateral vibration natural frequencies. So the equilibrium equation will get an
additional term [K1],

[MI{g}+([D]+22[C]){g}+

+H([K]-[Kr]-@°[2]+ @ [K: ]+ QKo ]) (g} - {F} ={0}.

(8)

©)

This additional stiffness (softening) matrix was determined in the context
of Bernoulli Euler beam theory by Zorzi and Nelson and appears in relatively
recent books like [6] in this old format.

The purpose of this article is to find the expression of this matrix in the
formulation of more exact Timoshenko beam theory with complete consideration
of the shear phenomena and shear stresses.

3. Problem solution

The scientist which tackle this difficult issue like Eshleman, Eubanks and
Nelson [1][2] are decomposing using the parallelogram rule the torque vector (T)
along the two main directions, the direction perpendicular with the beam element
section and the direction parallel with the beam section. This can be observed in
the figures 2 and 3.
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Shear axis perpendicular on Shear axis
the element crossection perpendicular on the
]
element crossection
X /
P i oy

| , h_
S ' T z
M ! |
Fig. 2. Torque vector decomposing xOz Fig. 3. Torque vector decomposing yOz
plane plane

Considering the approximation associated with small values of 6,
T-sin(@)0T-6,, T-sin(@,)0T-0, (10)
The torque decomposing can be further developed at the sections of the
extremities of the beam finite element ds such the following figures.

Shear axis perpendicular on Shear axis
the element crossection ) perpendicular on the
/ ’ element crossection

X

Fig. 4. Force and torque equilibrium in xOz Fig. 5. Force and torque equilibrium in yOz
plane plane

From the figures 4 and 5 one can observe the equilibrium relations.

00 00
M,-El—-T¢,=0, (11) M +El—-T@ =0, (12)
os Y s
and using the sign convention as Eshleman [2]
ov ou
=—-p., 13 0,=—— 14
== (13) == A (14

Then using the equation (5.31) from Frishwell [6] we have the expression
of shear angle . Because the sign convention used by Eshleman is opposed
comparing with Frishwell the B expressions are used here with changed sign,
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2 A3 2 A3

T (16)

By =

In order to formulate the equilibrium equation the generalized Hamilton
principle is used due to the nonconservative nature of the torque [7],
t2 e e t2 e .
5Ll(K —P)dt+J'tléW dt =0 an
The first integral of Hamilton principle contains the conservative terms
from which are usual obtained using shape function of the finite elements the
terms containing the mass matrix and the usual stiffness matrix. The second
integral is the place for nonconservative phenomena like the influence of torque
on lateral vibrations of slender rotors.
Considering the notations

T-0,=M (18) T-6,=M (19)

tx ! y — ty

the last term, the nonconservative term, from relation (17) becomes

. ' .0u o%v
SW :Io(éthx—éngjds. (20)

In the relation (20) are inserted the u and v derivatives obtained with the
help of relations (13) and (14) where Bx and Py are replaced according with the
relations (15) and (16). So the equation (20) becomes

2 2 3 2 2 3
5\/\/‘3:1‘I 58_121_'_ @+ﬂé_\; _55_\2’1- 8_U+£8_l;l ds. (21)
I os 12 os 0S 0os 12 0s

Expanding further and grouping conveniently the terms, the equation (21)
becomes

0s? 0s  0s% 05

2 2 2 2 3 2 3
[ o°u ov 5ﬂa_u ds+_['Tq)| 581218\3/ 8_\2/8_2
0S° 0S 0S° 0S

oWe=[T|s T

0

jds. (22)

Then further arranging the terms in a matrix format the equation (22)
becomes
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For the equation (20) are used the displacements u and v along the beam
element according to the coordinate s. Using the Timoshenko shape functions this
can be expressed as function of the element grid points displacements
(displacements at the extremities of the beam element). Then with the introduction
of the shape functions grouped in the shape functions matrix (5) the relation (23)
becomes for the first term

al o

s 0 1 A2
II T 05 0S s
o Jov||1 0 582v

s 852

enT ! nT O _l ” e
={a} jO[T[‘PT (5)] L 0 }[\PT (s) ]}ds-a{q b

(24)
and the second term of (23) becomes
ou 582u
216 | [0 -1]|7 as?
J" T @I as 05 | lys
of 12 || |1 O 0?
= S—=
0s oS
CDIZ " 0 _1 " €
={q }j( [ ()]{1 0}[‘1@@) ]]ds-a{q 3
(25)

The terms (24) and (25) are further transformed so that the displacements
vector {q°} is moved to the right side and then using the notations K, and Krg for
the first part. The terms (24) and (25) can be written
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@y | [T CACH N 2 (s)"]]ds-a{qe}z
{jO'(T[‘PT(s)"]T {_01 ﬂ[‘PT(S)']JdS-{qe}} 5o} =

=[Kq, {a}] -5{0} 6)

and

2 -1
{0 |, { oL T()"']{ O}[%(s)"]}ds~5{q8}=

Z[I{T%“’T(S’"]T {_01 ﬂ[%(s)"’]jds-{qe}} 5o} =

e T e
=[ Ky, {a}] -o{a}. 7
Using (26) and (27) in the relation (23), this becomes
T
oW® =[(K;, +Ky,){a] -5{a} (28)
Where Ky =Kry + Ky is the stiffness matrix extension which express the

influence of the torque transmitted by the analyzed slender rotor according to
relation (9).

In order to find the terms of the K, and Krg for one beam element, the
matrices, the expressions which they denote are expanded using the actual
expressions of the shape functions inside the shape functions matrix Wr. The
derivatives and integration are transmitted to the shape functions inside the shape
function matrix and after the evaluation of these the following matrices are
obtained
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One can observe that the obtained stiffness matrices expressing the
influence of the torque are complying with the rule which state that making the
term ®=0 the Timoshenko beam theory is reduced to the Bernoulli Euler theory.
Indeed the Krp vanishes being multiplied by zero and the Kr, take exactly the
shape deduced by Zorzi and Nelson in [1] according the Bernoulli Euler beam
theory.

4. Conclusions

The important contribution of this article to the present state of the art in
the field of both inertial and noninertial frame rotating machines vibration
analysis is the full expression of the stiffness matrix in the Timoshenko beam
theory including the contribution of the torque to the evaluation of lateral
displacement and vibration frequencies. This is realized by the mean of complete
formulation of the equilibrium equation in the Timoshenko theory, equilibrium
equation which is the basis to further calculate the system natural frequencies,
displacements and tensions. This is especially important as the Timoshenko
theory is considerable more accurate than Bernoulli Euler because considers
additionally the influence of shear stress and shear displacements.
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