
U.P.B. Sci. Bull., Series C, Vol. 72, Iss. 3, 2010 ISSN 1454-234x

FIREWALL POLICY MANAGEMENT USING SECURE WEB
SYSTEM

Daniel GHEORGHICĂ1, Victor CROITORU2

Tehnologiile firewall au cunoscut un progres impresionant în ultimii ani,
prezentând o creştere semnificativă a numărului de implementări. În schimb,
tehnologiile de management al securităţii şi al firewall-urilor nu au înregistrat
aceeaşi dezvoltare.

În acest context, prezenta lucrare propune un sistem securizat de tip web
pentru managementul politicilor firewall. Sistemul propus permite managementul
centralizat al politicilor oricărui firewall accesibil de la distanţă prin intermediul
SSH (Secure Shell). Prezenta lucrare abordează procesul de administrare şi
configurare centralizată a firewall-urilor ceea ce conduce la organizarea şi
simplificarea acestui proces, în special în cazul implementărilor cu diverse
tehnologii firewall.

In recent years firewalls have seen some impressive technological advances

(e.g. stateful inspection, transparency, performance, etc.) and wide-spread
deployment. In contrast, firewall and security management technology is lacking. In
this paper we propose a secure web system for firewall policy management.

Our secure system implementation is able to manage any firewall products
that support SSH remote management. We believe that our approach is an important
step towards streamlining the process of configuring and managing firewalls,
especially in complex, multi-firewall installations.

Keywords: firewall, security, management interface, GUI, PHP, UML

1. Introduction

Over the past years, there has been an accelerating growth in the use of
network based services. Because of the ubiquity of computer systems and the
Internet, this growth will continue. Corresponding to this continued growth in
network usage, there will be increases in malicious user activity. The threat of
malicious users is becoming more serious every day. Terms such as phishing,
pharming, SPAM and identity theft make their way into news headlines all the
time. Firewall is a widely deployed mechanism for improving the security of
enterprise networks.

1 Ph.D. Student, Faculty of Electronics, Telecommunications and Information Technology,
University POLITEHNICA of Bucharest, Romania, e-mail: gheodan@gmail.com
2 Professor, Ph.D., Faculty of Electronics, Telecommunications and Information Technology,
University POLITEHNICA of Bucharest, Romania, e-mail: croitoru@adcomm.pub.ro

228 Daniel Gheorghică, Victor Croitoru

This paper proposes a secure system for firewalls management. The
system is designed to allow management of all firewalls from a security zone, and
is presented in detail in section four off the current paper.

The level of protection that any firewall is able to provide in securing a

private network when connected to the public Internet is directly related to the
architecture(s) chosen for the firewall by the respective vendor [1]. Generally, the
most commercially available firewalls utilize one or more of the following
firewall architectures:

• Static packet filter - the decision to accept or deny a packet is based upon
an examination of specific fields within the IP packet and protocol
headers. Before forwarding a packet, the firewall compares the IP header
and Transmission Control Protocol (TCP) header against a table defined
by user which contains the rules that dictate whether the firewall should
deny or permit packets to pass. The rules are scanned in sequential order
until the packet filter finds a specific rule that matches the criteria
specified in the packet-filtering rule. If the packet filter does not find a rule
that matches the packet, then it imposes a default rule.

• Dynamic (stateful) packet filter - like the static packet filter, operates at
the network and transport layers (OSI layer 3 and 4). Advanced dynamic
packet filter use additional state information collected from transport layer.

• Circuit-level gateway - operates at the session layer off the OSI model or
as a "shim-layer" between the application layer and the transport layer of
the TCP/IP stack. In many respects, a circuit-level gateway is simply an
extension of a packet filter in that it typically performs basic packet filter
operations and then adds verification of proper handshaking and the
legitimacy of the sequence numbers used in establishing the connection.
The circuit-level gateway examines and validates TCP and user datagram
protocol (UDP) sessions before opening a connection, or circuit, through
the firewall. Hence the circuit-level gateway has more data to act upon
than a standard static or dynamic packet filter.

• Application-level gateway (proxy) - like a circuit-level gateway, an
application-level gateway intercepts incoming and outgoing packets, runs
proxies that copy and forward information across the gateway, and
functions as a proxy server, preventing any direct connection between a
trusted server or client and an untrusted host. Unlike the circuit gateway,
the application-level gateway accepts only packets generated by services
they are designed to copy, forward, and filter.

• Stateful inspection - combines the many aspects of dynamic packet
filtering, circuit-level and application-level gateways, although stateful

Firewall policy management using secure Web system 229

inspection has the inherent ability to examine all seven layers of the OSI
model.

• Cutoff proxy - is a hybrid combination of a dynamic (stateful) packet filter
and a circuit-level proxy. In simplest terms, the cutoff proxy first acts as a
circuit-level proxy in verifying the RFC (Request for comment) -
recommended three-way handshake and any required authenticating
actions, then switches over to a dynamic packet filtering mode of
operation. Hence, it initially works at the session layer (OSI layer 5) then
switches to a dynamic packet filter working at the network layer (OSI
Layer 3) after the connection-authentication process is completed.

• Intrusion prevention - provide application level analysis and verification,
but current Intrusion Prevention Systems (IPS) product inspection
methodologies are based primarily on signature, and try to block
everything that can possibly be wrong in a given packet. As the list of
known signatures grows, IPS performance slows. The rate of newly
discovered known bad things on the Internet is ever accelerating and, over
time, could render the use of signature-based IPS unusable. An approach
that involves inline IPS products at the perimeter and passive mitigation at
the core allows for “deep” network protection that spans the entire
diameter of the network, not just the outer crust.

• Deep packet inspection - can be seen as the integration of Intrusion
Detection Systems (IDS) and IPS capabilities with traditional stateful
firewall technology. Deep packet inspection firewalls, like most stateful
inspection firewalls and many IDS and intrusion detection and prevention
(IDP) products, take the opposite approach. Rather than focusing on
recognizing and accepting only good packets, they try to find - and then
deny - only the “bad” packets. Such devices are vulnerable because they
require updates whenever a new and more creative form of “bad” is
unleashed on the Internet.

2. Firewall platforms

Firewall solutions are available on a number of platforms and can
generally be segregated into three groups:

• Hardware-based products - are single-purpose systems. Required
hardware and software are bundled in one easily installed package.
Usually, hardware solutions run on a stripped down version of Unix or
Linux, where all of the unnecessary Operating System (OS) components
are removed. The benefits of this model are that they are fast, relatively
inexpensive, and don’t require the loading of the software. These solutions
require another machine or directory to store and analyze the logs.

230 Daniel Gheorghică, Victor Croitoru

• Software-based products on Linux/Unix - are software products running
on one of the many distributions of Linux or Unix. In some cases, the OS
is included in the firewall product, requiring a single install on one low-
cost computer.

• Software-based products on Windows - are software products running on
a Windows-based OS. The primary benefit of a Windows-based firewall is
its low cost, it running on an inexpensive PC. Windows is the most widely
known family of OS. So it is likely that a firewall administrator will know
how to use it.
For some environments, a hardware-based firewall is a great choice. For

others, nothing beats a Linux or Unix-based firewall and for a great many, a
Windows-based firewall is the best choice.

One of the most misunderstood terms in network security with respect to
firewalls today is “OS hardening” or “hardened OS.” Many vendors claim that
their network security products are provided with a “hardened OS.” What you will
find in virtually all cases is that the vendor simply turned off or removed
unnecessary services and patched the OS for known vulnerabilities. Clearly, this
is not a “hardened OS” but really a “patched OS.”

A hardened OS is one in which the vendor has modified the kernel source
code to provide for a mechanism that clearly provides a security perimeter
between the non secure application software, the secure application software, and
the network stack.

3. Firewall policy configuration management

A firewall, like any other network device, has to be managed by someone.
Security policy should state who is responsible for managing the firewall, how
will be manage and the access method.

Management of firewall policy configurations can be complex, error-
prone, costly and inefficient for many large networked organizations.
Implementing a firewall configuration policy either involves writing low-level
command syntax via a Command Line Interface (CLI) or the use of a graphical
management console. Typical errors in a firewall configuration policy range from
invalid syntax to errors in properly comprehending the configuration, given its
scale and complexity. The Graphical User Interface (GUI) is the most commonly
used method to configure a firewall in a timely manner, especially amongst
inexperienced administrators.

Actual firewall configuration tools allow individual management of the
security policy. When the management of different firewall policies is required it
must established one administrative session with each firewall. Each firewall will

Firewall policy management using secure Web system 231

have its own security policy without any correlation with the policies of firewall
from the security area.

Design of the sequence of rules in a firewall must assure that these are
consistent, complete, and compact. Consistency means that the rules are ordered
correctly, completeness means that every packet satisfies at least one rule in the
firewall, and compactness means that the firewall has no redundant rules [2].

Firewalls are the first line of defense visible to an attacker and, by design,
are generally difficult to attack directly, causing attackers to often target the
administrative accounts on a firewall. The username/password of administrative
accounts must be strongly protected, and the administrative channel must also
high protected using Secure Socket Layer (SSL) or Virtual Private Network
(VPN) technologies.

4. Firewall policy management system

As was mentioned this paper proposes a secure system for firewalls
management. The system is designed modular in order to allow management of
all firewalls from a security zone. Functional and architectural requirements used
in the design phase of this system are:

• must be accepted only secure management operations;
• administration of more firewalls from the same interface;
• firewall security policy definition must be rule based;
• firewall rules must be analyzed for security policy compliance;
• full audit on administrative user creation and modification;
• full audit of management operations.

The system has a modular design and is implemented using Php Hypertext
Preprocessor (PHP) based on Model-View-Controller (MVC) model. The MVC
model has been developed, from the beginning, in order to model natural “Input -
Processing - Output” flow.

The MVC model architecture (fig. 1) has its roots in Smalltalk [3], where
it was originally applied to map the traditional input, processing, and output tasks
to the graphical user interaction model. However, it is straightforward to map
these concepts into the domain of multi-tier enterprise applications.
Components of the MVC architecture are:

• Model - represents data and the activities that govern access to and updates
of this data. Often the model serves as a software approximation to a real-
world process, so simple real-world modeling techniques apply when the
model is defined.

• View - renders the contents of a model. It accesses enterprise data through
the model and specifies how that data should be presented. It is the view's
responsibility to maintain consistency in its presentation when the model

232 Daniel Gheorghică, Victor Croitoru

changes. This can be achieved by using a push model, where the view
registers itself with the model for change notifications, or a pull model,
where the view is responsible for calling the model when it needs to
retrieve the most current data.

MMOODDEELL

VVIIEEWW CCOONNTTRROOLLLLEERR

Fig. 1. MVC architecture

• Controller - The controller translates interactions with the view into
actions to be performed by the model. In a Web application, they appear as
GET and POST HTTP requests. The actions performed by the controller
include changing the state of the model. Based on the user interactions and
the outcome of the model actions, the controller responds by selecting an
appropriate view.

MODEL
checkpoint.model.php
error.model.php
log.model.php
login.model.php
pfctl.model.php
firewall.model.php
server.model.php
firewall_state.model.php
pf_state.model.php
users.model.php

CONTROLLER
index.php
application.class.php
db.class.php
firewall.class.php
page.class.php
pfctl.class.php
template.class.php

VIEW
checkpoint.tpl.php
error.tpl.php
log.tpl.php
login.tpl.php
menu.tpl.php
pfctl.tpl.php
firewall.tpl.php
server.tpl.php
firewall_state.tpl.php
pf_state.tpl.php
users.tpl.php

Fig. 2. MVC model files

Firewall policy management using secure Web system 233

Firewall policy management system provides a base platform and a
framework for developing secure management modules. In order to demonstrate
the features and the advantages of this management system two modules for
Iptables and PF firewalls [4] have been developed.

The correspondence between files of the management system and MVC
model is presented in fig. 2.

Further are described the most important files from the Controller layer, in
order to provide a better understanding of the software program.

Because each request to the server requires application initialization,
index.php will contains the definition of all the functions and instances and object
initialization. One of the functions defined here is handle_app_exception, which
will redirect all exceptions generated within application to a standard page for
error handle. At the end index.php will pass the control to the application
controller (applications.class.php). Here are defined all the pages accessible from
controller, the pages with view only permission, login and start page.

Application

+VIEW_ACCESS: int
+tpl: int
-inst: int
-pages: int
-view_access_pages: int
-default_page: int
-login_page: int
-root_folder: int
-vars: int
-model_folder: int

+set_view_folder(folder: string): void
+set_model_folder(folder: string): void
+set_login_page(page: int): void
+set_default_page(page: int): void
+get_instance(): Application
+register_page(name: string, file: string, view_access: int): bool
+set_var(name: string, value: mixed, ns: string): void
+get_var(name: string, ns: mixed): valoarea
+dispatch(page: string): void
+redirect(page: int): void
+generate_exception(code: int): void
-__construct(): void
-__clone(): void
-display(tpl: string, has_nav: bool, has_css: bool): void
-has_access(page: int): void

Fig. 3. UML component view diagram for Application class

The file applications.class.php contains the code for the Application class

acting as a dispatcher for received requests and redirecting them to the

234 Daniel Gheorghică, Victor Croitoru

corresponding page. Primary method of the application class is dispatch. This
method load a page based on the existing GET parameter named page or on the
argument received. If the user is not signed in it will be automated redirected to
the default login page. Once the page is discovered page.model.php will be
included and his run method will be called, passing the control to the model. At
the end, dispatch will call display for displaying the data. Unified Modeling
Language (UML) component view of the application class is shown in fig. 3.

Fig. 4. UML component view for Page class

Firewall policy management using secure Web system 235

The Page class defines a template for model pages and functions for calls
routing to other methods. The run method is the most imported method defined in
this class being inherited by all the model pages, which extends the class Page.
UML component view of the Page class and model pages that extend this class are
shown in fig. 4. In order to assign default values for template pages assign_var
method will be used. Method add_message is used for displaying information or
noncritical messages to the user.

The primary role for Template class is to display the HTML templates,
being the interface to the View layer from MVC. The assign_var method assigns
values to a template variable, using $name variable as parameter. The display
method is used to display the template specified in argument, using as variable
$tpl_file, which represents the name of the template file (without extension).

Application data is stored and maintain in a Structured Query Language
(SQL) database. The interface between the model pages and data is realized with a
DB abstract layer. By parsing all commands related to the database through the
general interface, it becomes possible for an application to use one of the many
existing databases. DB abstract level gives a driver compatible with the database.
A graphical diagram of this process is represented in fig. 5.

 DB abstract layer is modeled in a class named Db in Db.class.php. The
UML component view diagram is shown in fig. 6.

The workflow of the application is shown in fig. 7, describing step by step

the classes and methods called.
When you start the application and the page index.php is automatically

called the following methods:
• set_view_folder - set the directory where the application load templates

from;

MS
SQL

MySQL Oracle

DDBB AAbbssttrraacctt LLaayyeerr

PPHHPP qquueerryy(())

Fig. 5. DB Abstract layer representation

Db

-inst: int
-hostname: int
-dbname: int
-username: int
-password: int
-db: int

+__call(name: string, args: string): mixed
+get_instance(): Application
-__construct(): void
-__clone(): void

Fig. 6. UML Component View for Db class

236 Daniel Gheorghică, Victor Croitoru

• set_model_folder - set the directory where the application load model
classes from;

• register_page - register pages in the controller. Each application module
will have at least one model page. This method (register_page) keeps all
the model pages in a vector, and search through it in order to decide the
current page at an request;

• set_login_page - decide which page from vector is the login page;
set_default_page - set default page after user authentication, to know to

what page of the vector to be redirected after the user and password were entered
correctly.

Finally, is called the dispatch method that yields control of the Application
class.

Fig. 7. Application workflow

Application class decides the current page based on the existence of the
session, GET parameter or argument received. Search in vector and redirects to
the corresponding page. After calling the run method, controller assigns the
control to the model class, automatically runs the action specified in the GET
parameter and associate variables for the template.

Firewall policy management using secure Web system 237

Finally, after the model process data, dispatch will call the display method
for displaying them to user. Application class will use Template class for
displaying a template in format HTML with the data received from model.

In fig. 8 is shown a typically usage scenario for the secure management
system. Management system software is installed and configured on the
application server. Data transmitted between the client web browser and server are
encrypted using SSL tunnel with a 1024-bit private key. After user authentication
and HTTP session establishment the administrator can define the managed
firewall equipments.

Once the firewalls are defined the next step is to define the firewall
security policy by setting the rules. Rules are created one by one through the
rules.model.php page for the entire security area. Modular design of the
application allows integration with any formal rules verification or correlation
algorithms [5].

The defined security policy is applied to firewalls using Secure Shell
(SSH) encrypted channels after validation. All the actions made through system
are logged for auditing.

Management system data are stored in a relational database using MySQL
implementation of Db class.

Fig. 8. A common usage for the secure management system

System high availability (HA) configuration can be obtained using

clustering. Front-end component that contains web interface and scripts can be
clustered using load balancing services (WEB farming) between two or more
servers and backend component represented by database can be clustered by using

238 Daniel Gheorghică, Victor Croitoru

databases specific HA technology. Special attention is needed for SSH public key
distribution over the frontend web farm servers [6].

5. Conclusions

In the context of rising security requirements and the continuing need for

firewall configuration, the proposed secure management system appears with his
simplicity and usability. The ability to easily manage a firewall configuration is
very important in any circumstances. Our proposed secure management system
provides a different approach on configuring firewalls. Some of the features of the
proposed system are:

• all management operations are secure;
• secure access to management system;
• high scalability and extensibility;
• online firewall configuration backup / restore;
• firewall policy creation, optimization and correlation;
• configuring multiple firewall in the security zone;
• complete operations audit;
• simple and intuitive Web based GUI;
• point in time restore facilities.

The management system can be extended with additional modules for
formal rules verification and global security correlation [7]. It can be easily
integrated with other Operations Support Services (OSS) or ServiceDesk
applications in order to satisfy any enterprise requirements.

R E F E R E N C E S

[1]. H.F. Tipton, M. Krause, Information Security Management Handbook 6th ed., Auerbach
Press, Florida, 2007

[2]. M.G. Gouda, X. Liu, Firewall design: consistency, completeness, and compactness,
Distributed Computing Systems, Proceedings, 24th International Conference on, 2004. pp.
320- 327

[3]. W.R. Lalonde, J.R. Pugh, Inside Smalltalk (Vol. One), London, Prentice-Hall, 1990
[4]. G. Daniel, Retele IP arhitecturi si management (IP networks architecture and management),

Bucharest, UPB, PhD student research report number 2 (Adviser V. Croitoru), 2007
[5]. A.X. Liu, Formal Verification of Firewall Policies, ICC '08. IEEE International Conference on,

pp. 1494-1498., Vol. 1, 2008
[6]. J. Frihat, F. Moldoveanu, A. Moldoveanu, General Guidelines for the Security of a Large

Scale Data Center Design, U. P. B. Sci. Bull., Series C, Vol. 71, Iss. 3, 2009
[7]. J.L. Thames, R. Abler, Implementing distributed internet security using a firewall

collaboration framework. Richmond, SoutheastCon, Proceedings, IEEE, pp. 680-685, 2007.

