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ON KARMAN MODEL FOR COANDA EJECTOR WITH
INCOMPRESSIBLE FLOW

Corneliu BERBENTE', Sorin DINEA?

Modelul Kdrmdn pentru ejectorul Coanda cu regim de curgere incompresibil
este utilizat §i completat in vederea precizarii parametrilor care influenteaza
factorul de amplificare a fortei prin ejectie si limitele intre care pot sd varieze acesti
parametri. In acest scop, se stabilesc formule analitice de calcul. Se dau valori
numerice pentru mai multe cazuri de interes teoretic §i practic.

Este pus in evidentd un nou parametru, /\, de care depinde existenta
solutiilor modelului. Acest parametru, pe lingd gradul de neuniformitate a

vitezelor curgerii secundare in sectiunea initiald, considerat de Kdrmdn,
contine §i raportul ariilor ocupate de jet §i curgerea secundara initialda, precum §i
raportul dintre viteza maximd, la contact cu jetul, si viteza medie indusa. Acest ultim
raport este evidentiat ca parametru important pentru stabilirea domeniilor de valori
de interes practic. Se extinde profilul de viteze in sectiunea de plecare, §i se da o
metodad unitard de tratare simultand a curgerilor pland §i axial-simetricad.

Kirmdn model for Coanda ejector with incompressible regime is used and
completed in order to point out the main parameters that influence the augmentation
factor of thrust by ejection and the limits allowed for the variation of these
parameters. To this aim one obtains analytical formulas of calculation. Numerical
values for several cases of theoretical and practical interest are presented.

A new parameter A, giving the existence conditions of the model is put in
evidence. This parameter, besides the degree of flow nonuniformity in the section
where the mixing starts considered by Karman, also contains the ratio of jet and
ejector surface areas, as well as the ratio between the maximal and the average
velocities of the secondary flow, induced by mixing. This last ratio is proved to be an
important parameter for the domain of practical values. The velocities profile in the
starting section is extended and a unitary method to solve together both 2D and axi-
symmetrical flows is given.

1. Introduction

The Coanda effect regarding the jet flow evolution near solid curved walls
was subject of many experimental and theoretical studies [1-6], some of them
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done by Coanda himself [5]. A number of these studies were related to the wings
of low aspect ratio [4]; others considered the ejector force augmentation [1;2;5].

In order to explain the mechanism of force augmentation obtained by
Coanda ejector (an open tube with curved walls at entrance, where a jet is injected
-fig.1), Karman [1] considers an initial section 1, where one supposes that the
mixing of jet with the air inside the tube starts, and section 2 at the ejector exit,
where the the velocity is totally uniform and the atmospheric pressure is achieved.
The chanel is considered of constant area, and the wall friction is neglected. The
flow is incompressible.

Defining the force augmentation coefficient ¢ as the ratio:

2 +A 2

¢:pu2 (a2 ):(1+£j(u_2) , (11)
pU%a a)\U

where U is the jet velocity, constant on area a, and u, the exit velocity from

ejector, through area (a + A) . One denoted by p the gas density, and by A4 the area
of the secondary flow.

/

Uy u,

Fig.1 The ejector

Karman pointed-out that the coefficient ¢ can be larger than unity. It tends

to value 2 when the surface area ratio 4/a indefinitely increases, if the secondary
flow velocity is constant in the initial section 1. For larger nonuniformity degrees
of velocity in section 1, the coefficient ¢ can approach values larger than 2. In
the following we detail and complete the formulas and the conclusions possible to
obtain by using the Karman model.
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2. The velocity profile

First we note the the injection is not necessarily done parallel to the wall,
the jet joining however very quickly the wall, due to the pressure decreasing
along the wall (so called Coanda effect). Therefore, one takes the section 1
immediately after the wall curvature vanishes.

The mixing starts from the jet to axis; in the axis neighbourhood still
remains a zone with potential flow, called potential core.[7;8].

Karman considers the initial section 1 (mixing start) with a null velocity,

u,=0, on the axis; then the velocity increases along a distance 4, being maximal at
the jet contact, but smaller than U .
In section 1, Karman introduces a parameter of nonuniformity for the
induced flow, denoted by A, and defined by the relation:
— [z

U
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A4

2.1)

bars indicating the average values.

Retaining this idea, one takes however a more general velocity
distribution in the secondary flow, section 1, with a velocity not necessarily null
at axis. Moreover, to improve the mixing one can introduce a counter current on
axis, for example, by suction. The proposed velocity distribution is:

(2.2)
il =1; forr< H,
U

C being constant, and [3,n parameters at hand. For 3 =0, one obtains the Karman
velocity distribution.

The notations /4 si H are given inFig.1.

By using the velocity distribution (2.2) and the definition (2.1), one
obtains the average velocities and the expression of the parameter of
nonuniformity, X in section 1, under the form:

C(B+—) v=n/g;,e= 12

B0 (2.3)
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+ v ! v—2 e=1;2
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where &=1 for 2D flow, and ¢=2 for axi-symmetrical flow. In this way, one can
treat the two cases together.

One can see that the degree of nonuniformity increases with v, having a
positive derivative, while for v = 0 one hasA=1. The derivative with respect to

Bis:
Oh_ 2vi(1+V)
B A+2v)[1+B(1+V)T

i.e. the degree of nonuniformity decreases with f3, at v=const.
The maximal secondary speed results at r = h:

<0, (v=0), (2.5)

U,
—=C(1+PB), 2.6
U (1+B) (2.6)
such that the ratio = and its derivative have the expressions:
U,
w, A+P)A+v) 0w, | v(l+v) 2.7)
w  1+BA+v) "B\ [1+BA+V) '

.ou :
Therefore the ratio =& decreases with [, at v =const.
U,

3.The conservation laws.

a) From the tube entrance up to the section 1 , the motion is potential (the
potential core); therefore one can apply the Bernoulli law, as a particular case of
the law of momentum conservation.

At the jet — secondary flow contact (sectionl), the pressures are equal,
such that the pressure is denoted p,, .

One yields the pressure - velocity relations in section 1:
2

u
plzpw—pzl . re[0;h];

X (3.1
Uu
D1 =Py = P _p%; relh;H—h],

whilst the pressure p, at exit is constant and equal to the atmospheric prssure:

p2 :poc.
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The equation of continuity [8;9] between the sections 1 and 2
(4 1=A42= a +A), gives:
j pudA = j pudA (3.2)

The equation of momentum [8;9] between the sections 1 and 2 yields:
J(puz +p)dA = J‘(pu2 +p)dA

4, 4,

From (3.2) one gets:
ﬂ=(1+0L)u—2—0L, a=2,
U U A

whereas from (3.3) results:

—\2
(%} (X—a(%j2J=2(a+l)(Z—2Jz—2a (3.5)
Denoting by A the combined parameter:
2
Azk—a[rl , (3.6)
containing the degree of nonuniformity,A , as well as the velocity ratio, , one
obtains the following algebraic equation for the exit velocity L;J—z :

(L;J—ZT(2—(1+oc)A)+2ocA(u—U2j—M=O.

I+a
The second degree algebraic equation (3.7) has the reduced determinant:

_201(2-A)
 l+a
Therefore, real solutions exist if and only if A <2.
We write the two real solutions under the form:

A’ DA <2. (3.8)

(“_ZJ _ a(2+aA) _ JA'—oA
U)i (+o)(VA'+an) 2=(1+a)A’
[“_ZJ __—a(2+aA) JA' +aA
Uy (+o)(Va'-ar)  2-(l+a)A’

(3.9)
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From the expressions (3.9) one can see that the solution, (?"j ,1s positive for any
1

A <2, while the other solution, (—zj , can be negative, or can change the sign,
Vi

so that cannot represent a solution for our problem.
Casen=0(v=0).

In this case, the secondary speed u,is uniform. The constant 3 plays

no role, being included in the general speed constant C. All quantities are
now completely determinated as functions of surface area ratio a. Below
one gives explicit expressions for the basic quantities in this case:
v=0;A=1;A=1-0; A'=2a ; (3.10)
(u_zJ o at+V2o u_1 V2o uy,
1

U _1+oc+\/2oc’5=1+oc+\/2oc ZU

<1. (3.11)

1 o++/2a ’
S ) 612

When o — 0, one gets the maximum force amplification ¢ = 2. One
can see that u,, /U <1, for any a.

Study of several limit cases.
For A=2 , A'=0, one gets:

WLl (¥ 1 W _q.0A
(Ul_(U}H I,U 1;(A=2). (3.13)

It is clear that the situation (3.13) is not a practical one, because the jet
cannot suddenly entail the entire air quantity from the ejector entrance. However
the conditions (3.13) do not necessarily represent the trivial case of a uniform
current in a tube of constant section.

In Table 3.1 values for the exponent v and for the speed ratio u,, /U are

given, when A =2, B= 0. One remarks that solutions exist only in a certain
interval of surface aria ratio (a0 < 1/28). On the other hand, values larger than
unity for the ratio u,, /U are not acceptable for simple mixing.
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Table 3.1 ; Values for A=2,8=0.

Therefore one should take A <2.

A limit situation of interest for the study of the ejector performances is to
have, as a maximal value, equal contact velocities at the initial section, that is :

u,,
—=1. 3.14
U 314

As a consequence, between the parameters o, B, v of the model a relation
should exist. Considering o, [ independent, the exponent v will result.
In the Table 3.2, values for the parameters v,A, ¢ ,r, as functions of the

surface area ratio a and of {3, the parameter of the initial velocity on axis, are

given.
One denotes by r, the flow rates ratio, defined by the relation:
A+
rdzp( a)uzzq{ﬂj: (Hl]q)’ (3.15)
paU u, o

¢ being the force amplification.
Table 3.2.

u
Values for = =1.
U

1.8716 1.8820 1.8 1. |2.010

\% 880 9220 3.537
1.9054 1.8102 1.7 1. | 0.9822 -

4 625 5175 11.947
10.389 5.4203 44 2. | 1.4334

[ 279 4360 0.6155
32.393 16.626 13. 7. | 3.9708

17 474 1523 1.3589
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2.4170 2.4230 2.428 2. | 25670 5.050
\ 4600

1.8846 1.7716 1.7129 1. | 0.8019 -15.004
4 4237

9.084 4.801 3.919 2. | 1.3151 0.5901
4 1892

30.310 15.648 12.676 6. | 3.8034 1.3305
7 7804

3.378 3.354 3.348 3.353 3.460 8.280
\%

I 1.8480 1.7023 1.6312 1.2795 0.5444 -19.328 I
4

7.4999 4.018 3.3201 1.9096 1.1856 0.5637
?

27.523 14.315 11.667 6.333 3.6113 1.3004

From Table 3.2, one can see that the mixing (A) is diminished with § and,
accordingly, the force augmentation coefficient ¢ also decreases. The exponent v
increases with B, at u, /U imposed. For negative values of the combined

parameter, A, one yields force augmentation coefficients less than unity. The flow
rate amplification, 7, , is also large.

The surface area ratio o, remains the main parameter to influence
mixing and the force augmentation coefficient, leading to amplifications even by
an order of magnitude. Certainly, by reducing the ratio u,, /U, one decreases the
force amplification. For example, for u,, /U= 0.500, B = 0, one gets the values:

v=1.743; A= 1.602; p= 3.664 (as compared to ¢=9.084, for u,, /U= 1).
4. Using the velocity ratio u,, /U as parameter.

Because the velocity ratio u;, /U proved itself to play an important role in
our analysis. Using it as parameter in place of the exponent vis therefore of
interest, as it can be easily controled.

By noting that the ratio between the maximum and average

velocities in the secondary flow, u, /u,, , has the expression:

i_ 1+B(1+v)
u, (1+8)(1+v) @D
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we will express successively the entrance and the exit velocities, as

follows:
LI BT TP U P R LT ) 4.2)
U \(u,)U U l+a u, U

The force augmentation coefficient, ¢, is expressed too as function of the
section 1 parameters only:

1 ”_1 Uy 2
(I)—(x(1+a)(a+(a]7] . (43)

The momentum theorem is then used to obtain an equation for the
exponent v, [3 being known. This equation is (see also (3.5)):

(o el
U u, (I+a) u, U
4.4)

(X—H v’ ! 2]
1+2v) [1+B(1+Vv)]

We remark that this strategy was already used to calculate the values given
in Table 3.2.

On the other hand, because u,,/U and ¢ are closely related parameters,
by the expression:

one can use as well ¢ > [ as parameter, then calculating the velocity ratio
u, /U <1.

5. Conclusions

The Karman model for Coanda ejector with incompressible flow and its
extension are able to explain the force augmentation by mixing and aditional flow
rate. The initial nonuniformity of the secondary flow is essential for the ejector
performance. On the other hand, the mixing is complete when the exit velocity
distribution is uniform, what requires a sufficiently long tube and small wall
effects. The frictions effects were neglected; a diminution of the obtained thrust
due to viscosity is also expected. If the turbulent boundary layer is considered in
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connection with a divergent nozzle, a boundary layer separation can occur [7;8;9],
affecting the uniformity of the exit velocity distribution. The surface area ratio a,
remains the main parameter to influence mixing and the force augmentation
coefficient. Besides o, an important parameter was proved to be the ratio of the
contact velocities between the primary and the secondary flows in the starting
section where the potential core ends (u,, /U ).

Further theoretical and experimental studies are necessary in order to
include the specified aspects, as well as a more accurate description of the jet
characteristics around slit .
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