

Fe₃O₄ AND CoFe₂O₄ NANOPARTICLES STABILIZED IN SODIUM ALGINATE POLYMER

Cristina Ileana COVALIU¹, Cristian MATEI², Adelina IANCULESCU³, Ioana JITARU⁴, Daniela BERGER⁵

Nanoparticulele de magnetă și ferită de cobalt se utilizează în imagistica de rezonanță magnetică, hipertermie, transportul magnetic al medicamentelor etc. În această lucrare se prezintă o metodă simplă și economică de sinteză a nanocompozitelor pe bază de Fe₃O₄ și CoFe₂O₄ stabilizate în alginat de sodiu polimeric. Nanoparticulele de Fe₃O₄ și CoFe₂O₄ au fost sintetizate prin hidroliză forțată și respectiv metoda combustiei. Proprietățile structurale și morfologice au fost investigate prin difracție de raze X, microscopie electronică de baleaj și granulometrie. Interacțiile dintre polimer și nanoparticulele de Fe₃O₄ și CoFe₂O₄ au fost studiate prin spectroscopie în infraroșu. Compozitia compozitelor a fost determinată prin spectroscopie de raze X cu dispersia energiei.

Magnetite and cobalt ferrite nanoparticles have been widely used in magnetic resonance imaging, hyperthermia, magnetic drug delivery etc. In this paper, we report a facile, low cost route to prepare nanocomposites containing Fe₃O₄ or CoFe₂O₄ nanoparticles stabilized in sodium alginate polymer. Fe₃O₄ and CoFe₂O₄ nanoparticles were prepared by forced hydrolysis and combustion method, respectively. The structural and morphological properties have been investigated by X-ray diffraction, scanning electron microscopy and dynamic light scattering measurements. The interactions between sodium alginate polymer and Fe₃O₄ or CoFe₂O₄ nanoparticles have been studied by infrared spectroscopy. The composition of composites was determined using energy dispersive X-ray spectroscopy.

Keywords: magnetite, cobalt ferrite, sodium alginate, composite

1. Introduction

Superparamagnetic nanoparticles are very interesting materials due to their applications in magnetic resonance imaging (MRI) [1-5], tissue repairing [4], detoxification of biological fluids [6], hyperthermia [7], drug delivery [8, 9] and

¹ PhD student, Departament of Inorganic Chemistry, University POLITEHNICA of Bucharest, Romania

² Reader, Departament of Inorganic Chemistry, University POLITEHNICA of Bucharest, Romania

³ Prof., Departament of SIMONA, University POLITEHNICA of Bucharest, Romania

⁴ Prof., Departament of Inorganic Chemistry, University POLITEHNICA of Bucharest, Romania

⁵ Reader, Departament of Inorganic Chemistry, University POLITEHNICA of Bucharest, Romania; corresponding author: Daniela Berger, e-mail: danaberger01@yahoo.com

cell separation [9]. For biomedical applications, the nanoparticles should be non-toxic and biocompatible and for these reasons it is necessary to coat the nanoparticles with a biocompatible polymer.

The research in the field of magnetic resonance imaging contrast agents has been focused on the development of superparamagnetic nanoparticles, water insoluble, like magnetite (Fe_3O_4), maghemite ($\gamma\text{Fe}_2\text{O}_3$) or other ferrites. There are two commercially available iron oxide-based drugs for the clinical treatment of liver tumors: Ferumoxides (Endorem®) and Ferucarbotran (Resovist®), which contain iron oxide nanoparticles coated with dextran and carboxydextran, respectively [1].

Another polysaccharide-type polymer studied for this purpose is sodium alginate that is extracted from brown algae and is currently used in the food, cosmetics, pharmaceutical industry due to its nontoxicity and biocompatibility properties. Sodium alginate (ANa) is a linear polymer composed of α -L-guluronate (G) and β -D-mannuronate (M) units in varying proportion (Fig. 1).

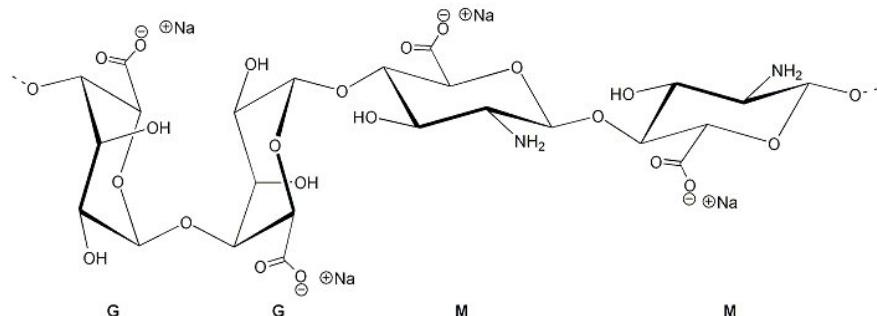
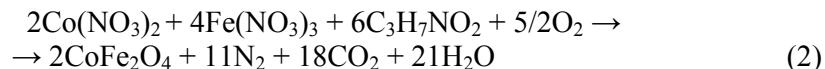


Fig.1. Structure of sodium alginate polymer



In this paper we present our results on the obtaining and characterization of Fe_3O_4 and CoFe_2O_4 nanoparticles coated with sodium alginate.

2. Experimental

The composites have been obtained via a two steps procedure. First, the oxide nanoparticles have been obtained and then they have been coated with sodium alginate polymer.

Synthesis of Fe_3O_4 and CoFe_2O_4 nanoparticles. Fe_3O_4 nanoparticles were prepared by forced hydrolysis [10] using FeCl_2 aqueous solution and $\gamma\text{-Fe}_2\text{O}_3$ (Sigma Aldrich, particles size < 50 nm) at a molar ratio, Fe^{2+} : Fe^{3+} , 1:2, according to equation (1). The reaction mixture was mechanical stirred for one week at 100 °C in 100 mL constant water volume. CoFe_2O_4 nanoparticles were obtained by combustion method using corresponding metallic nitrates and α -alanine in fuel

rich conditions (20% excess of α -alanine). α -Alanine was added to the 0.2 M aqueous solution of cobalt and iron nitrates. The reaction mixture was heated under magnetic stirring to evaporate the water and then for combustion. A fine black powder, named as-prepared powder was resulted in the combustion reaction (Eq. 2), which was annealed at different temperatures to obtain CoFe₂O₄ single-phase compound.

Synthesis of Fe₃O₄-ANa and CoFe₂O₄-ANa nanocomposites. The Fe₃O₄-ANa and CoFe₂O₄-ANa composites were obtained by adding the oxide nanopowder (20% wt. theoretical content of nanoparticles in the composite) to 1% aqueous solution of sodium alginate polymer. The suspension was homogenized by mechanical stirring for 48 h at room temperature and the uncoated nanoparticles were separated by centrifugation. The water from polymeric suspension was removed by rotary evaporation.

The oxides and composites were characterized by X-ray diffraction (XRD) carried out on a Rigaku Miniflex II diffractometer with CuK α radiation, FTIR spectroscopy performed on Bruker Tensor 27 spectrometer and scanning electron microscopy coupled with energy dispersive X-ray spectroscopy (SEM-EDX) using a Philips Quanta Inspect F with field emission gun scanning electron microscope. Dynamic light scattering measurements (DLS) were performed on Zetasizer Malvern instruments at 25 °C in water, after 30 minutes dispersion in a ultrasounds bath.

3. Results and discussions

Fe₃O₄ and CoFe₂O₄ powders obtained in different conditions were analyzed by XRD. The patterns of CoFe₂O₄ as-prepared powder have proved a multi-phase compound formation containing CoFe₂O₄, Fe_{0.294}O and Co₃O₄ crystalline phases (Fig. 1). In order to obtain CoFe₂O₄ single-phase compound, the as-prepared powder was annealed at different temperatures (Fig. 2). The average crystallite size calculated for cobalt ferrite samples annealed for 3h at 400 °C, 500 °C and 600 °C were 21 nm, 33 nm and 39 nm, respectively. XRD patterns have proved for all samples, the formation of CoFe₂O₄ with inverse spinel structure and cubic symmetry (ICDD 22-1086). The XRD results for CoFe₂O₄-ANa composite show only the main peaks of CoFe₂O₄ (Fig. 3a). For CoFe₂O₄-ANa composite obtaining, it has been used cobalt ferrite sample annealed at 500 °C.

XRD data of Fe_3O_4 synthesized by forced hydrolysis show the formation of Fe_3O_4 single-phase compound with inverse spinel structure (ICDD 82-1533) with an average crystallite size of 41 nm, as calculated by PDXL software. Unlike CoFe_2O_4 -ANa, the XRD patterns for Fe_3O_4 -ANa sample present the characteristic peaks of Fe_3O_4 besides other unknown crystalline phase (Fig. 3b), probably an induced crystallization and ordered structure formation of the polymer (seen also in SEM investigation).

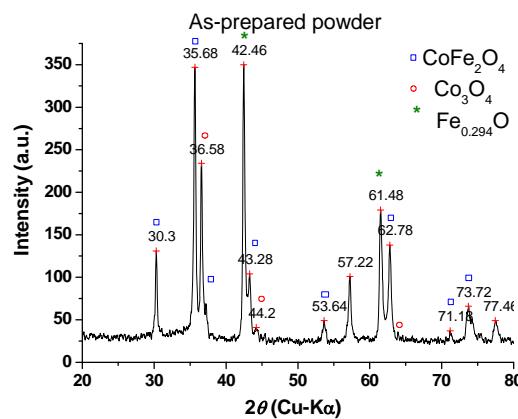


Fig.1. XRD patterns of CoFe_2O_4 as-prepared powder

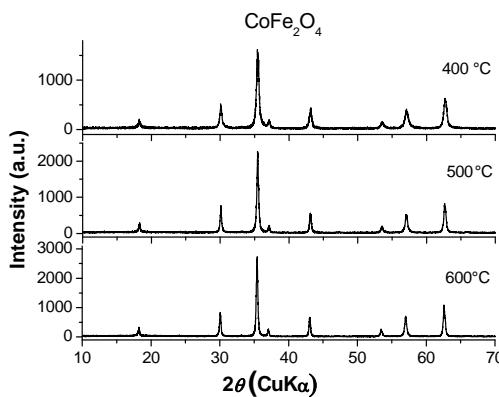


Fig. 2. XRD patterns of CoFe_2O_4 annealed at different temperatures.

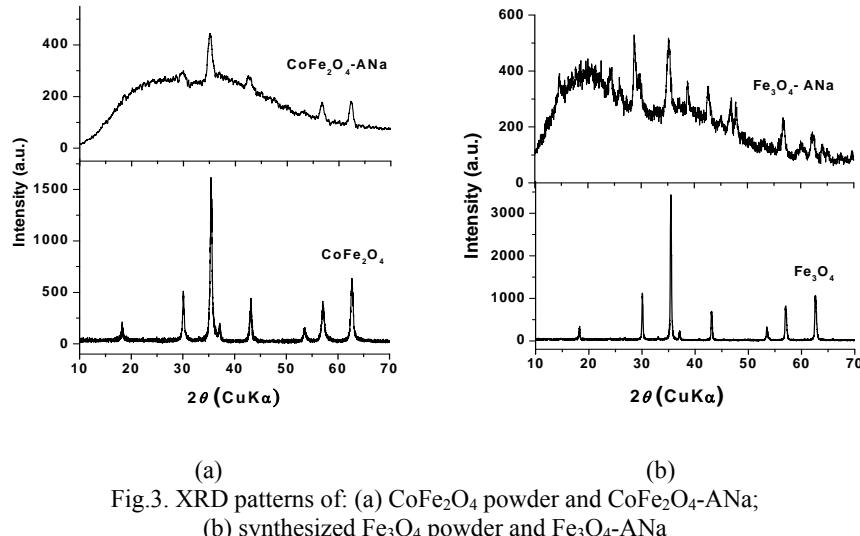


Fig.3. XRD patterns of: (a) CoFe₂O₄ powder and CoFe₂O₄-ANa;
 (b) synthesized Fe₃O₄ powder and Fe₃O₄-ANa

Table 1.
The main FTIR frequencies of sodium alginate (ANa), Fe₃O₄, CoFe₂O₄, Fe₃O₄-ANa and CoFe₂O₄-ANa composites

ANa [cm ⁻¹]	Assignments	Fe ₃ O ₄ [cm ⁻¹]	CoFe ₂ O ₄ [cm ⁻¹]	Fe ₃ O ₄ -ANa [cm ⁻¹]	CoFe ₂ O ₄ -ANa [cm ⁻¹]	Assignments
		576	571	578	561	vM(III)O ₄
		585	581	586	579	vM(II)O ₄
1457	v _s (CO)			1457	1414	v _s (CO)
1653	v _{as} (CO) ⁻			1653	1609	v _{as} (CO)

The binding of Fe₃O₄ and CoFe₂O₄ to sodium alginate polymer was analyzed by FTIR spectroscopy. The binding sites are the carboxyl groups of sodium alginate that could react with iron or cobalt ions. [11] The vibration bands, which appear in 385-450 cm⁻¹ frequency range, correspond to the metal-oxygen bond in octahedral sites, whereas the vibration bands in the range of 550-600 cm⁻¹ are assigned to the metal – oxygen bond vibration in the tetrahedral sites [12]. Also, in the case of CoFe₂O₄, Co²⁺ and Fe³⁺ ions exhibit preference for both octahedral and tetrahedral sites [11]. The FTIR spectrum of sodium alginate coated CoFe₂O₄ nanoparticles presents both asymmetric and symmetric C=O stretching vibration modes of carboxyl groups shifted to lower frequencies in comparison with sodium alginate polymer. Also, the FTIR spectrum presents spinel oxide characteristic bands shifted toward lower frequencies than for CoFe₂O₄ nanopowder (Table 1) that could be explained by the formation of covalent bond between metal ions from spinel structure and the carboxyl groups of sodium alginate. It is more difficult to understand how Fe₃O₄ nanoparticles are

stabilized in sodium alginate. This could be because of the lower content of magnetite particles in composite (Table 2). In the case of CoFe_2O_4 , no differences have been noticed between the main vibrations of carboxyl groups of sodium alginate and Fe_3O_4 -ANa. The FTIR spectrum of Fe_3O_4 -ANa shows Fe_3O_4 characteristic vibrations (Table 2). Some physical interactions between Fe_3O_4 and the polymer could be assumed.

The morphology and the chemical composition of the composite samples have been investigated by SEM-EDX. In the case of Fe_3O_4 -ANa, the SEM investigation shows that the polymer has ordered domains. The spherical, 75-90 nm sized, magnetite particles form some agglomerates with irregular shapes. The magnetite particles are coated by sodium alginate.

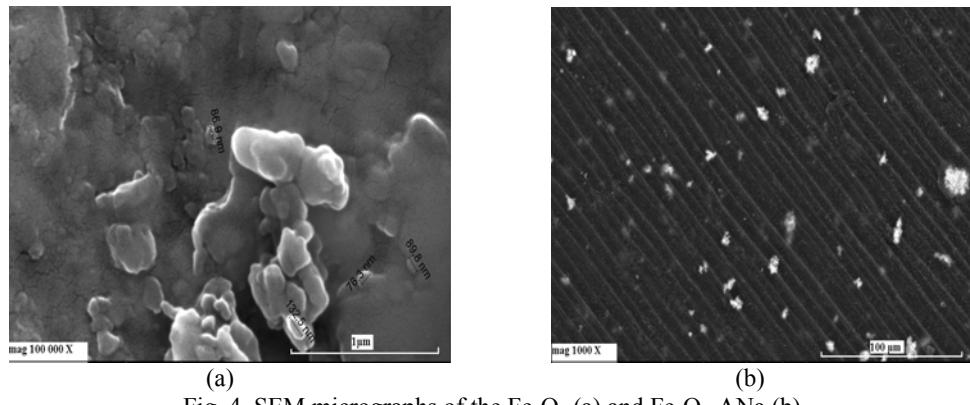


Fig. 4. SEM micrographs of the Fe_3O_4 (a) and Fe_3O_4 -ANa (b)

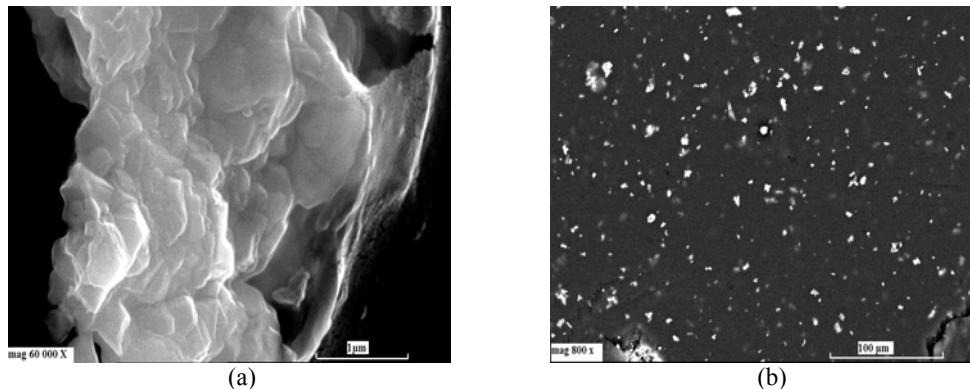


Fig. 5. SEM micrographs of CoFe_2O_4 (a) and CoFe_2O_4 -ANa composite (b)

CoFe_2O_4 nanoparticles have a better dispersion in sodium alginate polymer than Fe_3O_4 . CoFe_2O_4 nanoparticles form agglomerates with irregular shape, but, mainly, polyhedral agglomerates could be noticed in the SEM investigation (Fig. 5a). In aqueous suspensions, the average hydrodynamic size of oxide powders

(Fig. 6a,c) measured by DLS technique is smaller than for the corresponding composites (Fig. 6b,d), suggesting that the polymer surrounds the oxide particles. The hydrodynamic size of Fe₃O₄-ANa composite is around 500 nm (Fig. 6b), higher than 250 nm (Fig. 6d), the average value found for CoFe₂O₄ – ANa composite.

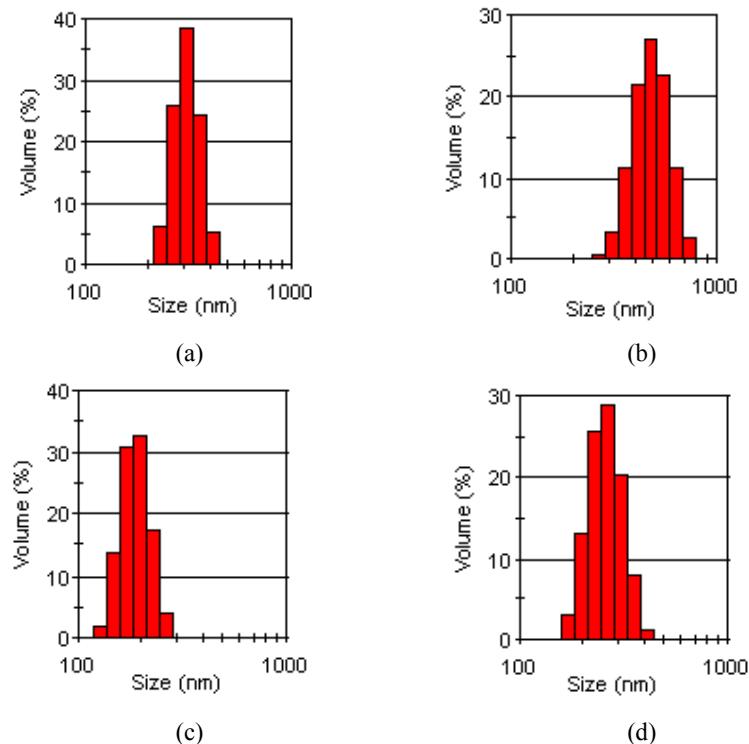


Fig. 6. Histograms of particle sizes distribution determined by DLS technique of Fe₃O₄ (a) and Fe₃O₄-ANa composite (b); CoFe₂O₄ (c) and CoFe₂O₄-ANa composite (d)

Table 2.

EDX analysis of Fe₃O₄-ANa and CoFe₂O₄-ANa composites

Composite composition	Elemental composition (atomic %)				
	Fe	Co	Na	C	O
CoFe ₂ O ₄ -ANa	3.85	1.93	35.69	1.34	55.74
Content of CoFe ₂ O ₄ in composite	~ 4.0 % wt.				
Fe ₃ O ₄ -ANa	6.44	-	38.86	0.85	53.44
Content of Fe ₃ O ₄ in composite	~ 2.9 % wt.				

Table 2 lists the average chemical composition of sodium alginate-based composite films determined by EDX analysis. The content of trapped CoFe_2O_4 nanoparticles is higher than for Fe_3O_4 , probably due to the smaller size of CoFe_2O_4 particles than of Fe_3O_4 . Only the fraction of small particles was trapped in the sodium alginate polymer.

4. Conclusions

A facile, low cost route to prepare nanocomposites containing oxide nanoparticles, Fe_3O_4 or CoFe_2O_4 , stabilized by sodium alginate polymer has been proposed in this paper. Both prepared composites, Fe_3O_4 -ANA and CoFe_2O_4 -ANA are magnetic materials and present an antioxidant capacity against the oxidative stress [13] expressed as Trolox equivalent antioxidant capacity (TEAC) [14] and these results will be published elsewhere.

Acknowledgment

This work was partially supported by the Romanian grant PNCDI II no. 62-053/2008 and CNCSIS grant TD 244/2007.

R E F E R E N C E S

- [1] C. Corot, P. Robert, J.M. Idée, M. Port, *Advanced Drug Delivery Reviews*, **58**, 2006, pp. 1471-1504
- [2] D.L. Zhao, X.W. Zeng, Q.S. Xia, J.T. Tang, *J. Alloy Comp.*, **496**, 2009, pp. 215-218
- [3] J. Lu, S. Ma, J. Sun, C. Xia, C. Liu, Z. Wang, X. Zhao, F. Gao, Q. Gong, X. Shuai, H. Ai, Z. Gu, *Biomaterials*, **30**, 2009, pp. 2919-2928
- [4] D. Bahadur, J. Giri, *Biomaterials and Magnetism*, **28**, 2003, pp. 639-656
- [5] C. Alexiou, W. Arnold, R.J. Klein, F.G. Parak, P. Hulin, C. Bergemann, W. Erhardt, S. Wagenpfeil, A.S. Lubbe, *Cancer Res.* **60**, 2000, pp. 6641-6648
- [6] A.K. Gupta, M. Gupta, *Biomaterials*, **26**, 2005, pp. 3995-4021
- [7] Y.X. Wang, S.M. Hussain, G.P. Krestin, *Eur. Radiol.*, **11**, 2001, pp. 2319-2331
- [8] A. Sutton, G. E. Harrison, T. E. Carr, D. Barltrop, *Br.J.Radiol.* **44**, 1971, pp. 523-530
- [9] F.Y. Cheng, C.H. Su, Y. S. Yang, C.S. Yeh, C.Y. Tsaib, C.L. Wu, M.T. Wu, D.B. Shie, *Biomaterials*, **26**, 2005, pp. 729-738
- [10] E. Matijevic, *Monodispersed Colloids: Art and Science*, Langmuir, **2**, 1986, pp. 12-20
- [11] H.L. Ma, X.Qi, Y.Maitani, T.Nagai, *Int. J. Pharmaceutics*, **333**, 2007, pp. 177-186
- [12] N. Kasapoğlu, A. Baykal, Y. Köseoğlu, M.S. Toprak, *Spira Materialia*, **57**, 2007, pp. 441-444
- [13] A. Meghea, M.S. Drăgoiu, C. Neagu, R. Olinescu, M. Giurginca, *U.P.B. Sci. Bull., Series B*, **65**, 2003, pp. 3-8
- [14] R. Re, N. Pellegrini, A. Proleggente, A. Pannala, M. Yang, C. Rice-Evans, *Free Rad. Biol. Med.*, **26**, 1999, pp. 1231-1237.