

**ON APPROXIMATION OF COMMON SOLUTION OF FINITE FAMILY
OF MIXED EQUILIBRIUM PROBLEMS INVOLVING $\mu - \alpha$ RELAXED
MONOTONE MAPPING IN A BANACH SPACE**

by O.K. Oyewole¹, L.O. Jolaoso², C. Izuchukwu³ and O.T. Mewomo⁴

In this paper, we introduce a U-mapping for finite family of mixed equilibrium problems involving $\mu - \alpha$ relaxed monotone operator. We prove a strong convergence theorem for finding the common solution of finite family of these equilibrium problems in a uniformly smooth and strictly convex Banach space which also enjoys Kadec-Klee property. Furthermore, we give some applications of our result and numerical example to show its relevance. Our results improve and generalize many other recent results in literature.

Keywords: Mixed equilibrium problem; U-mapping; fixed point; strong convergence; Banach space; Duality pairing.

MSC2000 Mathematics Subject Classification: 90C99, 47H10, 47H17.

1. INTRODUCTION

Let X be a real Banach space with the dual space X^* and C be a nonempty, closed and convex subset of X . A nonlinear mapping $T : X \rightarrow X$ is said to be a contraction, if there exists a constant $\theta \in (0, 1)$ such that

$$\|Tx - Ty\| \leq \theta \|x - y\|, \quad \forall x, y \in X.$$

If $\theta = 1$, then T is said to be nonexpansive. We denote the set of fixed points of T by $F(T)$. Let $F : C \times C \rightarrow \mathbb{R}$ be a bifunction, where \mathbb{R} is the set of real numbers. The equilibrium problem with respect to F and C in the sense of Blum and Oettli (1994) is to find $x \in C$ such that

$$F(x, y) \geq 0, \quad \forall y \in C. \quad (1)$$

In this paper, we assume that the bifunction F satisfies the following conditions:

(F1) $F(x, x) = 0$, for all $x \in C$; (F2) F is monotone; i.e. $F(x, y) + F(y, x) \leq 0$, for all $x, y \in C$; (F3) for all $x, y \in C$, $\lim_{t \rightarrow 0} F(tz + (1 - t)x, y) \leq F(x, y)$; (F4) for all $x \in C$, $F(x, \cdot)$ is convex and lower semicontinuous.

Fang and Huang [5] introduced the concept of relaxed $\mu - \alpha$ monotone mapping for solving a mixed equilibrium problem. A mapping $A : C \rightarrow X^*$ is said to be relaxed $\mu - \alpha$ monotone [17], if there exists a mapping $\mu : C \times C \rightarrow X$ and a function $\alpha : X \rightarrow \mathbb{R}$ with $\alpha(tz) = t^p \alpha(z)$ for all $t > 0$ and $z \in X$, where $p > 1$ such that

$$\langle Ax - Ay, \mu(x, y) \rangle \geq \alpha(x - y).$$

¹School of Mathematics, Statistics and Computer Science, University of KwaZulu-Natal, Durban, South Africa, e-mail: 217079141@stu.ukzn.ac.za

²School of Mathematics, Statistics and Computer Science, University of KwaZulu-Natal, Durban, South Africa, e-mail: 216074984@stu.ukzn.ac.za

³School of Mathematics, Statistics and Computer Science, University of KwaZulu-Natal, Durban, South Africa, e-mail: izuchukwu@ukzn.ac.za

⁴School of Mathematics, Statistics and Computer Science, University of KwaZulu-Natal, Durban, South Africa, e-mail: mewomoo@ukzn.ac.za

In particular, if $\mu(x, y) = x - y$, $\forall x, y \in C$ and $\alpha(z) = k||z||^p$, where $p > 1$ and $k > 1$ are constants, then A is called p monotone [7, 20]. Fang and Huang [5] proved that under some appropriate conditions, the following variational inequality is solvable; find $x \in C$ such that

$$\langle Ax, \mu(y, x) \rangle + \phi(y) - \phi(x) \geq 0, \quad \forall y \in C, \quad (1)$$

where $\phi : C \rightarrow \mathbb{R} \cup \{\infty\}$ is a nonlinear mapping. They also proved that the following inequality is equivalent to the variational inequality (1) : find $x \in C$ such that

$$\langle Ay, \mu(y, x) \rangle + \phi(y) - \phi(x) \geq \alpha(y - x), \quad \forall y \in C. \quad (2)$$

The mixed equilibrium problem (see e.g [21]) is to find $x \in C$ such that

$$F(x, y) + \langle Ax, \mu(y, x) \rangle + \phi(y) - \phi(x) \geq 0, \quad \forall y \in C. \quad (3)$$

We denote the solution set of mixed equilibrium problem (3) by $EP(F, A)$. It is easily observed that if $F(x, y) = 0$, $\forall x, y \in C$, then, the mixed equilibrium problem (3) reduces to the variational inequality problem (1). Also if $A = 0$ and $\phi = 0$, then $EP(F, A)$ coincides with $EP(F)$. Equilibrium and mixed equilibrium problems have been widely used to for solve variational inequalities, fixed point and optimization problems. (see, [25]). There are several iterative methods in literature proposed for finding solutions of fixed point and mixed equilibrium problems with relaxed monotone mappings in various settings, see ([1, 3, 4, 6, 8, 9, 10, 11, 12, 13, 16, 24, 25]).

In this paper, motivated by the research going on in this direction, we study a strong convergence theorem for finding the common solution of finite family of mixed equilibrium problems with $\mu - \alpha$ relaxed monotone mapping in the frame work of a uniformly smooth and strictly convex Banach space which also enjoys the Kadec-Klee property. First, we introduce the following mapping: Let C be a nonempty closed convex subset of a smooth and strictly convex Banach space X . For $i = 1, 2, \dots, N$, let $F_i : C \times C \rightarrow \mathbb{R}$ be a finite family of bifunctions, $A_i : C \rightarrow X^*$ be a finite family of μ hemicontinuous and relaxed $\mu - \alpha$ monotone mappings and $\phi_i : C \rightarrow \mathbb{R} \cup \{+\infty\}$ be a finite family of proper, convex and semicontinuous functions. For $i = 1, 2, \dots, N$ and $\{r_n\} \subset (0, \infty)$, the resolvent operator on F_i is defined in [3] as

$$K_{r_n}^i(x) := \{z \in X : F_i(z, y) + \langle A_i z, \mu(y, z) \rangle + \phi_i(y) - \phi_i(z) + \frac{1}{r_n} \langle y - z, Jz - Jx \rangle \geq 0, \forall y \in X\}.$$

However it has been proved in [3] that $K_{r_n}^i$ is single valued for each $i = 1, 2, \dots, N$. (See Lemma 2.5). We define the mapping $U_n : C \rightarrow C$ as

$$\begin{cases} S_{n,1} &= \lambda_{n,1} K_{r_n}^1 + (1 - \lambda_{n,1})I, \\ S_{n,2} &= \lambda_{n,2} K_{r_n}^2 S_{n,1} + (1 - \lambda_{n,2})S_{n,1}, \\ \vdots & \\ S_{n,N-1} &= \lambda_{n,N-1} K_{r_n}^{N-1} S_{n,N-2} + (1 - \lambda_{n,N-1})S_{n,N-2}, \\ U_n &= S_{n,N} = \lambda_{n,N} K_{r_n}^N S_{n,N-1} + (1 - \lambda_{n,N})S_{n,N-1}, \end{cases} \quad (4)$$

where $0 \leq \lambda_{n,i} \leq 1$, for $i = 1, 2, \dots, N$. In addition, we present the following algorithm for finding a common solution of finite family of mixed equilibrium problems involving a relaxed monotone operator: For arbitrary $x_1 \in C$, let $\{x_n\}$ be generated by

$$x_{n+1} = \alpha_n f(x_n) + \beta_n x_n + \gamma_n U_n x_n, \quad \forall n \geq 1, \quad (5)$$

where U_n is as defined in (4) and f a contraction mapping from C to C . Furthermore, we obtain a strong convergence theorem under some appropriate conditions of the proposed iterative algorithm in a uniformly smooth and strictly convex Banach space which also enjoys Kadec-Klee property. Our results improve the results of [3, 21] and many other results in literature.

2. PRELIMINARIES

In this section, we give some basic definitions and results which will be used in the sequel. Let X be a real Banach space and $B = \{x \in X : \|x\| = 1\}$. X is said to be strictly convex, if for any $x, y \in B$,

$$x \neq y \text{ implies } \left\| \frac{x+y}{2} \right\| < 1.$$

Define a function $\delta : [0, 2] \rightarrow [0, 1]$ called the *modulus of convexity* of X as follows:

$$\delta(\epsilon) = \inf \left\{ 1 - \left\| \frac{x+y}{2} \right\| : x, y \in X, \|x\| = \|y\| = 1, \|x-y\| \geq \epsilon \right\}.$$

Then X is uniformly convex if and only if $\delta(\epsilon) > 0$ for all $\epsilon \in (0, 2]$. It is known that a uniformly convex Banach space is reflexive and strictly convex. Recall that X has the Kadec-Klee property if for any sequence $\{x_n\} \subset X$ and $x \in X$ with $x_n \rightharpoonup x$ and $\|x_n\| \rightarrow \|x\|$, then $\|x_n - x\| \rightarrow 0$ as $n \rightarrow \infty$. It is well known that if X is uniformly convex, then X enjoys the Kadec-Klee property. For more on the Kadec-Klee property (see [2, 19]). X is said to be smooth if the limit $\lim_{t \rightarrow 0} \frac{\|x+ty\| - \|x\|}{t}$ exists for every $x, y \in B$. It is also said to be uniformly smooth if the limit is attained uniformly for $x, y \in B$. The generalized duality mapping $J_p : X \rightarrow 2^{X^*}$ is defined by

$$J_p(x) = \{x^* \in X^* : \langle x, x^* \rangle = \|x\|^p, \|x^*\| = \|x\|^{p-1}, x \in X\}.$$

For $p = 2$, we have the normalized duality pairing denoted by J . It is well known that if X is uniformly smooth, then J is uniformly norm-to-norm continuous on each bounded subset of X (see [19]).

In order to prove our main result, we will need the following lemmas.

Lemma 2.1. [26] *Let X be a real Banach space. Then for all $x, y \in X$ and $j(x+y) \in J(x+y)$, the following inequality holds:*

$$\|x+y\|^2 \leq \|x\|^2 + 2\langle y, j(x+y) \rangle. \quad (6)$$

Lemma 2.2. [18] *Let $\{x_n\}$ and $\{y_n\}$ be bounded sequences in a Banach space X such that*

$$x_{n+1} = \beta_n x_n + (1 - \beta_n) y_n, \quad n \geq 0,$$

where $\{\beta_n\}$ is a sequence in $(0, 1)$ such that $0 < \liminf_{n \rightarrow \infty} \beta_n \leq \liminf_{n \rightarrow \infty} \beta_n < 1$. Assume that

$$\limsup_{n \rightarrow \infty} (\|y_{n+1} - y_n\| - \|x_{n+1} - x_n\|) \leq 0. \text{ Then } \lim_{n \rightarrow \infty} \|y_n - x_n\| = 0.$$

Lemma 2.3. [22] *Let $\{\alpha_n\}$ be a sequence of nonnegative real numbers satisfying the condition*

$$\alpha_{n+1} \leq (1 - \gamma_n) \alpha_n + \gamma_n \sigma_n, \quad n \geq 0,$$

where $\{\gamma_n\} \subset (0, 1)$ and $\{\sigma_n\}$ is a sequence in \mathbb{R} such that

- i. $\lim_{n \rightarrow \infty} \gamma_n = 0$ and $\sum_{n=0}^{\infty} \gamma_n = \infty$,
- ii. either $\limsup_{n \rightarrow \infty} \sigma_n \leq 0$ or $\sum_{n=0}^{\infty} |\gamma_n \sigma_n| < \infty$.

Then, $\lim_{n \rightarrow \infty} \alpha_n = 0$.

Lemma 2.4. [23] *Let X be a uniformly smooth Banach space and C be a nonempty, closed and convex subset of X . Let $U : C \rightarrow C$ be a nonexpansive mapping such that $F(U) \neq \emptyset$ and $f : C \rightarrow C$ be a contraction mapping. For each t in $(0, 1)$, define $z_t = tf(z_t) + (1-t)Uz_t$, then $\{z_t\}$ converges strongly to the unique fixed point q of U as $t \rightarrow 0$, where $q = P_{F(U)}f(q)$ and $P_{F(U)} : C \rightarrow F(U)$ is the sunny nonexpansive retraction from C to $F(U)$.*

Lemma 2.5. [3] Let X be a uniformly smooth, strictly convex Banach space with the dual space X^* and let C be a nonempty, closed and convex bounded subset of X . Let $A : C \rightarrow X^*$ be a μ -hemicontinuous and relaxed $\mu - \alpha$ monotone mapping, let $F : C \times C \rightarrow \mathbb{R}$ be a bifunction satisfying (F1) – (F4) and $\phi : C \rightarrow \mathbb{R} \cup \{+\infty\}$. Let $r > 0$ and define a mapping $K_r : X \rightarrow C$ as follows:

$$K_r(x) = \{z \in C : F(z, y) + \langle Az, \mu(y, z) \rangle + \phi(y) - \phi(z) + \frac{1}{r} \langle y - z, Jz - Jx \rangle \geq 0, \quad \forall y \in C\},$$

for all $x \in X$. Assume that

(i) $\mu(x, y) + \mu(y, x) = 0, \forall x, y \in C$; (ii) for any fixed $u, v \in C$, the mapping $x \mapsto \langle Av, \mu(x, u) \rangle$ is convex and lower semicontinuous; (iii) $\alpha : X \rightarrow \mathbb{R}$ is weakly lower semicontinuous; (iv) for any $x, y \in C$, $\alpha(x - y) + \alpha(y - x) \geq 0$;

(v) $\langle A(tz_1 + (1-t)z_2), \mu(y, tz_1 + (1-t)z_2) \rangle \geq t \langle Az_1, \mu(y, z_1) \rangle + (1-t) \langle Az_2, \mu(y, z_2) \rangle$ for any $z_1, z_2, y \in C$ and $t \in [0, 1]$. Then the following hold:

- (1) K_r is single-valued; (2) K_r is a firmly nonexpansive type mapping;
- (3) $F(K_r) = EP(F, A)$; (4) $EP(F, A)$ is closed and convex.

Let C be a nonempty, closed and convex subset of a uniformly smooth and strictly convex Banach space X which also enjoys the Kadec-Klee property. Let $\mu : C \times C \rightarrow X$ be a nonlinear mapping. For $i = 1, 2, \dots, N$, let $F_i : C \times C \rightarrow \mathbb{R}$ be a finite family of bifunctions, $A_i : C \rightarrow X^*$ be a finite family of μ hemicontinuous relaxed $\mu - \alpha$ monotone mappings and $\phi_i : C \rightarrow \mathbb{R} \cup \{+\infty\}$ be a finite family of proper, convex and lower semicontinuous functions. Let $\lambda_1, \lambda_2, \dots, \lambda_N$ be real numbers such that $0 \leq \lambda_i \leq 1$ for all $i = 1, 2, \dots, N$. We define a mapping $U : C \rightarrow C$ as follows:

$$S_1 = \lambda_1 K_r^1 + (1 - \lambda_1)I, \quad S_2 = \lambda_2 K_r^2 S_1 + (1 - \lambda_2)S_1, \quad \dots, \\ S_{N-1} = \lambda_{N-1} K_r^{N-1} S_{N-2} + (1 - \lambda_{N-1})S_{N-2},$$

$$U = S_N = \lambda_N K_r^N S_{N-1} + (1 - \lambda_N)S_{N-1}. \quad (7)$$

The mapping so defined above is called U -mapping generated by $K_r^1, K_r^2, \dots, K_r^N$ and $\lambda_1, \lambda_2, \dots, \lambda_N$.

3. MAIN RESULT

In this section, we present our main results.

Lemma 3.1. Let X be a uniformly smooth, strictly convex Banach space with the dual space X^* and C be a nonempty, closed and convex subset of X . Let $A : C \rightarrow X^*$ be a relaxed $\mu - \alpha$ monotone mapping, $F : C \times C \rightarrow \mathbb{R}$ be a bifunction satisfying (F2) and $\phi : C \rightarrow \mathbb{R} \cup \{+\infty\}$. Assume that

(i) $\mu(x, y) + \mu(y, x) = 0 \forall x, y \in C$; (ii) for any $x, y \in C$, $\alpha(x - y) + \alpha(y - x) \geq 0$.
For $s > 0$ and $r > 0$, $\|K_s x - K_r x\| \leq |1 - \frac{r}{s}| \|x - K_s x\|$.

Proof. Let $z = K_r(x)$ and $w = K_s(x)$, from the definition of K_r , we have

$$F(z, y) + \langle Az, \mu(y, z) \rangle + \phi(y) - \phi(z) + \frac{1}{r} \langle y - z, Jz - Jx \rangle \geq 0 \quad \forall y \in C.$$

In particular, we have

$$F(z, w) + \langle Az, \mu(w, z) \rangle + \phi(w) - \phi(z) + \frac{1}{r} \langle w - z, Jz - Jx \rangle \geq 0. \quad (8)$$

Similarly, we obtain

$$F(w, z) + \langle Aw, \mu(z, w) \rangle + \phi(z) - \phi(w) + \frac{1}{s} \langle z - w, Jw - Jx \rangle \geq 0. \quad (9)$$

Adding equation (8) and (9), we obtain from (i) that

$$\begin{aligned} F(z, w) + F(w, z) + \langle Az - Aw, \mu(w, z) \rangle + \frac{1}{r} \langle w - z, Jz - Jx \rangle \\ + \frac{1}{s} \langle z - w, Jw - Jx \rangle \geq 0. \end{aligned} \quad (10)$$

Using condition (F2), we have

$$\begin{aligned} \frac{1}{r} \langle w - z, Jz - Jx \rangle + \frac{1}{s} \langle z - w, Jw - Jx \rangle \\ \geq \langle Aw - Az, \mu(w, z) \rangle \geq \alpha(w - z) \end{aligned} \quad (11)$$

interchanging the roles of w and z in (11), we obtain

$$\frac{1}{s} \langle z - w, Jw - Jx \rangle + \frac{1}{r} \langle w - z, Jz - Jx \rangle \geq \alpha(z - w). \quad (12)$$

Adding (11) and (12), and using condition (ii), we have $\frac{1}{r} \langle w - z, Jz - Jx \rangle + \frac{1}{s} \langle z - w, Jw - Jx \rangle \geq 0$, which implies that $\langle w - z, Jz - Jx \rangle - \langle w - z, \frac{rJw - rJx}{s} \rangle \geq 0$. That is, $\langle w - z, \frac{rJw - rJx}{s} - (Jz - Jx) \rangle \leq 0$, which implies

$$\langle w - z, \frac{rJw - rJx - sJz + sJw - sJw + sJx}{s} \rangle \leq 0. \quad (13)$$

This further implies that $\|w - z\|^2 \leq \langle w - z, \frac{r-s}{s} (Jx - Jw) \rangle$, from which we obtain that

$$\|w - z\| \leq \left| 1 - \frac{r}{s} \right| \|x - w\|. \quad (14)$$

That is,

$$\|K_s x - K_r x\| \leq \left| 1 - \frac{r}{s} \right| \|x - K_s x\|. \quad (15)$$

□

Proposition 3.1. *Let C be a nonempty closed convex subset of a uniformly smooth and strictly convex Banach space X . Let $\mu : C \times C \rightarrow X$ be a nonlinear mapping. For $i = 1, 2, \dots, N$, let $F_i : C \times C \rightarrow \mathbb{R}$ be a finite family of bifunctions, $A_i : C \rightarrow X^*$ be a finite family of μ -hemicontinuous relaxed $\mu - \alpha$ monotone mapping and $\phi_i : C \rightarrow \mathbb{R} \cup \{+\infty\}$ be a finite family of proper convex lower semicontinuous mapping. Let $\lambda_1, \lambda_2, \dots, \lambda_N$ be real numbers such that $0 \leq \lambda_i \leq 1$ for all $i = 1, 2, \dots, N$. Let U be the U -mapping defined in (7). Then S_1, S_2, \dots, S_{N-1} and U are nonexpansive. Also, $F(U) = \bigcap_{i=1}^N EP(F_i, A_i)$.*

Proof. By the nonexpansivity of K_r^i , for $i = 1, 2, \dots, N$, it follows that $S_1, S_2, \dots, S_N = U$ are nonexpansive mappings. Since $\bigcap_{i=1}^N F(K_r^i) = \bigcap_{i=1}^N EP(F_i, A_i)$, then it suffices to show that $F(U) = \bigcap_{i=1}^N F(K_r^i)$. To show that $F(U) = \bigcap_{i=1}^N F(K_r^i)$, we have to show that $\bigcap_{i=1}^N F(K_r^i) \subseteq F(U)$ and $F(U) \subseteq \bigcap_{i=1}^N F(K_r^i)$. It is easily observed that the first part is obvious. Next we show that $F(U) \subseteq \bigcap_{i=1}^N F(K_r^i)$. Let $a \in F(U)$ and $b \in \bigcap_{i=1}^N F(K_r^i)$. Using the definition of U , we have

$$\begin{aligned} \|a - b\| &= \|Ua - b\| = \|\lambda_N K_r^N S_{N-1} a + (1 - \lambda_N) S_{N-1} a - b\| \\ &\leq \lambda_N \|K_r^N S_{N-1} a - b\| + (1 - \lambda_N) \|S_{N-1} a - b\| \leq \|S_{N-1} a - b\| \\ &= \|(\lambda_{N-1} K_r^{N-1} S_{N-2} a - b) + (1 - \lambda_{N-1}) (S_{N-2} a - b)\| \\ &\leq \lambda_{N-1} \|K_r^{N-1} S_{N-2} a - b\| + (1 - \lambda_{N-1}) \|S_{N-2} a - b\| \\ &\leq \|S_{N-2} a - b\| \\ &\vdots \\ &\leq \|S_1 a - b\| = \|\lambda_1 K_r^1 a + (1 - \lambda_1) a - b\| \\ &\leq \lambda_1 \|K_r^1 a - b\| + (1 - \lambda_1) \|a - b\| \leq \|a - b\|. \end{aligned}$$

It follows that $\|a - b\| = \|\lambda_1(K_r^1 a - b) + (1 - \lambda_1)(a - b)\|$ and $\|a - b\| = \lambda_1\|K_r^1 a - b\| + (1 - \lambda_1)\|a - b\|$, that is $\|a - b\| = \|K_r^1 a - b\|$. Using the strict convexity of X , we obtain $K_r^1 a = a$, which implies that $a \in F(K_r^1)$. Hence, $S_1 a = a$. Again from (16) and the fact that $S_1 a = a$, we have $\|a - b\| = \|\lambda_2(K_r^2 S_1 a - b) + (1 - \lambda_2)(a - b)\|$ and $\|a - b\| = \lambda_2\|K_r^2 a - b\| + (1 - \lambda_2)\|a - b\|$, that is, $\|a - b\| = \|K_r^2 a - b\|$. Using the strict convexity of X , we obtain $K_r^2 a = a$, which implies that $a \in F(K_r^2)$. From which we obtain $S_2 a = a$. Proceeding the same way, we obtain $a = K_r^1 a = K_r^2 a = \dots = K_r^{N-1} a$ and $a = S_1 a = S_2 a = \dots = S_{N-1} a$. Since $a \in F(U) = F(S_N)$ and $S_{N-1} a = a$, then $a = \lambda_N K_r^N a + (1 - \lambda_N) a$. This implies that $a = K_r^N a$. Hence $F(U) \subset F(K_r^i)$ for $i = 1, 2, \dots, N$ and thus $F(U) \subset \cap_{i=1}^N F(K_r^i)$. Therefore, $F(U) = \cap_{i=1}^N F(K_r^i) = \cap_{i=1}^N EP(F_i, A_i)$. The proof is complete. \square

Proposition 3.2. *Let X be a uniformly smooth and strictly convex Banach space. For $i = 1, 2, \dots, N$ and $n \in \mathbb{N}$, let U_n be a U -mapping defined by (4). Let $\{x_n\}$ be a bounded sequence in X , then the following inequality is satisfied.*

$$\|U_{n+1}x_n - U_n x_n\| \leq \|x_{n+1} - x_n\| + M_N \sum_{i=1}^N |\lambda_{n+1,i} - \lambda_{n,i}|. \quad (16)$$

Proof. Using the fact that $K_{r_n}^i$ and $S_{n,i}$ for $i = 1, 2, \dots, N$ are nonexpansive with Lemma 3.1, we obtain the following estimates:

$$\begin{aligned} \|U_{n+1}x_n - U_n x_n\| &= \|\lambda_{n+1,N} K_{r_{n+1}}^N S_{n+1,N-1} x_n \\ &\quad + (1 - \lambda_{n+1,N}) S_{n+1,N-1} x_n - [\lambda_{n,N} K_{r_n}^N S_{n,N-1} x_n + (1 - \lambda_{n,N}) S_{n,N-1} x_n]\| \\ &= \|\lambda_{n+1,N} (K_{r_{n+1}}^N S_{n+1,N-1} x_n - K_{r_{n+1}}^N S_{n,N-1} x_n) + (S_{n+1,N-1} x_n - S_{n,N-1} x_n) \\ &\quad + \lambda_{n+1,N} (S_{n,N-1} x_n - S_{n+1,N-1} x_n) + (\lambda_{n,N} - \lambda_{n+1,N}) (S_{n,N-1} x_n) + \lambda_{n+1,N} (K_{r_{n+1}}^N S_{n,N-1} x_n \\ &\quad - K_{r_n}^N S_{n,N-1} x_n) + (\lambda_{n+1,N} - \lambda_{n,N}) (K_{r_n}^N S_{n,N-1} x_n)\| \\ &\leq \lambda_{n+1,N} \|K_{r_{n+1}}^N S_{n+1,N-1} x_n - K_{r_{n+1}}^N S_{n,N-1} x_n\| + (1 - \lambda_{n+1,N}) \|S_{n+1,N-1} x_n - S_{n,N-1} x_n\| + \\ &\quad |\lambda_{n+1,N} - \lambda_{n,N}| \|K_{r_n}^N S_{n,N-1} x_n - S_{n,N-1} x_n\| + \lambda_{n+1,N} \|K_{r_{n+1}}^N S_{n,N-1} x_n - K_{r_n}^N S_{n,N-1} x_n\| \\ &\leq \lambda_{n+1,N} \|S_{n+1,N-1} x_n - S_{n,N-1} x_n\| + (1 - \lambda_{n+1,N}) \|S_{n+1,N-1} x_n - S_{n,N-1} x_n\| + \\ &\quad |\lambda_{n+1,N} - \lambda_{n,N}| \|K_{r_n}^N S_{n,N-1} x_n - S_{n,N-1} x_n\| + \lambda_{n+1,N} \|K_{r_{n+1}}^N S_{n,N-1} x_n - K_{r_n}^N S_{n,N-1} x_n\| \\ &\leq \|S_{n+1,N-1} x_n - S_{n,N-1} x_n\| + |\lambda_{n+1,N} - \lambda_{n,N}| \|K_{r_n}^N S_{n,N-1} x_n - S_{n,N-1} x_n\| + \\ &\quad \|K_{r_{n+1}}^N S_{n,N-1} x_n - K_{r_n}^N S_{n,N-1} x_n\| \\ &\leq \|S_{n+1,N-1} x_n - S_{n,N-1} x_n\| + |\lambda_{n+1,N} - \lambda_{n,N}| \|K_{r_n}^N S_{n,N-1} x_n - S_{n,N-1} x_n\| \\ &\quad + \left| 1 - \frac{r_{n+1}}{r_n} \right| \|S_{n,N-1} x_n\|, \end{aligned}$$

which implies that

$$\|U_{n+1}x_n - U_n x_n\| \leq \|S_{n+1,N-1} x_n - S_{n,N-1} x_n\| + M_1 \left(|\lambda_{n+1,N} - \lambda_{n,N}|, \left| 1 - \frac{r_{n+1}}{r_n} \right| \right), \quad (17)$$

where M_1 is a constant such that $M_1 \geq \max\{||K_{r_{n+1}}^N S_{n,N-1} x_n - S_{n,N-1} x_n||, ||S_{n,N-1} x_n||\}$. Furthermore,

$$\begin{aligned} ||S_{n+1,N-1} x_n - S_{n,N-1} x_n|| &= ||\lambda_{n+1,N-1} K_{r_{n+1}}^{N-1} S_{n+1,N-2} x_n + (1 - \lambda_{n+1,N-1}) S_{n+1,N-2} x_n \\ &\quad - [\lambda_{n,N-1} K_{r_n}^{N-1} S_{n,N-2} x_n + (1 - \lambda_{n,N-1}) S_{n,N-2} x_n]|| \\ &= ||\lambda_{n+1,N-1} (K_{r_{n+1}}^{N-1} S_{n+1,N-2} x_n - K_{r_n}^{N-1} S_{n,N-2} x_n) + (1 - \lambda_{n+1,N-1}) (S_{n+1,N-2} x_n - S_{n,N-2} x_n) \\ &\quad + (\lambda_{n+1,N-1} - \lambda_{n,N-1}) (K_{r_n}^{N-1} S_{n,N-2} x_n - S_{n,N-2} x_n) \\ &\quad + \lambda_{n+1,N-1} (K_{r_{n+1}}^{N-1} S_{n+1,N-2} x_n - K_{r_n}^{N-1} S_{n,N-2} x_n)|| \end{aligned}$$

Thus

$$\begin{aligned} ||S_{n+1,N-1} x_n - S_{n,N-1} x_n|| &\leq ||S_{n+1,N-2} x_n - S_{n,N-2} x_n|| + |\lambda_{n+1,N-1} - \lambda_{n,N-1}| \cdot ||K_{r_n}^{N-1} S_{n,N-2} x_n - S_{n,N-2} x_n|| \\ &\quad + \left| 1 - \frac{r_{n+1}}{r_n} \right| ||S_{n,N-2} x_n||. \end{aligned} \quad (18)$$

Substituting (18) into (17), we obtain

$$\begin{aligned} ||U_{n+1} x_n - U_n x_n|| &\leq M_1 \left(\left| 1 - \frac{r_{n+1}}{r_n} \right| + |\lambda_{n+1,N} - \lambda_{n,N}| \right) + ||S_{n+1,N-2} x_n - S_{n,N-2} x_n|| + \\ &\quad |\lambda_{n+1,N-1} - \lambda_{n,N-1}| \cdot ||K_{r_n}^{N-1} S_{n,N-2} x_n - S_{n,N-2} x_n|| + \left| 1 - \frac{r_{n+1}}{r_n} \right| ||S_{n,N-2} x_n|| \\ &\leq M_2 \left(2 \left| 1 - \frac{r_{n+1}}{r_n} \right| + |\lambda_{n+1,N} - \lambda_{n,N}| + |\lambda_{n+1,N-1} - \lambda_{n,N-1}| \right) + ||S_{n+1,N-2} x_n - S_{n,N-2} x_n||, \end{aligned} \quad (19)$$

where $M_2 \geq \max\{M_1, ||K_{r_n}^{N-1} S_{n,N-2} x_n - S_{n,N-2} x_n||, ||S_{n,N-2} x_n||\}$.

Proceeding the same way as above, we obtain

$$||U_{n+1} x_n - U_n x_n|| \leq M_{N-1} \left((N-1) \left| 1 - \frac{r_{n+1}}{r_n} \right| + \sum_{i=2}^{N-1} |\lambda_{n+1,i} - \lambda_{n,i}| \right) + ||S_{n+1,1} x_n - S_{n,1} x_n||,$$

where $M_{N-1} \geq \max\{M_{N-2}, ||K_{r_n}^2 S_{n,1} x_n - S_{n,1} x_n||, ||S_{n,1} x_n||\}$. Hence,

$$\begin{aligned} ||U_{n+1} x_n - U_n x_n|| &\leq M_{N-1} \left((N-1) \left| 1 - \frac{r_{n+1}}{r_n} \right| + \sum_{i=2}^{N-1} |\lambda_{n+1,i} - \lambda_{n,i}| \right) + ||S_{n+1,1} x_n - S_{n+1,1} x_n|| \\ &= ||\lambda_{n+1,1} K_r^1 + (1 - \lambda_{n+1,1}) x_n - \lambda_{n,1} K_r^1 - (1 - \lambda_{n,1}) x_n|| \\ &\quad + M_{N-1} \sum_{i=2}^{N-1} |\lambda_{n+1,i} - \lambda_{n,i}| \\ &= |\lambda_{n+1,1} - \lambda_{n,1}| \cdot ||K_r^1 x_n - x_n|| + M_{N-1} \sum_{i=2}^{N-1} |\lambda_{n+1,i} - \lambda_{n,i}| \\ &= ||\lambda_{n+1,1} K_{r_{n+1}}^1 x_n + (1 - \lambda_{n+1,1} x_n) - \lambda_{n,1} K_{r_n}^1 x_n - (1 - \lambda_{n,1}) x_n|| + \\ &\quad M_{N-1} \left((N-1) \left| 1 - \frac{r_{n+1}}{r_n} \right| + \sum_{i=2}^{N-1} |\lambda_{n+1,i} - \lambda_{n,i}| \right) \\ &\leq M_N \left(N \left| 1 - \frac{r_{n+1}}{r_n} \right| + \sum_{i=1}^N |\lambda_{n+1,i} - \lambda_{n,i}| \right), \end{aligned} \quad (20)$$

where $M_N > \max\{M_{N-1}, \|K_r^1 x_n - x_n\|, \|x_n\|\}$. Therefore,

$$\begin{aligned} \|U_{n+1}x_{n+1} - U_nx_n\| &\leq \|U_{n+1}x_{n+1} - U_{n+1}x_n\| + \|U_{n+1}x_n - U_nx_n\| \\ &\leq \|x_{n+1} - x_n\| + M_N \left(N \left| 1 - \frac{r_{n+1}}{r_n} \right| + \sum_{i=1}^N |\lambda_{n+1,i} - \lambda_{n,i}| \right). \end{aligned}$$

□

Proposition 3.3. *Let C be a nonempty, closed and convex subset of a uniformly smooth and strictly convex Banach space X . Let $\mu : C \times C \rightarrow X$ be a nonlinear mapping. For $i = 1, 2, \dots, N$, let $F_i : C \times C \rightarrow \mathbb{R}$ be a finite family of bifunctions, let $A_i : C \rightarrow X^*$ be a relaxed $\mu - \alpha$ monotone mappings. Let $\phi_i : C \rightarrow \mathbb{R} \cup \{\infty\}$ be a finite family of proper convex lower semicontinuous mapping. For $i = 1, 2, \dots, N$, let $\lambda_{n,i}$ and λ_i be sequences in $[0, 1]$ such that $\lambda_{n,i} \rightarrow \lambda_i$ as $n \rightarrow \infty$ and $\{r_n\}$ be a sequence in $(0, \infty)$ such that $r_n \rightarrow r$ as $n \rightarrow \infty$ with $r > 0$. Suppose U is the mapping generated by $K_r^1, K_r^2, \dots, K_r^N$ and $\lambda_1, \lambda_2, \dots, \lambda_N$. For $n \in \mathbb{N}$, let U_n be the mapping generated by $K_{r_n}^1, K_{r_n}^2, \dots, K_{r_n}^N$ and $\lambda_{n,1}, \lambda_{n,2}, \dots, \lambda_{n,N}$. Assuming the conditions of Lemma 3.1 are satisfied, then for each $x \in C$, we have*

$$\lim_{n \rightarrow \infty} \|U_n x - U x\| = 0. \quad (21)$$

Proof. Let $x \in C$, using Lemma 3.1, we have

$$\begin{aligned} \|S_{n,1}x - S_1x\| &= \|\lambda_{n,1}K_{r_n}^1x + (1 - \lambda_{n,1})x - \lambda_1K_r^1x - (1 - \lambda_1)x\| \\ &= \|\lambda_{n,1}(K_{r_n}^1 - K_r^1)x + (\lambda_{n,1} - \lambda_1)(K_r^1x - x)\| \\ &\leq \left| 1 - \frac{r_n}{r} \right| \|K_r^1x - x\| + |\lambda_{n,1} - \lambda_1| \cdot \|K_r^1x - x\| \\ &\leq \left(\left| 1 - \frac{r_n}{r} \right| + |\lambda_{n,1} - \lambda_1| \right) \|K_r^1x - x\|. \end{aligned}$$

Using the same argument as above, for each $i = 1, 2, \dots, N$, we obtain

$$\begin{aligned} \|S_{n,N}x - S_Nx\| &= \|\lambda_{n,N}K_{r_n}^N S_{n,N-1}x + (1 - \lambda_{n,N})x - \lambda_N K_r^N S_{N-1}x - (1 - \lambda_N)x\| \\ &\leq \lambda_{n,N} \|K_{r_n}^N S_{n,N-1}x - K_{r_n}^N S_{N-1}x\| + \lambda_{n,N} \|K_{r_n}^N S_{N-1}x - K_r^N S_{N-1}x\| + \\ &\quad |\lambda_{n,1} - \lambda_1| \cdot \|K_r^N S_{N-1}x - x\| \\ &\leq \|S_{n,N-1}x - S_{N-1}x\| + \left| 1 - \frac{r_n}{r} \right| \|K_r^N S_{N-1}x - S_{N-1}x\| \\ &\quad + |\lambda_{n,1} - \lambda_1| \cdot \|K_r^N S_{N-1}x - x\|. \end{aligned}$$

It follows that

$$\begin{aligned} \|U_n x - U x\| &= \|S_{n,N}x - S_Nx\| \leq \|S_{n,1}x - S_1x\| + \sum_{i=1}^N |\lambda_{n,i} - \lambda_i| \cdot \|K_r^i S_{i-1}x - S_{i-1}x\| \\ &\leq \left(\left| 1 - \frac{r_n}{r} \right| + |\lambda_{n,1} - \lambda_1| \right) \|K_r^1x - x\| + \sum_{i=1}^N |\lambda_{n,i} - \lambda_i| \cdot \|K_r^i S_{i-1}x - S_{i-1}x\|. \end{aligned}$$

Since $r_n \rightarrow r$ and $\lambda_{n,i} \rightarrow \lambda_i$ as $n \rightarrow \infty$, then $\lim_{n \rightarrow \infty} \|U_n x - U x\| = 0$. □

Theorem 3.1. *Let C be a nonempty closed and convex subset of a uniformly smooth and strictly convex Banach space X which also enjoys the Kadec-Klee property. Let $\mu : C \times C \rightarrow X$ be a nonlinear mapping. For $i = 1, 2, \dots, N$, $F_i : C \times C \rightarrow \mathbb{R}$ be a finite family of bifunctions satisfying conditions (F1) – (F4), $A_i : C \rightarrow X^*$ be a finite family of μ -hemicontinuous relaxed $\mu - \alpha$ monotone mapping and $\phi_i : C \rightarrow \mathbb{R} \cup \{\infty\}$ be a finite family of proper convex lower semicontinuous functions. Let $K_r^1, K_r^2, \dots, K_r^N$ be a finite family*

of resolvent operators for mixed equilibrium problems with relaxed $\mu - \alpha$ mappings on C such that $\cap_{i=1}^N F(K_r^i) \neq \emptyset$. Let $f : C \rightarrow C$ be a contraction with constant $\theta \in (0, 1)$, let $\lambda_{n,1}, \lambda_{n,2}, \dots, \lambda_{n,N}$ be real numbers satisfying $0 \leq \lambda_{n,i} \leq 1$ such that $\lim_{n \rightarrow \infty} |\lambda_{n,i} - \lambda_i| = 0$ for $i = 1, 2, \dots, N$ with $0 \leq \lambda_i \leq 0$. For $n \in \mathbb{N}$, let U_n be a U -mapping generated by $K_{r_n}^1, K_{r_n}^2, \dots, K_{r_n}^N$ and $\lambda_{n,1}, \lambda_{n,2}, \dots, \lambda_{n,N}$. Suppose $\{\alpha_n\}, \{\beta_n\}$ and $\{\gamma_n\}$ are sequences in $(0, 1)$ with $\alpha_n + \beta_n + \gamma_n = 1$, r is a positive parameter and $\{r_n\}$ is a sequence in $(0, \infty)$. Assume that the conditions (i)-(v) of Lemma 2.5 and the following conditions are satisfied:

- (i) $\lim_{n \rightarrow \infty} \alpha_n = 0$, $\sum_{n=1}^{\infty} \alpha_n = \infty$;
- (ii) $0 < \liminf_{n \rightarrow \infty} \beta_n \leq \limsup_{n \rightarrow \infty} \beta_n < 1$;
- (iii) $r_n \rightarrow r$, $n \rightarrow \infty$;
- (iv) $\liminf_{n \rightarrow \infty} r_n > 0$, $\lim_{n \rightarrow \infty} \frac{r_{n+1}}{r_n} = 1$, $\lim_{n \rightarrow \infty} |\lambda_{n+1,i} - \lambda_{n,i}| = 0$.

For a given $x_1 \in C$, let $\{x_n\}$ be the sequence defined iteratively by

$$x_{n+1} = \alpha_n f(x_n) + \beta_n x_n + \gamma_n U_n x_n, \quad \forall n \geq 1. \quad (22)$$

Then, $\{x_n\}$ converges to $P_{\Gamma} f(q)$, where $\Gamma = \cap_{i=1}^N EP(F_i, A_i)$ and P_{Γ} is the sunny nonexpansive retraction of C onto Γ .

Proof. The proof of this theorem will be divided into several steps.

Step 1: $\{x_n\}$ is bounded. To see this, fix $q \in \Gamma$. We have,

$$\begin{aligned} \|x_{n+1} - q\| &= \|\alpha_n f(x_n) + \beta_n x_n + \gamma_n U_n x_n - q\| \\ &= \|\alpha_n(f(x_n) - q) + \beta_n(x_n - q) + \gamma_n(U_n x_n - q)\| \\ &= \|\alpha_n(f(x_n) - f(q) + f(q) - q) + \beta_n(x_n - q) + \gamma_n(U_n x_n - q)\| \\ &\leq \alpha_n \|f(x_n) - f(q)\| + \alpha_n \|f(q) - q\| + \beta_n \|x_n - q\| + \gamma_n \|U_n x_n - q\| \\ &\leq \theta \alpha_n \|x_n - q\| + \alpha_n \|f(q) - q\| + \beta_n \|x_n - q\| + \gamma_n \|x_n - q\| \\ &\leq \theta \alpha_n \|x_n - q\| + (1 - \alpha_n) \|x_n - q\| + \alpha_n \|f(q) - q\| \\ &\leq [1 - \alpha_n(1 - \theta)] \|x_n - q\| + \alpha_n \|f(q) - q\| \\ &\leq \max \left\{ \|x_n - q\|, \frac{1}{1 - \theta} \|f(q) - q\| \right\} \\ &\vdots \\ &\leq \max \left\{ \|x_1 - q\|, \frac{1}{1 - \theta} \|f(q) - q\| \right\}, \quad \forall n \geq 1. \end{aligned} \quad (23)$$

Therefore, the sequences $\{x_n\}$ and $\{U_n x_n\}$ are bounded.

Step 2: We show that

$$\lim_{n \rightarrow \infty} \|x_{n+1} - x_n\| = 0 \quad (24)$$

Putting $y_n = \frac{\alpha_n f(x_n) + \gamma_n U_n x_n}{1 - \beta_n}$, then (22) becomes $x_{n+1} = \beta_n x_n + (1 - \beta_n)y_n$. Since U_n is nonexpansive, $\{x_n\}$ and $\{U_n x_n\}$ are bounded, we get that $\{y_n\}$ is also bounded. Now,

$$\begin{aligned} y_{n+1} - y_n &= \frac{\alpha_{n+1} f(x_{n+1}) + \gamma_{n+1} U_{n+1} x_{n+1}}{1 - \beta_{n+1}} - \frac{\alpha_n f(x_n) + \gamma_n U_n x_n}{1 - \beta_n} \\ &= \left(\frac{\alpha_{n+1}}{1 - \beta_{n+1}} \right) (f(x_{n+1}) - f(x_n)) + \left(\frac{\alpha_{n+1}}{1 - \beta_{n+1}} - \frac{\alpha_n}{1 - \beta_n} \right) (f(x_n) - U_n x_n) \\ &\quad + \left(1 - \frac{\alpha_{n+1}}{1 - \beta_{n+1}} \right) (U_{n+1} x_{n+1} - U_n x_n), \end{aligned}$$

hence, using Proposition 3.2 and the fact that $\theta \in (0, 1)$, we have

$$\begin{aligned}
\|y_{n+1} - y_n\| &\leq \left| \frac{\alpha_{n+1}}{1 - \beta_{n+1}} \right| \|f(x_{n+1}) - f(x_n)\| + \left| 1 - \frac{\alpha_{n+1}}{1 - \beta_{n+1}} \right| \|U_{n+1}x_{n+1} - U_nx_n\| \\
&\quad + \left| \frac{\alpha_{n+1}}{1 - \beta_{n+1}} - \frac{\alpha_n}{1 - \beta_n} \right| \|f(x_n) - U_nx_n\| \\
&\leq \frac{\theta\alpha_{n+1}}{1 - \beta_{n+1}} \|x_{n+1} - x_n\| + \left| 1 - \frac{\alpha_{n+1}}{1 - \beta_{n+1}} \right| \|x_{n+1} - x_n\| \\
&\quad + M_N \left(N \left| 1 - \frac{r_{n+1}}{r_n} \right| + \sum_{i=1}^N |\lambda_{n+1,i} - \lambda_{n,i}| \right) \\
&\quad + \left| \frac{\alpha_{n+1}}{1 - \beta_{n+1}} - \frac{\alpha_n}{1 - \beta_n} \right| \|f(x_n) - U_nx_n\| \\
&\leq \|x_{n+1} - x_n\| + \left| \frac{\alpha_{n+1}}{1 - \beta_{n+1}} - \frac{\alpha_n}{1 - \beta_n} \right| \|f(x_n) - U_nx_n\| \\
&\quad + M_N \left(N \left| 1 - \frac{r_{n+1}}{r_n} \right| + \sum_{i=1}^N |\lambda_{n+1,i} - \lambda_{n,i}| \right).
\end{aligned}$$

This together with $\alpha_n \rightarrow 0$, $\frac{r_{n+1}}{r_n} = 1$ and $|\lambda_{n+1,i} - \lambda_{n,i}| \rightarrow 0$ as $n \rightarrow \infty$ implies that

$$\limsup_{n \rightarrow \infty} (\|y_{n+1} - y_n\| - \|x_{n+1} - x_n\|) \leq 0.$$

Hence, by Lemma 2.2, we obtain $\|y_n - x_n\| \rightarrow 0$ as $n \rightarrow \infty$.

Consequently, $\lim_{n \rightarrow \infty} \|x_{n+1} - x_n\| = \lim_{n \rightarrow \infty} (1 - \beta_n) \|y_n - x_n\| = 0$.

Step 3: Next, we show that

$$\lim_{n \rightarrow \infty} \|x_n - U_nx_n\| = 0. \quad (25)$$

We note that,

$$\begin{aligned}
\|x_{n+1} - U_nx_n\| &= \|\alpha_n f(x_n) + \beta_n x_n + \gamma_n U_nx_n - U_nx_n\| \\
&\leq \alpha_n \|f(x_n) - U_nx_n\| + \beta_n \|x_n - U_nx_n\| \\
&\leq \alpha_n \|f(x_n) - U_nx_n\| + \beta_n \|x_{n+1} - x_n + x_n - U_nx_n\| \\
&\leq \frac{\alpha_n}{1 - \beta_n} \|f(x_n) - U_nx_n\| + \frac{\beta_n}{1 - \beta_n} \|x_n - x_{n+1}\|.
\end{aligned}$$

From conditions (1),(2) and step 2, we have that $\lim_{n \rightarrow \infty} \|x_{n+1} - U_nx_n\| = 0$.

Also,

$$\|x_n - U_nx_n\| \leq \|x_n - x_{n+1}\| + \|x_{n+1} - U_nx_n\| \rightarrow 0, \text{ as } n \rightarrow \infty. \quad (26)$$

Note also that,

$$\begin{aligned}
\|x_n - U_nx_n\| &\leq \|x_n - U_nx_n\| + \|U_nx_n - U_nx_n\| \\
&\leq \|x_n - U_nx_n\| + \sup_{x \in C} \|U_nx - U_nx_n\|.
\end{aligned} \quad (27)$$

Therefore from (26) and Proposition 3.3, we have that $\lim_{n \rightarrow \infty} \|x_n - U_nx_n\| = 0$.

Step 4: We show that

$$\lim_{n \rightarrow \infty} \langle f(q) - q, j(q - x_n) \rangle \leq 0. \quad (28)$$

For any $t \in (0, 1)$, set $z_t = tf(z_t) + (1-t)Uz_t$. Then we have,

$$\begin{aligned}
\|z_t - x_n\|^2 &= \|t(f(z_t) - x_n) + (1-t)(Uz_t - x_n)\|^2 \\
&\leq (1-t)^2\|Uz_t - x_n\|^2 + 2t\langle f(z_t) - x_n, j(z_t - x_n) \rangle \\
&\leq (1-t)^2[\|Uz_t - Ux_n\| + \|Ux_n - x_n\|]^2 \\
&\quad + 2t\langle f(z_t) - z_t, j(z_t - x_n) \rangle + 2t\langle z_t - x_n, j(z_t - x_n) \rangle \\
&\leq (1-t)^2[\|z_t - x_n\| + \|Ux_n - x_n\|]^2 + 2t\|z_t - x_n\|^2 + 2t\langle f(z_t) - z_t, j(z_t - x_n) \rangle, \\
&\leq (1-t)^2\|z_t - x_n\|^2 + g_n(t) + 2t\langle f(z_t) - z_t, j(z_t - x_n) \rangle + 2t\|z_t - x_n\|,
\end{aligned}$$

where

$$g_n(t) = (1-t)^2(2\|z_t - x_n\| + \|x_n - U_n x_n\|)\|x_n - U_n x_n\| \rightarrow 0 \text{ as } n \rightarrow \infty. \quad (29)$$

It follows that

$$\langle z_t - f(z_t), j(z_t - x_n) \rangle \leq \frac{t}{2}\|z_t - x_n\|^2 + \frac{1}{2t}g_n(t). \quad (30)$$

Letting $n \rightarrow \infty$ in (30) and noting (29), we obtain $\langle z_t - f(z_t), j(z_t - x_n) \rangle \leq \frac{t}{2}M^*$, where $M^* = \limsup_{n \rightarrow \infty} \|z_t - x_n\|^2$. Clearly $\frac{t}{2}M^* \rightarrow 0$ as $t \rightarrow 0$ from which we obtain $\limsup_{t \rightarrow 0} \limsup_{n \rightarrow \infty} \langle z_t - f(z_t), j(z_t - x_n) \rangle \leq 0$. Since j is norm-to-norm continuous on bounded subset of X and by Lemma 2.4, $z_t \rightarrow q$, where $q = P_\Gamma f(q)$, we have $\|j(z_t - x_n) - j(q - x_n)\| \rightarrow 0$.

Observe that

$$\begin{aligned}
&\left| \langle z_t - f(z_t), j(z_t - x_n) \rangle - \langle q - f(z_t), j(q - x_n) \rangle \right| \\
&\leq \left| \langle z_t - q, j(z_t - x_n) \rangle + \langle q - f(z_t), j(z_t - x_n) \rangle - \langle q - f(z_t), j(q - x_n) \rangle \right| \\
&\leq \langle z_t - x_n, j(z_t - x_n) \rangle + \langle q - f(z_t), j(z_t - x_n) - j(q - x_n) \rangle \\
&\leq \|z_t - q\| \cdot \|z_t - x_n\| + \|q - f(z_t)\| \cdot \|j(z_t - x_n) - j(q - x_n)\| \rightarrow 0,
\end{aligned}$$

as $n \rightarrow \infty$. Therefore,

$$\langle z_t - f(z_t), j(z_t - x_n) \rangle \rightarrow \langle q - f(q), j(q - x_n) \rangle. \quad (31)$$

Hence,

$$\lim_{n \rightarrow \infty} \langle q - f(q), j(q - x_n) \rangle \leq 0. \quad (32)$$

Step 5: Finally, we show that $x_n \rightarrow q$ as $n \rightarrow \infty$. From Lemma 2.1 and step 1, we have

$$\begin{aligned}
\|x_{n+1} - q\|^2 &= \|\alpha_n f(x_n) + \beta_n x_n + \gamma_n U_n x_n - q\|^2 \\
&= \|\alpha_n(f(x_n) - q) + \beta_n(x_n - q) + \gamma_n(U_n x_n - q)\|^2 \\
&\leq \|\beta_n(x_n - q) + \gamma_n(U_n x_n - q)\|^2 + 2\alpha_n \langle f(x_n) - q, j(x_{n+1} - q) \rangle \\
&\leq \{\beta_n\|x_n - q\| + \gamma_n\|x_n - q\|\}^2 + 2\alpha_n \langle f(x_n) - f(q), j(x_{n+1} - q) \rangle \\
&\quad + 2\alpha_n \langle f(q) - q, j(x_{n+1} - q) \rangle \\
&\leq (1 - \alpha)^2 \|x_n - q\|^2 + 2\theta\alpha_n (\|x_n - q\| \cdot \|x_{n+1} - q\|) + 2\alpha_n \langle f(q) - q, j(x_{n+1} - q) \rangle \\
&\leq (1 - \alpha)^2 \|x_n - q\|^2 + \theta\alpha_n \|x_n - q\| + \theta\alpha_n \|x_{n+1} - q\| + 2\alpha_n \langle f(q) - q, j(x_{n+1} - q) \rangle \\
&\leq \frac{(1 - \alpha)^2 + \theta\alpha_n}{1 - \theta\alpha_n} \|x_n - q\|^2 + \frac{2\alpha_n}{1 - \theta\alpha_n} \langle f(q) - q, j(x_{n+1} - q) \rangle \\
&= \frac{1 - 2\alpha_n + \theta\alpha_n}{1 - \theta\alpha_n} \|x_n - q\|^2 + \frac{\alpha_n^2}{1 - \theta\alpha_n} \|x_n - q\|^2 + \frac{2\alpha_n}{1 - \theta\alpha_n} \langle f(q) - q, j(x_{n+1} - q) \rangle \\
&\leq \left\{ 1 - \frac{2(1 - \theta)\alpha_n}{1 - \theta\alpha_n} \right\} \|x_n - q\|^2 + \frac{2(1 - \theta)\alpha_n}{1 - \theta\alpha_n} \left\{ \frac{M^* * \alpha_n}{2(1 - \theta\alpha_n)} \right. \\
&\quad \left. + \frac{1}{1 - \theta} \langle f(q) - q, j(x_{n+1} - q) \rangle \right\}.
\end{aligned}$$

Observe that the conditions of Lemma 2.3 are satisfied with $\gamma_n = \frac{2(1 - \theta)\alpha_n}{1 - \theta\alpha_n}$ and $\sigma_n = \left\{ \frac{M^* * \alpha_n}{2(1 - \theta\alpha_n)} + \frac{1}{1 - \theta} \langle f(q) - q, j(x_{n+1} - q) \rangle \right\}$. By Lemma 2.3 and (32), it follows that $\|x_n - q\| \rightarrow 0$ as $n \rightarrow \infty$. Therefore $\{x_n\}$ converges strongly to $q = P_\Gamma f(q)$. This completes the proof. \square

We obtain the following as consequences of Theorem 3.1.

Suppose $A_i = 0$, in Theorem 3.1, the mixed equilibrium problem with $\mu - \alpha$ monotone mapping reduces to the following classical mixed equilibrium problem: $F_i(z, y) + \phi_i(y) - \phi_i(z) \geq 0$. We thus obtain the following result:

Corollary 3.1. *Let C be a nonempty closed and convex subset of a uniformly smooth and strictly convex Banach space X which also enjoys the Kadec-Klee property. Let $\mu : C \times C \rightarrow X$ be a nonlinear mapping. For $i = 1, 2, \dots, N$, let $F_i : C \times C \rightarrow \mathbb{R}$ be a finite family of bifunctions satisfying conditions (F1) – (F4), and let $\phi_i : C \rightarrow \mathbb{R} \cup \{\infty\}$ be a finite family of proper convex lower semicontinuous functions. Let $K_r^1, K_r^2, \dots, K_r^N$ be a finite family of resolvent operators for mixed equilibrium problems on C such that $\cap_{i=1}^N F(K_r^i) \neq \emptyset$. Let $f : C \rightarrow C$ be a contraction with constant $\theta \in (0, 1)$, let $\lambda_{n,1}, \lambda_{n,2}, \dots, \lambda_{n,N}$ be real numbers satisfying $0 \leq \lambda_{n,i} \leq 1$ such that $\lim_{n \rightarrow \infty} |\lambda_{n,i} - \lambda_i| = 0$ for all $i = 1, 2, \dots, N$. For all $n \in \mathbb{N}$, let U_n be a U -mapping generated by $K_{r_n}^1, K_{r_n}^2, \dots, K_{r_n}^N$ and $\lambda_{n,1}, \lambda_{n,2}, \dots, \lambda_{n,N}$. Suppose $\{\alpha_n\}, \{\beta_n\}$ and $\{\gamma_n\}$ are sequences in $(0, 1)$ with $\alpha_n + \beta_n + \gamma_n = 1$, r is a positive parameter and $\{r_n\}$ is a sequence in $(0, \infty)$. Assume that the conditions of Lemma 2.5 and the following conditions are satisfied:*

- (i) $\lim_{n \rightarrow \infty} \alpha_n = 0$, $\sum_{n=1}^{\infty} \alpha_n = \infty$;
- (ii) $0 < \liminf_{n \rightarrow \infty} \beta_n \leq \limsup_{n \rightarrow \infty} \beta_n < 1$;
- (iii) $r_n \rightarrow r$, $n \rightarrow \infty$;
- (iv) $\liminf_{n \rightarrow \infty} r_n > 0$, $\lim_{n \rightarrow \infty} \frac{r_{n+1}}{r_n} = 1$, $\lim_{n \rightarrow \infty} |\lambda_{n+1,i} - \lambda_{n,i}| = 0$.

For a given $x_1 \in C$, let $\{x_n\}$ be the sequence defined iteratively by

$$x_{n+1} = \alpha f(x_n) + \beta_n x_n + \gamma_n U_n x_n, \quad \forall n \geq 1. \quad (33)$$

Then $\{x_n\}$ converges to $P_\Gamma f(q)$, where $\Gamma = \cap_{i=1}^N EPF_i$, P_Γ is the sunny nonexpansive retraction of C onto Γ .

For $F_i(x, y) = 0$, in Theorem 3.1, the mixed equilibrium problem reduces to the following variational inequality

$$\langle A_i z, \mu(y, z) \rangle + \phi_i(y) - \phi_i(z) \geq 0.$$

We obtain a result which solves the finite family of variational inequalities as follows:

Corollary 3.2. *Let C be a nonempty closed and convex subset of a uniformly smooth and strictly convex Banach space X which also enjoys the Kadec-Klee property. Let $\mu : C \times C \rightarrow \mathbb{R}$ be a nonlinear mapping. For $i = 1, 2, \dots, N$, let $A_i : C \rightarrow X^*$ be a finite family of μ -hemicontinuous relaxed $\mu - \alpha$ monotone mapping and let $\phi_i : C \rightarrow \mathbb{R}$ be a finite family of proper convex lower semicontinuous functions. Let $K_r^1, K_r^2, \dots, K_r^N$ be a finite family of resolvent operators for variational inequalities with relaxed $\mu - \alpha$ mappings on C such that $\cap_{i=1}^N F(K_r^i) \neq \emptyset$. Let $f : C \rightarrow C$ be a contraction with constant $\theta \in (0, 1)$, let $\lambda_{n,1}, \lambda_{n,2}, \dots, \lambda_{n,N}$ be real numbers satisfying $0 \leq \lambda_{n,i} \leq 1$ such that $\lim_{n \rightarrow \infty} |\lambda_{n,i} - \lambda_i| = 0$ for all $i = 1, 2, \dots, N$. For all $n \in \mathbb{N}$, let U_n be a U -mapping generated by $K_r^1, K_r^2, \dots, K_r^N$ and $\lambda_{n,1}, \lambda_{n,2}, \dots, \lambda_{n,N}$. Suppose $\{\alpha_n\}, \{\beta_n\}$ and $\{\gamma_n\}$ are sequences in $(0, 1)$ with $\alpha_n + \beta_n + \gamma_n = 1$, r is a positive parameter and $\{r_n\}$ is a sequence in $(0, \infty)$. Assume that the conditions of Lemma 2.5 and the following conditions are satisfied:*

- (i) $\lim_{n \rightarrow \infty} \alpha_n = 0$, $\sum_{n=1}^{\infty} \alpha_n = \infty$; (ii) $0 < \liminf_{n \rightarrow \infty} \beta_n \leq \limsup_{n \rightarrow \infty} \beta_n < 1$;
- (iii) $r_n \rightarrow r$, $n \rightarrow \infty$; (iv) $\liminf_{n \rightarrow \infty} r_n > 0$, $\lim_{n \rightarrow \infty} \frac{r_{n+1}}{r_n} = 1$, $\lim_{n \rightarrow \infty} |\lambda_{n+1,i} - \lambda_{n,i}| = 0$.

For a given $x_1 \in C$, let $\{x_n\}$ be the sequence defined iteratively by

$$x_{n+1} = \alpha_n f(x_n) + \beta_n x_n + \gamma_n U_n x_n, \quad \forall n \geq 1. \quad (34)$$

Then $\{x_n\}$ converges to $P_{\Gamma} f(q)$, where $\Gamma = \cap_{i=1}^N V I A_i$, P_{Γ} is the sunny nonexpansive retraction of C onto Γ .

4. NUERICAL EXAMPLE

Let $X = \mathbb{R} \times \mathbb{R}$ and $C = [-1, 1] \times [-1, 1]$. Define a mapping $A : C \rightarrow \mathbb{R} \times \mathbb{R}$ by $A(x_1, x_2) = (x_1, x_2)$ for all $(x_1, x_2) \in C$, $\alpha : \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}$ by $\alpha((x_1, x_2)) = 3x_1^2 + 3x_2^2$ for all $(x_1, x_2) \in X$ and $\mu : C \times C \rightarrow \mathbb{R} \times \mathbb{R}$ by $\mu((x_1, x_2), (y_1, y_2)) = (2(x_1 - y_1), 2(x_2 - y_2))$ for all $(x_1, x_2) \times (y_1, y_2) \in C \times C$. Then the mapping A is a relaxed $\mu - \alpha$ monotone mapping. Indeed, for all $x = (x_1, x_2), y = (y_1, y_2) \in C$, we have

$$\begin{aligned} \langle Ax - Ay, \mu(x, y) \rangle &= ((x_1 - y_1), (x_2 - y_2)), (2(x_1 - y_1), 2(x_2 - y_2)) \\ &= 4[(x_1 - y_1)^2 + (x_2 - y_2)^2] \\ &\geq 3[(x_1 - y_1)^2 + (x_2 - y_2)^2] = \alpha(x - y). \end{aligned} \quad (35)$$

Hence, A is a relaxed $\mu - \alpha$ monotone mapping. Let $\bar{z} = (z_1, z_2)$, $\bar{y} = (y_1, y_2)$ and $\bar{x} = (x_1, x_2)$. Define $F_i(\bar{z}, \bar{y}) = -3i\bar{z}^2 + 2i\bar{z}\bar{y} + i\bar{y}^2 + i\bar{z}(2(\bar{y} - \bar{z})) + (i\bar{y}^2) - (i\bar{z}^2) + \frac{1}{r_n}(\bar{y} - \bar{z}, \bar{z} - \bar{x})$ and $\phi_i(\bar{z}) = i\bar{z}^2$. Lemma 2.5 ensures that there exist $\bar{x} \in \mathbb{R}^2$ such that

$$\begin{aligned} &F_i(\bar{z}, \bar{y}) + \langle A_i \bar{z}, \mu(\bar{y}, \bar{z}) \rangle + \phi_i(\bar{y}) - \phi_i(\bar{z}) + \frac{1}{r_n} \langle \bar{y} - \bar{z}, \bar{z} - \bar{x} \rangle \geq 0 \quad \forall \bar{y} \in \mathbb{R}^2 \\ \iff &-3i\bar{z}^2 + 2i\bar{z}\bar{y} + i\bar{y}^2 + i\bar{z}(2(\bar{y} - \bar{z})) + (i\bar{y}^2) - (i\bar{z}^2) + \frac{1}{r_n}(\bar{y} - \bar{z}) \times (\bar{z} - \bar{x}) \geq 0 \\ \iff &-3i\bar{z}^2 + 2i\bar{z}\bar{y} + i\bar{y}^2 + 2i\bar{y}\bar{z} - 2i\bar{z}^2 + (i\bar{y}^2) - (i\bar{z}^2) + \frac{1}{r_n}(\bar{y}\bar{z} - \bar{y}\bar{x} - \bar{z}^2 + \bar{z}\bar{x}) \geq 0 \\ \iff &-3ir_n\bar{z}^2 + 2r_n i\bar{z}\bar{y} + ir_n\bar{y}^2 + 2r_n i\bar{y}\bar{z} - 2r_n i\bar{z}^2 + r_n i\bar{y}^2 - r_n i\bar{z}^2 + \bar{y}\bar{z} - \bar{y}\bar{x} - \bar{z}^2 + \bar{z}\bar{x} \geq 0 \\ \iff &2ir_n\bar{y}^2 + (4ir_n\bar{z} + \bar{z} - \bar{x})\bar{y} + \bar{z}\bar{x} - \bar{z}^2 - 6ir_n\bar{z}^2 \geq 0. \end{aligned}$$

Let $H(\bar{y}) = 2ir_n\bar{y}^2 + (4ir_n\bar{z} + \bar{z} - \bar{x})\bar{y} + \bar{z}\bar{x} - \bar{z}^2 - 6ir_n\bar{z}^2$, then $H(\bar{y})$ is a quadratic equation in \bar{y} .

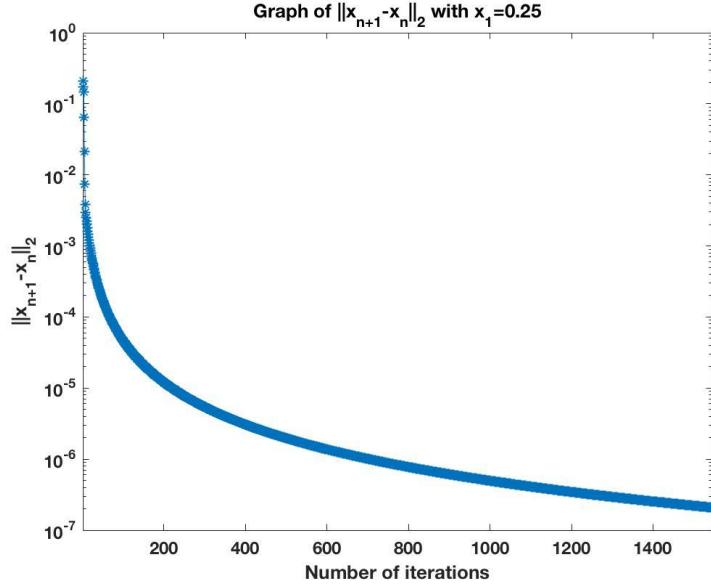


FIGURE 1. Errors vs number of iterations for initial value 1.

With $a = 2ir_n$, $b = 4ir_n\bar{z} + \bar{z} - \bar{x}$ and $c = -6ir_n\bar{z}^2 - \bar{z}^2 + \bar{z}\bar{x}$. We obtain the discriminant Δ of $H(\bar{y})$ as follows:

$$\begin{aligned}\Delta &= b^2 - 4ac = (4ir_n\bar{z} + \bar{z} - \bar{x})^2 - 4(2ir_n)(-6ir_n\bar{z}^2 - \bar{z}^2 + \bar{z}\bar{x}) \\ &= \bar{x}^2 + 64i^2r_n^2\bar{z}^2 + 16ir_n\bar{z} + \bar{z}^2 - 16ir_n\bar{x}\bar{z} - 2\bar{x}\bar{z} = \bar{x}^2 + (8ir_n\bar{z} + \bar{z})^2 - 2\bar{x}\bar{z} - 16ir_n\bar{x}\bar{z} \\ &= \bar{x}^2 - 2(8ir_n\bar{z} + \bar{z})\bar{x} + (8ir_n\bar{z} + \bar{z})^2 = (\bar{x} - (8r_n\bar{z} + \bar{z})) \geq 0.\end{aligned}$$

Hence, $\bar{z} = \frac{\bar{x}}{8ir_n + 1}$. This implies $\bar{z} = \left(\frac{x_1}{8ir_n + 1}, \frac{x_2}{8ir_n + 1}\right)$ and thus

$$K_{r_n}^i(\bar{x}) = \left(\frac{x_1}{8ir_n + 1}, \frac{x_2}{8ir_n + 1}\right). \quad (36)$$

Assume that $\lambda_{n,i} = \frac{1}{in + 2}$ and $S_{n,0}\bar{x} = \bar{x}$. Using (4) and (36), we have

$$S_{n,i}\bar{x} = \frac{1}{in + 2} \times \frac{1}{8ir_n + 1} S_{n,i-1}\bar{x} + \frac{in + 1}{in + 2} S_{n,i-1}\bar{x}, \text{ for } i = 1, 2, \dots, 100, \quad (37)$$

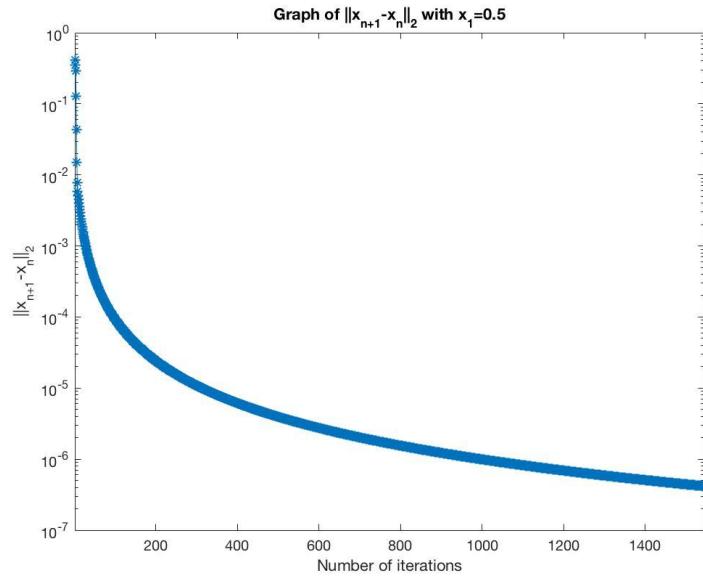
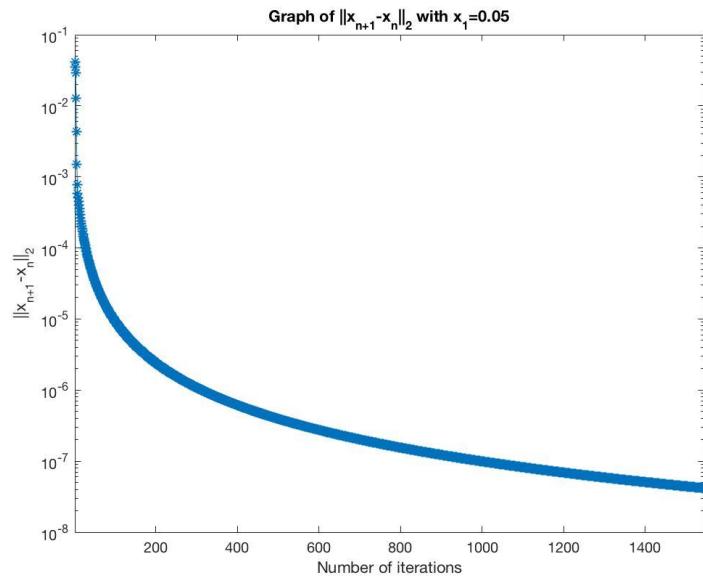
and $U_n = S_{n,100}$. Choosing $\alpha_n = \frac{1}{n+1}$, $\beta_n = \frac{8}{8n-1}$, $\gamma_n = \frac{16n-7}{8n^2+7n-1}$ and $r_n = \frac{n-1}{2n+1}$. Let $f(\bar{x}) = \frac{1}{10}\bar{x}$, then our iterative algorithm (33) becomes $\bar{x}_{n+1} = \frac{\bar{x}_n}{10(n+1)} + \frac{8\bar{x}_n}{8n-1} + \frac{16n-7}{8n^2+7n-1}U_n\bar{x}_n$, $\forall n \geq 1$. We make different choices of our initial value as follow:

(1) $\bar{x}_1 = -0.5$, (2) $\bar{x}_1 = 0.05$ and (3) $\bar{x}_1 = 0.25$. We also vary the stopping criterion as:

(a) $\frac{|\bar{x}_{n+1} - \bar{x}_n|}{|\bar{x}_2 - \bar{x}_1|} < 10^{-6}$ and (b) $\frac{|\bar{x}_{n+1} - \bar{x}_n|}{|\bar{x}_2 - \bar{x}_1|} < 10^{-12}$. Matlab version 2014a is used to obtain the graphs of errors against the number of iterations.

REFERENCES

[1] Y. Censor, A. Gibali, S. Reich, Algorithms for the split variational inequality problem, *Numer. Algorithms*, **59** (2012), 301-323.

FIGURE 2. Errors vs number of iterations for initial value **2**.FIGURE 3. Errors vs number of iterations for initial value **3**.

- [2] I. Cioranescu, *Geometry of Banach spaces, Duality Mappings and Nonlinear problems*, Mathematics and its Applications, 62. (Kluwer Academic Publishers Group, Dordrecht, 1990).
- [3] M. Chen, J. Song, S. Wang, New mixed equilibrium problems and iterative algorithms for fixed point problems in Banach space, *J. Appl. Math.*, 2014, Art 193749, 10 pp.

[4] Dadashi, V, Postolache, M, Hybrid proximal point algorithm and applications to equilibrium problems and convex programming, *J. Optim. Theory Appl.*, **174**(2017), No. 2, 518-529.

[5] Y. P. Fang, N. J. Huang, Variational-like inequalities with generalized monotone mappings in Banach spaces, *J. Optim. Theory. Appl.*, **118** (2003), No. 2, 327-338.

[6] X. Gao, Y. Guo, Strong convergence theorem of a modified iterative algorithm for Mixed equilibrium problems in Hilbert spaces, *J. Inequal. Appl.*, **2008**(2008) Art 454181, 23 pp.

[7] D. Goelven, D. Motreanu, Eigenvalue and dynamic problems variational and hemivariational inequalities, *Comm. Appl. Nonlinear Anal.*, **3** (1996), No. 4, 1-21.

[8] C. Izuchukwu, G.C. Ugwunnadi, O.T. Mewomo, A.R. Khan and M. Abbas, Proximal-type algorithms for split minimization problem in p-uniformly convex metric space, *Numer. Algorithms*, (2018). DOI: 10.1007/s11075-018-0633-9.

[9] L. O. Jolaoso, F. U. Ogbuisi, O. T. Mewomo, An iterative method for solving minimization, variational inequality and fixed point problems in reflexive Banach spaces, *Adv. Pure Appl. Math.*, **9**(3)(2017), 167 - 184.

[10] L.O. Jolaoso, K.O. Oyewole, C.C. Okeke, O.T. Mewomo, A unified algorithm for solving split generalized mixed equilibrium problem and fixed point of nonspreading mapping in Hilbert space, *Demonstr. Math.*, **51**, (2018), 211-232.

[11] J. S. Jung, Strong Convergence of composite iterative methods for equilibrium problems and fixed point problems, *Appl. Math. Comput.*, **213** (2009), 498-505.

[12] A. Kangtunyakarn, S. Suantai, A new mapping for finding common solutions of equilibrium problems and fixed points of finite family of nonexpansive mappings, *Nonlinear Anal.*, **71** (2009), No. 10, 4448-4460.

[13] F.U Ogbuisi and O.T. Mewomo, On split generalized mixed equilibrium problem and fixed point problems with no prior knowledge of operator norm, *J. Fixed point Theory and Appl.*, **19** (2017), No. 3, 2109-2128.

[14] C.C. Okeke, A.U. Bello, C. Izuchukwu, O.T. Mewomo, Split equality for monotone inclusion problem and fixed point problem in real Banach spaces, *Aust. J. Math. Anal. Appl.*, **14** (2018), No. 2, 1-20.

[15] C.C. Okeke and O.T. Mewomo, On split equilibrium problem for multi-valued mappings, *Ann. Acad. Rom. Sci. Ser. Math. App.*, **9** (2017), 2, 223-248.

[16] Y. Shehu and O.T. Mewomo, Further investigation into split common fixed point problem for demicontractive operators, *Acta Math. Sin. (Engl. Ser.)*, **32** (11) (2016), 1357-1376.

[17] A.H Siddiqi, Q.H. Ansari, and K.R Kazmi, On nonlinear variational inequalities, *Indian J. Pure Appl. Math.*, **25** (1994), 969-973.

[18] T. Suzuki, Strong convergence theorems for infinite families of nonexpansive mappings in general Banach spaces, *Fixed points Theory. Appl.*, **1** (2005), 103-123.

[19] W. Takahashi, *Nonlinear Functional Analysis Fixed Point Theory Appl.*, Yokohama Publishers, Yokohama, Japan, 2000.

[20] R. U. Verma, Nonlinear variational inequalities on convex subsets of Banach spaces, *Appl. Math. Lett.*, **10** (1997), No. 4, 2527.

[21] S. H. Wang, G. Marino, F. H. Wang, Strong convergence theorems for a generalized equilibrium problem with a relaxed monotone mapping and a countable family of nonexpansive mappings in a Hilbert space, *Fixed Point Theory Appl.*, **2010**, 22pp.

[22] H.K Xu, An iterative approach to quadratic optimization, *J. Optim. Theory Appl.*, **116** (2003), No. 3, 659-678.

[23] H.K. Xu, Viscosity approximation methods for nonexpansive mappings. *J. Math. Anal. Appl.*, **298** (2004), No. 1, 279-291.

[24] Yao, Y, Leng, L, Postolache, M, Zheng, X, Mann-type iteration method for solving the split common fixed point problem, *J. Nonlinear Convex Anal.*, **18** (2017), No. 5, 875-882.

[25] Yao, Y, Postolache, M, Iterative methods for pseudomonotone variational inequalities and fixed point problems, *J. Optim. Theory Appl.*, **155**(2012), No. 1, 273-287.

[26] S. Yang, Zero theorems of accretive operators in reflexive Banach spaces, *J. Nonlinear Funct. Anal.*, 2013 (2013), Article ID 2.