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ON APPROXIMATION OF COMMON SOLUTION OF FINITE FAMILY

OF MIXED EQUILIBRIUM PROBLEMS INVOLVING µ− α RELAXED

MONOTONE MAPPING IN A BANACH SPACE

by O.K. Oyewole1, L.O. Jolaoso2, C. Izuchukwu3 and O.T. Mewomo4

In this paper, we introduce a U-mapping for finite family of mixed equilibrium
problems involving µ − α relaxed monotone operator. We prove a strong convergence

theorem for finding the common solution of finite family of these equilibrium problems

in a uniformly smooth and strictly convex Banach space which also enjoys Kadec-Klee
property. Furthermore, we give some applications of our result and numerical example

to show its relevance. Our results improve and generalize many other recent results in

literature.
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1. INTRODUCTION

Let X be a real Banach space with the dual space X∗ and C be a nonempty, closed and
convex subset of X. A nonlinear mapping T : X → X is said to be a contraction, if there
exists a constant θ ∈ (0, 1) such that

||Tx− Ty|| ≤ θ||x− y||, ∀ x, y ∈ X.
If θ = 1, then T is said to be nonexpansive. We denote the set of fixed points of T by F (T ).
Let F : C × C → R be a bifunction, where R is the set of real numbers. The equilibrium
problem with respect to F and C in the sense of Blum and Oettli (1994) is to find x ∈ C
such that

F (x, y) ≥ 0, ∀y ∈ C. (1)

In this paper, we assume that the bifuncton F satisfies the following conditions:
(F1) F (x, x) = 0, for all x ∈ C; (F2) F is monotone; i.e. F (x, y) + F (y, x) ≤ 0, for all
x, y ∈ C; (F3) for all x, y ∈ C, lim

t→0
F (tz + (1− t)x, y) ≤ F (x, y); (F4) for all x ∈ C, F (x, .)

is convex and lower semicontinuous.
Fang and Huang [5] introduced the concept of relaxed µ− α monotone mapping for solving
a mixed equilibrium problem. A mapping A : C → X∗ is said to be relaxed µ−α monotone
[17], if there exists a mapping µ : C×C → X and a function α : X → R with α(tz) = tpα(z)
for all t > 0 and z ∈ X, where p > 1 such that

〈Ax−Ay, µ(x, y)〉 ≥ α(x− y).
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In particular, if µ(x, y) = x − y, ∀x, y ∈ C and α(z) = k||z||p, where p > 1 and k > 1 are
constants, then A is called p monotone [7, 20]. Fang and Huang [5] proved that under some
appropriate conditions, the following variational inequality is solvable; find x ∈ C such that

〈Ax, µ(y, x)〉+ φ(y)− φ(x) ≥ 0, ∀y ∈ C, (1)

where φ : C → R ∪ {∞} is a nonlinear mapping. They also proved that the following
inequality is equivalent to the variational inequality (1) : find x ∈ C such that

〈Ay, µ(y, x)〉+ φ(y)− φ(x) ≥ α(y − x), ∀y ∈ C. (2)

The mixed equilibrium problem (see e.g [21]) is to find x ∈ C such that

F (x, y) + 〈Ax, µ(y, x)〉+ φ(y)− φ(x) ≥ 0, ∀y ∈ C. (3)

We denote the solution set of mixed equilibrium problem (3) by EP (F,A). It is easily
observed that if F (x, y) = 0, ∀x, y ∈ C, then, the mixed equilibrium problem (3) reduces to
the variational inequality problem (1). Also if A = 0 and φ = 0, then EP (F,A) coincides
with EP (F ). Equilibrium and mixed equilibrium problems have been widely used to for
solve variational inequalities, fixed point and optimization problems. (see, [25]). There are
several iterative methods in literature proposed for finding solutions of fixed point and mixed
equilibrium problems with relaxed monotone mappings in various settings, see ([1, 3, 4, 6,
8, 9, 10, 11, 12, 13, 16, 24, 25]).
In this paper, motivated by the research going on in this direction, we study a strong
convergence theorem for finding the common solution of finite family of mixed equilibrium
problems with µ − α relaxed monotone mapping in the frame work of a uniformly smooth
and strictly convex Banach space which also enjoys the Kadec-Klee property. First, we
introduce the following mapping: Let C be a nonempty closed convex subset of a smooth
and strictly convex Banach space X. For i = 1, 2, . . . , N , let Fi : C × C → R be a finite
family of bifunctions, Ai : C → X∗ be a finite family of µ hemicontinuous and relaxed
µ−α monotone mappings and φi : C → R∪ {+∞} be a finite family of proper, convex and
semicontinuous functions. For i = 1, 2, . . . , N and {rn} ⊂ (0,∞), the resolvent operator on
Fi is defined in [3] as
Ki
rn(x) := {z ∈ X : Fi(z, y)+〈Aiz, µ(y, z)〉+φi(y)−φi(z)+ 1

rn
〈y−z, Jz−Jx〉 ≥ 0. ∀ y ∈ X}.

However it has been proved in [3] that Ki
rn is single valued for each i = 1, 2 . . . , N. (See

Lemma 2.5). We define the mapping Un : C → C as

Sn,1 = λn,1K
1
rn + (1− λn,1)I,

Sn,2 = λn,2K
2
rnSn,1 + (1− λn,2)Sn,1,

...

Sn,N−1 = λn,N−1K
N−1
rn Sn,N−2 + (1− λn,N−1)Sn,N−2,

Un = Sn,N = λn,NK
N
rnSn,N−1 + (1− λn,N )Sn,N−1,

(4)

where 0 ≤ λn,i ≤ 1, for i = 1, 2, . . . , N. In addition, we present the following algorithm for
finding a common solution of finite family of mixed equilibrium problems involving a relaxed
monotone operator: For arbitrary x1 ∈ C, let {xn} be generated by

xn+1 = αnf(xn) + βnxn + γnUnxn, ∀n ≥ 1, (5)

where Un is as defined in (4) and f a contraction mapping from C to C. Furthermore,
we obtain a strong convergence theorem under some appropriate conditions of the proposed
iterative algorithm in a uniformly smooth and strictly convex Banach space which also enjoys
Kadec-Klee property. Our results improve the results of [3, 21] and many other results in
literature.



On approximation of common solution of finite family of equilibrium problems 21

2. PRELIMINARIES

In this section, we give some basic definitions and results which will be used in the sequel.
Let X be a real Banach space and B = {x ∈ X : ||x|| = 1}. X is said to be strictly convex,
if for any x, y ∈ B,

x 6= y implies

∣∣∣∣∣∣∣∣x+ y

2

∣∣∣∣∣∣∣∣ < 1.

Define a function δ : [0, 2]→ [0, 1] called the modulus of convexity of X as follows:

δ(ε) = inf

{
1−

∣∣∣∣∣∣∣∣x+ y

2

∣∣∣∣∣∣∣∣ : x, y ∈ X, ||x|| = ||y|| = 1, ||x− y|| ≥ ε
}
.

Then X is uniformly convex if and only if δ(ε) > 0 for all ε ∈ (0, 2]. It is known that a
uniformly convex Banach space is reflexive and strictly convex. Recall that X has the Kadec-
Klee property if for any sequence {xn} ⊂ X and x ∈ X with xn ⇀ x and ||xn|| → ||x||,
then ||xn − x|| → 0 as n → ∞. It is well known that if X is uniformly convex, then X
enjoys the Kadec-Klee property. For more on the Kadec-Klee property (see [2, 19]). X is

said to be smooth if the limit lim
t→0

||x+ty||−||x||
t exists for every x, y ∈ B. It is also said to

be uniformly smooth if the limit is attained uniformly for x, y ∈ B. The generalized duality
mapping Jp : X → 2X

∗
is defined by

Jp(x) = {x∗ ∈ X∗ : 〈x, x∗〉 = ||x||p, ||x∗|| = ||x||p−1, x ∈ X}.

For p = 2, we have the normalized duality pairing denoted by J . It is well known that if X
is uniformly smooth, then J is uniformly norm-to-norm continuous on each bounded subset
of X (see [19]).

In order to prove our main result, we will need the following lemmas.

Lemma 2.1. [26] Let X be a real Banach space. Then for all x, y ∈ X and j(x + y) ∈
J(x+ y), the following inequality holds:

||x+ y||2 ≤ ||x||2 + 2〈y, j(x+ y)〉. (6)

Lemma 2.2. [18] Let {xn} and {yn} be bounded sequences in a Banach space X such that

xn+1 = βnxn + (1− βn)yn, n ≥ 0,

where {βn} is a sequence in (0, 1) such that 0 < lim inf
n→∞

βn ≤ lim inf
n→∞

βn < 1. Assume that

lim sup
n→∞

(||yn+1 − yn|| − ||xn+1 − xn||) ≤ 0. Then lim
n→∞

||yn − xn|| = 0.

Lemma 2.3. [22] Let {αn} be a sequence of nonnegative real numbers satisfying the condi-
tion

αn+1 ≤ (1− γn)αn + γnσn, n ≥ 0,

where {γn} ⊂ (0, 1) and {σn} is a sequence in R such that
i. lim
n→∞

γn = 0 and
∑∞
n=0 γn =∞, ii. either lim

n→∞
sup σn ≤ 0 or∑∞

n=0 |γnσn| <∞. Then, lim
n→∞

αn = 0.

Lemma 2.4. [23] Let X be a uniformly smooth Banach space and C be a nonepmty, closed
and convex subset of X. Let U : C → C be a nonexpansive mapping such that F (U) 6= ∅ and
f : C → C be a contraction mapping. For each t in (0, 1), define zt = tf(zt) + (1 − t)Uzt,
then {zt} converges strongly to the unique fixed point q of U as t→ 0, where q = PF (U)f(q)
and PF (U) : C → F (U) is the sunny nonexpansive retraction from C to F (U).
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Lemma 2.5. [3] Let X be a uniformly smooth, strictly convex Banach space with the dual
space X∗ and let C be a nonempty, closed and convex bounded subset of X. Let A : C → X∗

be a µ-hemicontinuous and relaxed µ − α monotone mapping, let F : C × C → R be a
bifunction satisfying (F1)− (F4) and φ : C → R ∪ {+∞}. Let r > 0 and define a mapping
Kr : X → C as follows:
Kr(x) = {z ∈ C : F (z, y) + 〈Az, µ(y, z)〉+ φ(y)− φ(z) + 1

r 〈y − z, Jz − Jx〉 ≥ 0, ∀ y ∈ C},
for all x ∈ X. Assume that
(i) µ(x, y)+µ(y, x) = 0, ∀ x, y ∈ C; (ii) for any fixed u, v ∈ C, the mapping x 7→ 〈Av, µ(x, u)〉
is convex and lower semicontinuous; (iii) α : X → R is weakly lower semicontinuous; (iv)
for any x, y ∈ C, α(x− y) + α(y − x) ≥ 0;
(v) 〈A(tz1 + (1− t)z2), µ(y, tz1 + (1− t)z2)〉 ≥ t〈Az1, µ(y, z1)〉+ (1− t)〈Az2, µ(y, z2)〉 for any
z1, z2, y ∈ C and t ∈ [0, 1]. Then the following hold:
(1) Kr is single-valued; (2) Kr is a firmly nonexpansive type mapping;
(3) F (Kr) = EP (F,A); (4) EP (F,A) is closed and convex.

Let C be a nonempty, closed and convex subset of a uniformly smooth and strictly convex
Banach space X which also enjoys the Kadec-Klee property. Let µ : C × C → X be a
nonlinear mapping. For i = 1, 2, . . . , N, let Fi : C ×C → R be a finite family of bifunctions,
Ai : C → X∗ be a finite family of µ hemicontinuous relaxed µ− α monotone mappings and
φi : C → R∪{+∞} be a finite family of proper, convex and lower semicontinuous functions.
Let λ1, λ2, . . . , λN be real numbers such that 0 ≤ λi ≤ 1 for all i = 1, 2 . . . , N. We define a
mapping U : C → C as follows:
S1 = λ1K

1
r + (1− λ1)I, S2 = λ2K

2
rS1 + (1− λ2)S1, · · ·,

SN−1 = λN−1K
N−1
r SN−2 + (1− λN−1)SN−2,

U = SN = λNK
N
r SN−1 + (1− λN )SN−1. (7)

The mapping so defined above is called U -mapping generated by K1
r ,K

2
r , . . . ,K

N
r and

λ1, λ2, . . . , λN .

3. MAIN RESULT

In this section, we present our main results.

Lemma 3.1. Let X be a uniformly smooth, strictly convex Banach space with the dual space
X∗ and C be a nonempty, closed and convex subset of X. Let A : C → X∗ be a relaxed µ−α
monotone mapping, F : C ×C → R be a bifunction satisfying (F2) and φ : C → R∪{+∞}.
Assume that
(i) µ(x, y) + µ(y, x) = 0 ∀ x, y ∈ C; (ii) for any x, y ∈ C, α(x− y) + α(y − x) ≥ 0.
For s > 0 and r > 0, ||Ksx−Krx|| ≤

∣∣1− r
s

∣∣||x−Ksx||.

Proof. Let z = Kr(x) and w = Ks(x), from the definition of Kr, we have

F (z, y) + 〈Az, µ(y, z)〉+ φ(y)− φ(z) +
1

r
〈y − z, Jz − Jx〉 ≥ 0 ∀ y ∈ C.

In particular, we have

F (z, w) + 〈Az, µ(w, z)〉+ φ(w)− φ(z) +
1

r
〈w − z, Jz − Jx〉 ≥ 0. (8)

Similarly, we obtain

F (w, z) + 〈Aw, µ(z, w)〉+ φ(z)− φ(w) +
1

s
〈z − w, Jw − Jx〉 ≥ 0. (9)
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Adding equation (8) and (9), we obtain from (i) that

F (z, w) + F (w, z) + 〈Az −Aw, µ(w, z)〉+
1

r
〈w − z, Jz − Jx〉

+
1

s
〈z − w, Jw − Jx〉 ≥ 0. (10)

Using condition (F2), we have

1

r
〈w − z, Jz − Jx〉+

1

s
〈z − w, Jw − Jx〉

≥ 〈Aw −Az, µ(w, z)〉 ≥ α(w − z) (11)

interchanging the roles of w and z in (11), we obtain

1

s
〈z − w, Jw − Jx〉+

1

r
〈w − z, Jz − Jx〉 ≥ α(z − w). (12)

Adding (11) and (12), and using condition (ii), we have 1
r 〈w−z, Jz−Jx〉+

1
s 〈z−w, Jw−Jx〉 ≥

0, which implies that 〈w − z, Jz − Jx〉 − 〈w − z, rJw−rJxs 〉 ≥ 0. That is, 〈w − z, rJw−rJxs −
(Jz − Jx)〉 ≤ 0, which implies

〈w − z, rJw − rJx− sJz + sJw − sJw + sJx

s
〉 ≤ 0. (13)

This further implies that ||w − z||2 ≤ 〈w − z, r−ss (Jx− Jw)〉, from which we obtain that

||w − z|| ≤
∣∣1− r

s

∣∣||x− w||. (14)

That is,

||Ksx−Krx|| ≤
∣∣1− r

s

∣∣||x−Ksx||. (15)

�

Proposition 3.1. Let C be a nonempty closed convex subset of a uniformly smooth and
strictly convex Banach space X. Let µ : C × C → X be a nonlinear mapping. For i =
1, 2 . . . , N, let Fi : C × C → R be a finite family of bifunctions, Ai : C → X∗ be a finite
family of µ-hemicontinuous relaxed µ − α monotone mapping and φi : C → R ∪ {+∞} be
a finite family of proper convex lower semicontinuous mapping. Let λ1, λn, . . . , λN be real
numbers such that 0 ≤ λi ≤ 1 for all i = 1, 2, . . . , N. Let U be the U -mapping defined in (7).
Then S1, S2, . . . , SN−1 and U are nonexpansive. Also, F (U) = ∩Ni=1EP (Fi, Ai).

Proof. By the nonexpansivity of Ki
r, for i = 1, 2, . . . , N, it follows that S1, S2, . . . ,

SN = U are nonexpansive mappings. Since ∩Ni=1F (Ki
r) = ∩Ni=1EP (Fi, Ai), then it suffices

to show that F (U) = ∩Ni=1F (Ki
r). To show that F (U) = ∩Ni=1F (Ki

r), we have to show that
∩Ni=1F (Ki

r) ⊆ F (U) and F (U) ⊆ ∩Ni=1F (Ki
r). It is easily observed that the first part is

obvious. Next we show that F (U) ⊆ ∩Ni=1F (Ki
r). Let a ∈ F (U) and b ∈ ∩Ni=1F (Ki

r). Using
the definition of U, we have

||a− b|| = ||Ua− b|| = ||λNKN
r SN−1a+ (1− λN )SN−1a− b||

≤ λN ||KN
r SN−1a− b||+ (1− λN )||SN−1a− b|| ≤ ||SN−1a− b||

= ||(λN−1K
N−1
r SN−2a− b) + (1− λN−1(SN−2a− b||

≤ λN−1||KN−1
r SN−2a− b||+ (1− λN−1)||SN−2a− b||

≤ ||SN−2a− b||
...

≤ ||S1a− b|| = ||λ1K
1
ra+ (1− λ1)a− b||

≤ λ1||K1
ra− b||+ (1− λ1)||a− b|| ≤ ||a− b||.
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It follows that ||a− b|| = ||λ1(K1
ra− b) + (1−λ1)(a− b)|| and ||a− b|| = λ1||K1

ra− b||+ (1−
λ1)||a−b||, that is ||a−b|| = ||K1

ra−b||. Using the strict convexity of X, we obtain K1
ra = a,

which implies that a ∈ F (K1
r ). Hence, S1a = a. Again from (16) and the fact that S1a = a,

we have ||a−b|| = ||λ2(K2
rS1a−b)+(1−λ2)(a−b) and ||a−b|| = λ2||K2

ra−b||+(1−λ2)||a−b||,
that is, ||a − b|| = ||K2

ra − b||. Using the strict convexity of X, we obtain K2
ra = a, which

implies that a ∈ F (K2
r ). From which we obtain S2a = a. Proceeding the same way, we

obtain a = K1
ra = K2

ra = · · · = KN−1
r a and a = S1a = S2a = · · · = SN−1a. Since

a ∈ F (U) = F (SN ) and SN−1a = a, then a = λNK
N
r a + (1 − λN )a. This implies that

a = KN
r a. Hence F (U) ⊂ F (Ki

r) for i = 1, 2, . . . , N and thus F (U) ⊂ ∩Ni=1F (Ki
r). Therefore,

F (U) = ∩Ni=1F (Ki
r) = ∩Ni=1EP (Fi, Ai). The proof is complete. �

Proposition 3.2. Let X be a uniformly smooth and strictly convex Banach space. For
i = 1, 2, . . . , N and n ∈ N, let Un be a U -mapping defined by (4). Let {xn} be a bounded
sequence in X, then the following inequality is satisfied.

||Un+1xn − Unxn|| ≤ ||xn+1 − xn||+MN

N∑
i=1

∣∣λn+1,i − λn,i
∣∣. (16)

Proof. Using the fact that Ki
rn and Sn,i for i = 1, 2 . . . , N are nonexpansive with Lemma

3.1, we obtain the following estimates:

||Un+1xn − Unxn|| = ||λn+1,NK
N
rn+1

Sn+1,N−1xn

+ (1− λn+1,N )Sn+1,N−1xn − [λn,NK
N
rnSn,N−1xn + (1− λn,N )Sn,N−1xn]||

= ||λn+1,N (KN
rn+1

Sn+1,N−1xn −KN
rn+1

Sn,N−1xn) + (Sn+1,N−1xn − Sn,N−1xn)

+ λn+1,N (Sn,N−1xn − Sn+1,N−1xn) + (λn,N − λn+1,N )(Sn,N−1xn) + λn+1,N (KN
rn+1

Sn,N−1xn

−KN
rnSn,N−1xn) + (λn+1,N − λn,N )(KN

rnSn,N−1xn)||
≤ λn+1,N ||KN

rn+1
Sn+1,N−1xn −KN

rn+1
Sn,N−1xn||+ (1− λn+1,N )||Sn+1,N−1xn − Sn,N−1xn||+

|λn+1,N − λn,N |.||KN
rnSn,N−1xn − Sn,N−1xn||+ λn+1,N ||KN

rn+1
Sn,N−1xn −KN

rnSn,N−1xn||
≤ λn+1,N ||Sn+1,N−1xn − Sn,N−1xn||+ (1− λn+1,N )||Sn+1,N−1xn − Sn,N−1xn||+
|λn+1,N − λn,N |.||KN

rnSn,N−1xn − Sn,N−1xn||+ λn+1,N ||KN
rn+1

Sn,N−1xn −KN
rnSn,N−1xn||

≤ ||Sn+1,N−1xn − Sn,N−1xn||+ |λn+1,N − λn,N |.||KN
rnSn,N−1xn − Sn,N−1xn||+

||KN
rn+1

Sn,N−1xn −KN
rnSn,N−1xn||

≤ ||Sn+1,N−1xn − Sn,N−1xn||+ |λn+1,N − λn,N |.||KN
rnSn,N−1xn − Sn,N−1xn||

+

∣∣∣∣1− rn+1

rn

∣∣∣∣||Sn,N−1xn||,

which implies that

||Un+1xn − Unxn|| ≤ ||Sn+1,N−1xn − Sn,N−1xn||+M1

(
|λn+1,N − λn,N |,

∣∣∣∣1− rn+1

rn

∣∣∣∣),
(17)
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where M1 is a constant such that M1 ≥ max{||KN
rnSn,N−1xn − Sn,N−1xn||, ||Sn,N−1xn||}.

Furthermore,

||Sn+1,N−1xn − Sn,N−1xn|| = ||λn+1,N−1K
N−1
rn+1

Sn+1,N−2xn + (1− λn+1,N−1)Sn+1,N−2xn

− [λn,N−1K
N−1
rn Sn,N−2xn + (1− λn,N−1)Sn,N−2xn]||

= ||λn+1,N−1(KN−1
rn+1

Sn+1,N−2xn −KN−1
rn+1

Sn,N−2xn) + (1− λn+1,N−1)(Sn+1,N−2xn − Sn,N−2xn)

+ (λn+1,N−1 − λn,N−1)(KN−1
rn Sn,N−2xn − Sn,N−2xn)

+ λn+1,N−1(KN−1
rn+1

Sn+1,N−2xn −KN−1
rn Sn,N−2xn)||

Thus

||Sn+1,N−1xn−Sn,N−1xn||
≤ ||Sn+1,N−2xn − Sn,N−2xn||+ |λn+1,N−1 − λn,N−1|.||KN−1

rn Sn,N−2xn − Sn,N−2xn||

+

∣∣∣∣1− rn+1

rn

∣∣∣∣||Sn,N−2xn||. (18)

Substituting (18) into (17), we obtain

||Un+1xn − Unxn|| ≤M1

(∣∣∣∣1− rn+1

rn

∣∣∣∣+ |λn+1,N − λn,N |
)

+ ||Sn+1,N−2xn − Sn,N−2xn||+

|λn+1,N−1 − λn,N−1|.||KN−1
rn Sn,N−2xn − Sn,N−2xn||+

∣∣∣∣1− rn+1

rn

∣∣∣∣||Sn,N−2xn||

≤M2

(
2

∣∣∣∣1− rn+1

rn

∣∣∣∣+ |λn+1,N − λn,N |+ |λn+1,N−1 − λn,N−1|
)

+ ||Sn+1,N−2xn − Sn,N−2xn||,

(19)

where M2 ≥ max{M1, ||KN−1
rn Sn,N−2xn − Sn,N−2xn||, ||Sn,N−2xn||}.

Proceeding the same way as above, we obtain

||Un+1xn − Unxn|| ≤MN−1

(
(N − 1)

∣∣∣∣1− rn+1

rn

∣∣∣∣+

N−1∑
i=2

|λn+1,i − λn,i|
)

+ ||Sn+1,1xn − Sn,1xn||,

where MN−1 ≥ max{MN−2, ||K2
rnSn,1xn − Sn,1xn||, ||Sn,1xn||}. Hence,

||Un+1xn − Unxn|| ≤ MN−1

(
(N − 1)

∣∣∣∣1− rn+1

rn

∣∣∣∣+

N−1∑
i=2

|λn+1,i − λn,i|
)

+ ||Sn+1,1xn − Sn+1,1||

= ||λn+1,1K
1
r + (1− λn+1,1)xn − λn,1K1

r − (1− λn,1)xn||

+ MN−1

N−1∑
i=2

|λn+1,i − λn,i|

= |λn+1,1 − λn,1.||K1
rxn − xn||+MN−1

N−1∑
i=2

|λn+1,i − λn,i|

= ||λn+1,1K
1
rn+1

xn + (1− λn+1,1xn)− λn,1K1
rnxn − (1− λn,1)xn||+

MN−1

(
(N − 1)

∣∣∣∣1− rn+1

rn

∣∣∣∣+

N−1∑
i=2

|λn+1,i − λn,i|
)

≤ MN

(
N

∣∣∣∣1− rn+1

rn

∣∣∣∣+

N∑
i=1

|λn+1,i − λn,i|
)
, (20)
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where MN > max{MN−1, ||K1
rxn − xn||, ||xn||}. Therefore,

||Un+1xn+1 − Unxn|| ≤ ||Un+1xn+1 − Un+1xn||+ ||Un+1xn − Unxn||

≤ ||xn+1 − xn||+MN

(
N

∣∣∣∣1− rn+1

rn

∣∣∣∣+

N∑
i=1

|λn+1,i − λn,i|
)
.

�

Proposition 3.3. Let C be a nonempty, closed and convex subset of a uniformly smooth
and strictly convex Banach space X. Let µ : C × C → X be a nonlinear mapping. For
i = 1, 2 . . . , N, let Fi : C × C → R be a finite family of bifunctions, let Ai : C → X∗ be a
relaxed µ−α monotone mappings. Let φi : C → R∪{∞} be a finite family of proper convex
lower semicontinuous mapping. For i = 1, 2 . . . N , let λn,i and λi be sequences in [0, 1] such
that λn,i → λi as n → ∞ and {rn} be a sequence in (0,∞) such that rn → r as n → ∞
with r > 0. Suppose U is the mapping generated by K1

r ,K
2
r , . . . ,K

N
r and λ1, λ2, . . . , λN .

For n ∈ N, let Un be the mapping generated by K1
rn ,K

2
rn , . . . ,K

N
rn and λn,1, λn,2, . . . , λn,N .

Assuming the conditions of Lemma 3.1 are satisfied, then for each x ∈ C, we have

lim
n→∞

||Unx− Ux|| = 0. (21)

Proof. Let x ∈ C, using Lemma 3.1, we have

||Sn,1x− S1x|| = ||λn,1K1
rnx+ (1− λn,1)x− λ1K

1
rx− (1− λ1)x||

= ||λn,1(K1
rn −K

1
rx) + (λn,1 − λ1)(K1

rx− x)||

≤
∣∣∣∣1− rn

r

∣∣∣∣||K1
rx− x||+ |λn,1 − λ1|.||K1

rx− x||

≤
(∣∣∣∣1− rn

r

∣∣∣∣+ |λn,1 − λ1|
)
||K1

rx− x||.

Using the same argument as above, for each i = 1, 2, . . . , N, we obtain

||Sn,Nx− SNx|| = ||λn,NKN
rnSn,N−1x+ (1− λn,N )x− λNKN

r SN−1x− (1− λN )x||
≤ λn,N ||KN

rnSn,N−1x−KN
rnSN−1x||+ λn,N ||KN

rnSN−1x−KN
r SN−1x||+

|λn,1 − λ1|.||KN
r SN−1x− x||

≤ ||Sn,N−1x− SN−1x||+
∣∣∣∣1− rn

r

∣∣∣∣||KN
r SN−1x− SN−1x||

+ |λn,1 − λ1|.||KN
r SN−1x− x||.

It follows that

||Unx− Ux|| = ||Sn,Nx− SNx|| ≤ ||Sn,1x− S1x||+
N∑
i=1

|λn,i − λi|.||Ki
rSi−1x− Si−1x||

≤
(∣∣∣∣1− rn

r

∣∣∣∣+ |λn,1 − λ1|
)
||K1

rx− x||+
N∑
i=1

|λn,i − λi|.||Ki
rSi−1x− Si−1x||.

Since rn → r and λn,i → λi as n→∞, then lim
n→∞

||Unx− Ux|| = 0. �

Theorem 3.1. Let C be a nonempty closed and convex subset of a uniformly smooth and
strictly convex Banach space X which also enjoys the Kadec-Klee property. Let µ : C ×
C → X be a nonlinear mapping. For i = 1, 2, . . . , N , Fi : C × C → R be a finite family
of bifunctions satisfying conditions (F1) − (F4), Ai : C → X∗ be a finite family of µ-
hemicontinuous relaxed µ− α monotone mapping and φi : C → R ∪ {∞} be a finite family
of proper convex lower semicontinuous functions. Let K1

r ,K
2
r , . . . ,K

N
r be a finite family
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of resolvent operators for mixed equilibrium problems with relaxed µ − α mappings on C
such that ∩Ni=1F (Ki

r) 6= ∅. Let f : C → C be a contraction with constant θ ∈ (0, 1), let
λn,1, λn,2, . . . , λn,N be real numbers satisfying 0 ≤, λn,i ≤ 1 such that lim

n→∞
|λn,i − λi| = 0

for i = 1, 2, . . . , N with 0 ≤ λi ≤ 0. For n ∈ N, let Un be a U -mapping generated by
K1
rn ,K

2
rn , . . .K

N
rn and λn,1, λn,2, . . . , λn,N . Suppose {αn}, {βn} and {γn} are sequences in

(0, 1) with αn + βn + γn = 1, r is a positive parameter and {rn} is a sequence in (0,∞) .
Assume that the conditions (i)-(v) of Lemma 2.5 and the following conditions are satisfied:
(i) lim

n→∞
αn = 0,

∑∞
n=1 αn =∞; (ii) 0 < lim inf

n→∞
βn ≤ lim sup

n→∞
βn < 1;

(iii) rn → r, n→∞; (iv) lim inf
n→∞

rn > 0, lim
n→∞

rn+1

rn
= 1, lim

n→∞
|λn+1,i − λn,i| = 0.

For a given x1 ∈ C, let {xn} be the sequence defined iteratively by

xn+1 = αnf(xn) + βnxn + γnUnxn, ∀n ≥ 1. (22)

Then, {xn} converges to PΓf(q), where Γ = ∩Ni=1EP (Fi, Ai) and PΓ is the sunny nonex-
pansive retraction of C onto Γ.

Proof. The proof of this theorem will be divided into several steps.
Step 1: {xn} is bounded. To see this, fix q ∈ Γ. We have,

||xn+1 − q|| = ||αnf(xn) + βnxn + γnUnxn − q||
= ||αn(f(xn)− q) + βn(xn − q) + γn(Unxn − q)||
= ||αn(f(xn)− f(q) + f(q)− q + βn(xn − q) + γn(Unxn − q)||
≤ αn||f(xn)− f(q)||+ αn||f(q)− q||+ βn||xn − q||+ γn||Unxn − q||
≤ θαn||xn − q||+ αn||f(q)− q||+ βn||xn − q||+ γn||xn − q||
≤ θαn||xn − q||+ (1− αn)||xn − q||+ αn||f(q)− q||
≤ [1− αn(1− θ)]||xn − q||+ αn||f(q)− q||

≤ max
{
||xn − q||,

1

1− θ
||f(q)− q||

}
...

≤ max
{
||x1 − q||,

1

1− θ
||f(q)− q||

}
, ∀n ≥ 1. (23)

Therefore, the sequences {xn} and {Unxn} are bounded.
Step 2: We show that

lim
n→∞

||xn+1 − xn|| = 0 (24)

Putting yn =
αnf(xn) + γnUnxn

1− βn
, then (22) becomes xn+1 = βnxn + (1− βn)yn. Since Un

is nonexpansive, {xn} and {Unxn} are bounded, we get that {yn} is also bounded.
Now,

yn+1 − yn =
αn+1f(xn+1) + γn+1Un+1xn+1

1− βn+1
− αnf(xn) + γnUnxn

1− βn

=

(
αn+1

1− βn+1

)
(f(xn+1)− f(xn)) +

(
αn+1

1− βn+1
− αn

1− βn

)
(f(xn)− Unxn)

+

(
1− αn+1

1− βn+1

)
(Un+1xn+1 − Unxn),
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hence, using Proposition 3.2 and the fact that θ ∈ (0, 1), we have

||yn+1 − yn|| ≤
∣∣∣∣ αn+1

1− βn+1

∣∣∣∣||f(xn+1)− f(xn)||+
∣∣∣∣1− αn+1

1− βn+1

∣∣∣∣||Un+1xn+1 − Unxn||

+

∣∣∣∣ αn+1

1− βn+1
− αn

1− βn

∣∣∣∣||f(xn)− Unxn||

≤ θαn+1

1− βn+1
||xn+1 − xn||+

∣∣∣∣1− αn+1

1− βn+1

∣∣∣∣||xn+1 − xn||

+MN

(
N

∣∣∣∣1− rn+1

rn

∣∣∣∣+

N∑
i=1

|λn+1,i − λn,i|
)

+

∣∣∣∣ αn+1

1− βn+1
− αn

1− βn

∣∣∣∣||f(xn)− Unxn||

≤ ||xn+1 − xn||+
∣∣∣∣ αn+1

1− βn+1
− αn

1− βn

∣∣∣∣||f(xn)− Unxn||

+MN

(
N

∣∣∣∣1− rn+1

rn

∣∣∣∣+

N∑
i=1

|λn+1,i − λn,i|
)
.

This together with αn → 0, rn+1

rn
= 1 and |λn+1,i − λn,i| → 0 as n→∞ implies that

lim sup
n→∞

(||yn+1 − yn|| − ||xn+1 − xn||) ≤ 0.

Hence, by Lemma 2.2, we obtain ||yn − xn|| → 0 as n→∞.
Consequently, lim

n→∞
||xn+1 − xn|| = lim

n→∞
(1− βn)||yn − xn|| = 0.

Step 3: Next, we show that

lim
n→∞

||xn − Uxn|| = 0. (25)

We note that,

||xn+1 − Unxn|| = ||αnf(xn) + βnxn + γnUnxn − Unxn||
≤ αn||f(xn)− Unxn||+ βn||xn − Unxn||
≤ αn||f(xn)− Unxn||+ βn||xn+1 − xn+1 + xn − Unxn||

≤ αn
1− βn

||f(xn)− Unxn||+
βn

1− βn
||xn − xn+1||.

From conditions (1),(2) and step 2, we have that lim
n→∞

||xn+1 − Unxn|| = 0.

Also,

||xn − Unxn|| ≤ ||xn − xn+1||+ ||xn+1 − Unxn|| → 0, as n→∞. (26)

Note also that,

||xn − Uxn|| ≤ ||xn − Unxn||+ ||Unxn − Uxn||
≤ ||xn − Unxn||+ sup

x∈C
||Unx− Ux||. (27)

Therefore from (26) and Proposition 3.3, we have that lim
n→∞

||xn − Uxn|| = 0.

Step 4: We show that

lim
n→∞

〈f(q)− q, j(q − xn)〉 ≤ 0. (28)
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For any t ∈ (0, 1), set zt = tf(zt) + (1− t)Uzt. Then we have,

||zt − xn||2 = ||t(f(zt)− xn) + (1− t)(Uzt − xn)||2

≤ (1− t)2||Uzt − xn||2 + 2t〈f(zt)− xn, j(zt − xn)〉
≤ (1− t)2

[
||Uzt − Uxn||+ ||Uxn − xn||

]2
+2t〈f(zt)− zt, j(zt − xn)〉+ 2t〈zt − xn, j(zt − xn)〉

≤ (1− t)2
[
||zt − xn||+ ||Uxn − xn||

]2
+ 2t||zt − xn||2 + 2t〈f(zt)− zt, j(zt − xn)〉,

≤ (1− t)2||zt − xn||2 + gn(t) + 2t〈f(zt)− zt, j(zt − xn)〉+ 2t||zt − xn||,

where

gn(t) = (1− t)2(2||zt − xn||+ ||xn − Unxn||)||xn − Unxn|| → 0 as n→∞. (29)

It follows that

〈zt − f(zt), j(zt − xn) ≤ t

2
||zt − xn||2 +

1

2t
gn(t). (30)

Letting n→∞ in (30) and noting (29), we obtain 〈zt−f(zt), j(zt−xn)〉 ≤ t
2M

∗, whereM∗ =

lim sup
n→∞

||zt − xn||2. Clearly
t

2
M∗ → 0 as t → 0 from which we obtain lim sup

t→0
lim sup
n→∞

〈zt −

f(zt), j(zt − xn)〉 ≤ 0. Since j is norm-to-norm continuous on bounded subset of X and by
Lemma 2.4, zt → q, where q = PΓf(q), we have ||j(zt − xn)− j(q − xn)|| → 0.
Observe that

∣∣∣∣〈zt − f(zt), j(zt − xn)〉 − 〈q − f(zt), j(q − xn)〉
∣∣∣∣

≤
∣∣∣∣〈zt − q, j(zt − xn)〉+ 〈q − f(zt), j(zt − xn)〉 − 〈q − f(zt), j(q − xn)〉

∣∣∣∣
≤ 〈zt − xn, j(zt − xn)〉+ 〈q − f(zt), j(zt − xn)− j(q − xn)〉
≤ ||zt − q||.||zt − xn||+ ||q − f(zt)||.||j(zt − xn)− j(q − xn)|| → 0,

as n→∞. Therefore,

〈zt − f(zt), j(zt − xn)〉 → 〈q − f(q), j(q − xn)〉. (31)

Hence,

lim
n→∞

〈q − f(q), j(q − xn)〉 ≤ 0. (32)
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Step 5: Finally, we show that xn → q as n→∞. From Lemma 2.1 and step 1, we have

||xn+1 − q||2 = ||αnf(xn) + βnxn + γnUnxn − q||2

= ||αn(f(xn)− q) + βn(xn − q) + γn(Unxn − q)||2

≤ ||βn(xn − q) + γn(Unxn − q)||2 + 2αn〈f(xn)− q, j(xn+1 − q)〉
≤ {βn||xn − q||+ γn||xn − q||}2 + 2αn〈f(xn)− f(q), j(xn+1 − q)〉

+2αn〈f(q)− q, j(xn+1 − q)〉
≤ (1− α)2||xn − q||2 + 2θαn(||xn − q||.||xn+1 − q||) + 2αn〈f(q)− q, j(xn+1 − q)〉
≤ (1− α)2||xn − q||2 + θαn||xn − q||+ θαn||xn+1 − q||+ 2αn〈f(q)− q, j(xn+1 − q)〉

≤ (1− αn)2 + θαn
1− θαn

||xn − q||2 +
2αn

1− θαn
〈f(q)− q, j(xn+1 − q)〉

=
1− 2αn + θαn

1− θαn
||xn − q||2 +

α2
n

1− θαn
||xn − q||2 +

2αn
1− θαn

〈f(q)− q, j(xn+1 − q)〉

≤
{

1− 2(1− θ)αn
1− θαn

}
||xn − q||2 +

2(1− θ)αn
1− θαn

{
M∗ ∗ αn

2(1− θαn)

+
1

1− θ
〈f(q)− q, j(xn+1 − q)〉

}
.

Observe that the conditions of Lemma 2.3 are satisfied with γn = 2(1−θ)αn

1−θαn
and σn ={

M∗∗αn

2(1−θαn) + 1
1−θ 〈f(q)−q, j(xn+1−q)〉

}
. By Lemma 2.3 and (32), it follows that ||xn−q|| → 0

as n→ 0. Therefore {xn} converges strongly to q = PΓf(q). This completes the proof. �

We obtain the following as consequences of Theorem 3.1.
Suppose Ai = 0, in Theorem 3.1, the mixed equilibrium problem with µ − α monotone
mapping reduces to the following classical mixed equilibrium problem: Fi(z, y) + φi(y) −
φi(z) ≥ 0. We thus obtain the following result:

Corollary 3.1. Let C be a nonempty closed and convex subset of a uniformly smooth and
strictly convex Banach space X which also enjoys the Kadec-Klee property. Let µ : C×C →
X be a nonlinear mapping. For i = 1, 2, . . . , N , let Fi : C × C → R be a finite family
of bifunctions satisfying conditions (F1) − (F4), and let φi : C → R ∪ {∞} be a finite
family of proper convex lower semicontinuous functions. Let K1

r ,K
2
r , . . . ,K

N
r be a finite

family of resolvent operators for mixed equilibrium problems on C such that ∩Ni=1F (Ki
r) 6= ∅.

Let f : C → C be a contraction with constant θ ∈ (0, 1), let λn,1, λn,2, . . . , λn,N be real
numbers satisfying 0 ≤, λn,i ≤ 1 such that lim

n→∞
|λn,i − λi| = 0 for all i = 1, 2, . . . , N. For

all n ∈ N, let Un be a U -mapping generated by K1
rn ,K

2
rn , . . .K

N
rn and λn,1, λn,2, . . . , λn,N .

Suppose {αn}, {βn} and {γn} are sequences in (0, 1) with αn + βn + γn = 1, r is a positive
parameter and {rn} is a sequence in (0,∞). Assume that the conditions of Lemma 2.5 and
the following conditions are satisfied:
(i) lim

n→∞
αn = 0,

∑∞
n=1 αn =∞; (ii) 0 < lim inf

n→∞
βn ≤ lim sup

n→∞
βn < 1;

(iii) rn → r, n→∞; (iv) lim inf
n→∞

rn > 0, lim
n→∞

rn+1

rn
= 1, lim

n→∞
|λn+1,i − λn,i| = 0.

For a given x1 ∈ C, let {xn} be the sequence defined iteratively by

xn+1 = αf(xn) + βnxn + γnUnxn, ∀n ≥ 1. (33)

Then {xn} converges to PΓf(q), where Γ = ∩Ni=1EPFi, PΓ is the sunny nonexpansive re-
traction of C onto Γ.
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For Fi(x, y) = 0, in Theorem 3.1, the mixed equilibrium problem reduces to the following
variational inequality

〈Aiz, µ(y, z)〉+ φi(y)− φi(z) ≥ 0.

We obtain a result which solves the finite family of variational inequalities as follows:

Corollary 3.2. Let C be a nonempty closed and convex subset of a uniformly smooth and
strictly convex Banach space X which also enjoys the Kadec-Klee property. Let µ : C ×
C → R be a nonlinear mapping. For i = 1, 2, . . . , N , let Ai : C → X∗ be a finite family
of µ-hemicontinuous relaxed µ − α monotone mapping and let φi : C → R be a finite
family of proper convex lower semicontinuous functions. Let K1

r ,K
2
r , . . . ,K

N
r be a finite

family of resolvent operators for variational inequalities with relaxed µ − α mappings on C
such that ∩Ni=1F (Ki

r) 6= ∅. Let f : C → C be a contraction with constant θ ∈ (0, 1), let
λn,1, λn,2, . . . , λn,N be real numbers satisfying 0 ≤, λn,i ≤ 1 such that lim

n→∞
|λn,i−λi| = 0 for

all i = 1, 2, . . . , N. For all n ∈ N, let Un be a U -mapping generated by K1
rn ,K

2
rn , . . .K

N
rn and

λn,1, λn,2, . . . , λn,N . Suppose {αn}, {βn} and {γn} are sequences in (0, 1) with αn+βn+γn =
1, r is a positive parameter and {rn} is a sequence in (0,∞). Assume that the conditions of
Lemma 2.5 and the following conditions are satisfied:
(i) lim

n→∞
αn = 0,

∑∞
n=1 αn =∞; (ii) 0 < lim inf

n→∞
βn ≤ lim sup

n→∞
βn < 1;

(iii) rn → r, n→∞; (iv) lim inf
n→∞

rn > 0, lim
n→∞

rn+1

rn
= 1, lim

n→∞
|λn+1,i − λn,i| = 0.

For a given x1 ∈ C, let {xn} be the sequence defined iteratively by

xn+1 = αnf(xn) + βnxn + γnUnxn, ∀n ≥ 1. (34)

Then {xn} converges to PΓf(q), where Γ = ∩Ni=1V IAi, PΓ is the sunny nonexpansive retrac-
tion of C onto Γ.

4. NUERICAL EXAMPLE

Let X = R×R and C = [−1, 1]× [−1, 1]. Define a mapping A : C → R×R by A(x1, x2) =
(x1, x2) for all (x1, x2) ∈ C, α : R× R → R by α((x1, x2)) = 3x2

1 + 3x2
2 for all (x1, x2) ∈ X

and µ : C × C → R × R by µ((x1, x2), (y1, y2)) = (2(x1 − y1), 2(x2 − y2)) for all (x1, x2) ×
(y1, y2) ∈ C × C. Then the mapping A is a relaxed µ − α monotone mapping. Indeed, for
all x = (x1, x2), y = (y1, y2) ∈ C, we have

〈Ax−Ay, µ(x, y)〉 = ((x1 − y1), (x2 − y2)), (2(x1 − y1), 2(x2 − y2))

= 4[(x1 − y1)2 + (x2 − y2)2]

≥ 3[(x1 − y1)2 + (x2 − y2)2] = α(x− y). (35)

Hence, A is a relaxed µ − α monotone mapping. Let z̄ = (z1, z2), ȳ = (y1, y2) and x̄ =
(x1, x2). Define Fi(z̄, ȳ) = −3iz̄2 + 2iz̄ȳ + iȳ2, Ai(z̄) = iz̄ and φi(z̄) = iz̄2. Lemma 2.5
ensures that there exist x̄ ∈ R2 such that

Fi(z̄, ȳ) + 〈Aiz̄, µ(ȳ, z̄)〉+ φi(ȳ)− φi(z̄) +
1

rn
〈ȳ − z̄, z̄ − x̄〉 ≥ 0 ∀ ȳ ∈ R2

⇐⇒ −3iz̄2 + 2iz̄ȳ + iȳ2 + iz̄(2(ȳ − z̄)) + (iȳ2)− (iz̄2) +
1

rn
(ȳ − z̄)× (z̄ − x̄) ≥ 0

⇐⇒ −3iz̄2 + 2iz̄ȳ + iȳ2 + 2iȳz̄ − 2iz̄2 + (iȳ2)− (iz̄2) +
1

rn
(ȳz̄ − ȳx̄− z̄2 + z̄x̄) ≥ 0

⇐⇒ −3irnz̄
2 + 2rniz̄ȳ + irnȳ

2 + 2rniȳz̄ − 2rniz̄2 + rniȳ
2 − rniz̄2 + ȳz̄ − ȳx̄− z̄2 + z̄x̄ ≥ 0

⇐⇒ 2irnȳ
2 + (4irnz̄ + z̄ − x̄)ȳ + z̄x̄− z̄2 − 6irnz̄

2 ≥ 0.

Let H(ȳ) = 2irnȳ
2 + (4irnz̄+ z̄− x̄)ȳ+ z̄x̄− z̄2− 6irnz̄

2, then H(ȳ) is a quadratic equation
in ȳ.



32 O.K. Oyewole, L.O. Jolaoso, C. Izuchukwu, O.T. Mewomo

Figure 1. Errors vs number of iterations for initial value 1.

With a = 2irn, b = 4irnz̄ + z̄ − x̄ and c = −6irnz̄
2 − z̄2 + z̄x̄. We obtain the discriminant

∆ of H(ȳ) as follows:

∆ = b2 − 4ac = (4irnz̄ + z̄ − x̄)2 − 4(2irn)(−6irnz̄
2 − z̄2 + z̄x̄)

= x̄2 + 64i2r2
nz̄

2 + 16irnz̄ + z̄2 − 16irnx̄z̄ − 2x̄z̄ = x̄2 + (8irnz̄ + z̄)2 − 2x̄z̄ − 16irnx̄z̄

= x̄2 − 2(8irnz̄ + z̄)x̄+ (8irnz̄ + z̄)2 = (x̄− (8rnz̄ + z̄)) ≥ 0.

Hence, z̄ =
x̄

8irn + 1
. This implies z̄ =

(
x1

8irn + 1
,

x2

8ir + n− 1

)
and thus

Ki
rn(x̄) =

(
x1

8irn + 1
,

x2

8irn + 1

)
. (36)

Assume that λn,i =
1

in+ 2
and Sn,0x̄ = x̄. Using (4) and (36), we have

Sn,ix̄ =
1

in+ 2
× 1

8irn + 1
Sn,i−1x̄+

in+ 1

in+ 2
Sn,i−1x̄, for i = 1, 2, . . . , 100, (37)

and Un = Sn,100. Choosing αn = 1
n+1 , βn = 8

8n−1 , γn = 16n−7
8n2+7n−1 and rn = n−1

2n+1 .

Let f(x̄) = 1
10 x̄, then our iterative algorithm (33) becomes x̄n+1 = x̄n

10(n+1) + 8x̄n

8n−1 +
16n−7

8n2+7n−1Unx̄n, ∀ n ≥ 1. We make different choices of our initial value as follow:

(1) x̄1 = −0.5, (2) x̄1 = 0.05 and (3) x̄1 = 0.25. We also vary the stopping criterion as:

(a)
|x̄n+1 − x̄n|
|x̄2 − x̄1|

< 10−6 and (b)
|x̄n+1 − x̄n|
|x̄2 − x̄1|

< 10−12. Matlab version 2014a is used to

obtain the graphs of errors against the number of iterations.
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