U.P.B. Sci. Bull., Series D, Vol. 75, Iss. 1, 2013 ISSN 1454-2358

EFFECTIVE ELASTIC MODULI OF CLOSED-CELL
ALUMINIUM FOAMS - HOMOGENIZATION METHOD

Petr Koudelka!, Tom4s Doktor!, Jaroslav Valach!, Daniel Kytyi? and Ondiej Jirousek?

During the last decades, there has been much effort on the determi-
nation of effective elastic properties of porous metals. In this paper, the overall
elastic moduli of reference aluminium foam Alporas are assessed using predic-
tive methods based on definition of compliance contribution tensor. Surface of
the foam is captured using flatbed scanner and such data is subjected to image
and signal processing routines in order to obtain dimensions of the sufficient
representative volume element and calculation of structural characteristics for
analytical homogenization. It is shown that from all considered homogenization
models only the Mori-Tanaka scheme gives results reasonably close to nominal
values.
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1. Introduction

Metal foams are highly porous materials with cellular inner structure that
were developed by mimicking microstructures identified in nature. Among other
porous metals, aluminium metal foams find wide range of applications from defor-
mation energy absorption to noise attenuation, where their lightweight character
facilitates design of highly effective constructions.

During the last decades, there has been much effort to the determination of effec-
tive elastic properties of porous metals. Experimental approach by the means of
uni-axial compression and tensile tests can be utilized to obtain elastic properties
of metal foams. However due to random character of the material’s inner structure
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extensive set of experiments has to be performed in order to obtain reliable results.
Thus experimental determination may be very costly and time consuming. Alter-
natively several different methods based on finite element analysis of the material’s
microstructure may be introduced. This involves i) microstructural modeling us-
ing discretization [1], ii) models developed on the basis of a series of computed
microtomography scans [2] and iii) numerical homogenization [3]. Generally all of
these techniques retain economical disadvantages as highly specialized hardware
and software is required. That is why analytical approach seems to be promising
among other methods. Here effective elastic properties are usually assessed using
relationships giving the variation of elastic constants in terms of porosity [4] or by
analytical homogenization schemes based on various constitutive laws.

In this paper, the overall elastic moduli of reference aluminium foam Alporas are
assessed using predictive methods (i.e. non-interaction approximation, differential
scheme, etc.) based on definition of compliance contribution tensor.

2. Materials and methods

As an input data, surface of the foam (see Fig. 1) was captured using high
resolution (4800 dpi) flatbed scanner and assessed image was subjected to image
manipulation (segmentation) and analysis procedures in order to obtain structural
characteristics (porosity, shape factors and aspect ratios of pores) for all further
calculations. To obtain dimensions of the sufficient representative volume element
(RVE), spectral analysis was applied on the segmented image data for determina-
tion of the most characteristic frequencies in the foam’s random microstructure.
Subsequently, periodicity of the microstructure was assessed and RVE dimensions
were calculated. Homogenization procedure was utilized only on the macroscopic
level of foam’s hierarchical structure.

F1GURE 1. Captured macrostructure of Alporas
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2.1. Alporas

Alporas® is a light-weight cellular material with closed-cell internal struc-
ture industrially produced since 1986. Practical production is conducted by Japan
company Shinko Wire Co., Ltd. that is at the European market represented by
Austrian reseller Gleich, Gmbh. Its macroscopic physical and mechanical proper-
ties are almost perfectly isotropic thanks to polyhedral cell shapes with outstand-
ing three dimensional stability. Typical cell dimensions lie in interval 1 — 13 mm
whereas average dimension is 4.8 mm [5]. The foam typically exhibits 90 % poros-
ity that can be controlled during the foaming process to certain level taking into
account that polyhedral cells become spherical at porosities lower than 70 %.

3. RVE assessment

2-D image data captured using high resolution flatbed scanner were seg-
mented to output in form of a binary image. In this image, path-lines were gener-
ated in order to define locally phase functions:

¢(s) =s€(x,y). (1)
These phase functions represent the fundamentals for the spectral analysis
to assess periodic character of the structure and dimensions of RVE [6]. In this
paper, phase functions were generated and evaluated for every row and line in the
binary array of captured foam’s microstructure.
There are several ways to express mathematical basis of tools used for signal pro-
cessing. For the purpose of this paper, a time history random signal function z (t)
has its corresponding autocorrelation function expressed by:

Ry (1) = lim ' z(t)x(t+7)dt (2)

T—oo [
where t and 7 are time variables and 7' is the length of the time series. The power
spectrum density (PSD) function S (f) is then defined as the Fourier transform
(FT) of the autocorrelation function:

S (f) = /00 Ry (7) e 2T (3)

o0
where f is the signal frequency and coordinate of its maximum defines the inves-
tigated most characteristic period of the signal. This method can be also applied
to other fields like in this paper the investigation of materials with random mi-
crostructure. Here, the phase function ¢ (s) is not a time history random field but
depends stochastically on the spatial path variable s.
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Therefore, the time variables ¢ and 7 in autocorrelation function and its
corresponding PSD function are replaced by the spatial coordinates s and o [7]:

R (o) = gggés¢@¢w+aMa (4)

Silf) = [ Rme s )

where Lg is the one-dimensional path length and fg is the structural frequency in
m~!, which is reciprocal of the searched structural period. The PSD function is
evaluated in order to detect large peaks (local and global extremes) that represent
characteristic periods of the structure. Calculation of the PSD function for a
limited signal/path length with discrete data points can be carried out by different
spectral estimation procedures. In this study, the periodogram spectral estimation
denoted by the following equation was used:

s;uazfgaﬁ¢m2 (6)

where £ (f;, Ls) is the discrete Fourier transform (DFT) of the phase function ¢ (s)
given by:

Ls '
£<f87 LS) = ) ¢ (5> e s, (7)

Value of global maximum can be used as the period magnitude for the current
path function. However, the location of this maximum varies even for different
paths within the same cross-section and especially for 2-D input data, high caution
has to be given to treatment of stochasticity in all the calculations. Therefore, in
order to get the reliable structural period in each structural direction, an average
over all path-lines within a 2-D cut is made. Furthermore, the input image is
divided into several square regions overlapping each other by one half of its area
(see Fig. 2). This ensures that each segment of generated path-lines is in the
calculation included no more than twice. Such network of several overlapping
regions facilitates proper characterization of the random structure with required
level of reliability of results. Hence, the value of investigated period is averaged
over the defined cuts per structural direction among each region and then over all
generated regions.

4. Homogenization

4.1. Microstructural characterization

Porosity of the material was determined by weighting of a set of samples
resulting in a mean value of 91.4%. Then, the required microstructural information
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FIGURE 2. Example of proposed scheme of overlapping regions showing seg-
mented structure of Alporas with twelve generated square shaped areas

was extracted from the binary image leading to determination of the average aspect
ratio of 3-D pores according to the following formula [8]:

3
7P = 5 it (8)
where R is the 2-D shape factor of pores denoted by the following equation:

1 2D
R= A Z Ay (9)

2P is the aspect ratio, A; is the area of i-th 2-D pore and A is the total area of
all pores.

4.2. Effective elastic properties

In case of elastic properties investigated here for inhomogeneous materials,
all calculations are based on fourth rank tensors leading to quantification of two
isotropic material constants (elastic modulus and Poisson’s ratio) [9]. Relations
described in this section are valid for effective Young’s modulus of a material con-
taining isotropic mixtures of non-spherical pores and used prediction schemes are
rooted in the non-interaction approximation and compliance contribution tensor

defined as [10]:

&y = Sion + Hiaow (10)

1

where the H-tensor depends on pore shapes and its elastic properties.
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For ellipsoidal pores, it is related to Eshelby’s tensor by [10]:

H:%[CO:(J—S)]‘1 (11)

where
cO = (s97", (12)
(Nipg = %(5ik5j1+5i15jk)- (13)

Its components are expressed in terms of elliptic integrals for ellipsoidal pores
and reduced to elementary functions in case of spheroidal pores. Calculation of
these tensors can reduce to quantification of factors from the following relation
when explicit analytic inversion is introduced [11]:

L1
oYLl > hT®. (14)

4.2.1. Non-interaction approximation. Here, the effective compliance tensor can
be denoted as [12]:

S=S+> HY =S+ Hy (15)

where Hyy is in this case:

3B, — By
2 1 BQ 1
Hynp = —z [ =]I — |\ J—==I1 . 16
NP Go (3 )+Go( 3 ) (16)

Shape factors B; and B, that are functions of aspect ratios and Poisson’s
ratio of the matrix material can be assessed by integration of (14) over all possible
orientations resulting in:

26hy + 3hg + 28hg + 4hs + 6hg

B, = 1
1 - (17)
B, — 2hy + 11hy — ;l(f)zg + 8hs + 2hg (18)

where coefficients h; are yielded by the explicit analytic inversion of the H-tensor.
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The effective Young’s modulus is using this scheme predicted by the following
relation:

b= 1+ p& (7, v0) (19)
where
By
o) =2+ ) (Bi+ ). (20

4.2.2. Self-consistent scheme. Self consistent scheme leads to a system of two non-
linear equations for the bulk and shear moduli [13]:

A (BB
G = Go[l=2pBy(v,v)]. (22)

Using solution of a relation obtained by dividing the (21) by (21), the effective
Young’s modulus can be obtained from:

E=Eo[l —p&(v,v)]. (23)

4.2.3. Differential scheme. Differential scheme is usually interpreted as an infini-
tesimal form of the self-consistent scheme which leads to a system of two differential
equations for both the bulk and shear moduli [14]. Detailed analysis of these rela-
tions for spheroidal inclusions is given in [15] and the solution leads to the effective
Young’s modulus expressed as:

E = Egexp (- /0 ’ ﬂ%’;’)ﬂdp) . (24)

If one considers the negligible variation of Poisson’s ratio with porosity rela-
tionship (24) reduces to:

E = Ey(1—p)*. (25)

4.2.4. Effective-fields method. The Mori-Tanaka [16] and Levin-Kanaun [17] single
equation schemes are ranked among effective fields method and appear in the
following expressions for the effective Young’s modulus:
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Ey
p- B (2)
1+p£ (77V0)
lL—p
1— 5(77”0)
6(177/0)

5. Results

Using the methods discussed hereinbefore, mechanical properties of Alporas
closed-cell aluminium foam were assessed. By analyzing scanned macrostructure
of the foam, dimensions of the RVE were obtained by methods of spectral analysis:

r = 28.84mm,
y = 29.45mm.

Then 3-D shape factor resulting in value v*” = 0.674 was calculated as input
to the homogenization models. Tab. 1 summarizes obtained homogenized effective
elastic moduli.

TABLE 1. Results from the homogenization schemes

Scheme FEefrective |GPa]

Non-interaction 16.22
Self-consistent -
Differential 0.012

Mori-Tanaka 1.78
Levin-Kanaun -

It is evident that these analytical schemes do not give appropriate results.
This can be explained by the fact that basic assumptions following from Eshelby’s
solution of an ellipsoidal inclusion in an infinite body and required volume fractions
are not fulfilled. Still, correct solution has to lie between Voigt and Reuss bounds.
Voigt bound [18] describes state when all pores experience same strain when bulk
sample is deformed under stress (iso-strain condition) whereas Reuss bound [19]
is another extreme assuming that pores experience identical stress when forces are
applied to the sample (iso-stress condition). As can be seen in Tab. 2 both bounds
are in this case significantly distant from each other:

In the Tab. 1 it can be seen that the non-interaction scheme does not even
fulfil the Voigt bound. As self-consistent and Levin-Kanaun schemes lead to zero
elastic moduli for porosities lower than porosity of Alporas due to large volume
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TABLE 2. Values of Voigt and Reuss bounds

Bound Young’s modulus [GPa]

Voigt 6.02
Reuss 0.0011

fractions of pores (filled with air exhibiting zero mechanical properties), their val-
ues in the Table 1 are omitted for convenience. Although differential scheme fulfils
the Reuss bound, it leads to substantial underestimation of the actual Young’s
modulus. Only the Mori-Tanaka scheme ends up close to the nominal elastic mod-
ulus £ = 1.4 GPa. Still Mori-Tanaka scheme yields results with notable error. This
is caused by the fact that basis of this homogenization scheme is still Eschelby’s
solution of spherical inclusion in infinite body which is not fulfilled for material
with polyhedral pore shapes studied in this paper. The reference value of elastic
modulus was obtained using uni-axial compression tests in custom-designed screw-
driven loading device by employing digital image correlation method for tracking
deformations in the sample [20] in order to eliminate influence of boundary condi-
tions during the measurement.

6. Conclusion

It has been shown that considered analytical homogenization schemes are
not suitable for determination of elastic properties of porous materials with this
type of microstructure. Only the Mori-Tanaka scheme gives reasonable results
but still notably different from reference values. This is in contrast to analytical
models derived from percolation theory, where several power- and exponential-law
equations yield reasonable and accurate predictions. Instead of analytical schemes
presented in this paper, more appropriate numerical homogenization methods em-
ploying finite element equivalence of porous microgeometries should be used.
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