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APPEARANCE OF I=1 STAGGERING EFFECTS IN 

SIGNATURE PARTNERS OF ODD SUPERDEFORMED Tl 

AND Pb NUCLEI  

A.M. KHALAF1 , M.KOTB2, Asmaa ABDELSALAM3,  M.D.OKASHA4,

Saddon T. AHMAD5 , Hewa Y. ABDULLAH6,7* 

The transition energies of super deformed rotational bands in five pairs of 

signature partners of 191,193,195Tl and 193,195Pb odd-A nuclei are calculated using a 

proposed energy formula, depending on mixing of rotational and vibrational modes 

and perturbation term. The level spins of the super deformed band have been 

estimated with a fit of the Harris expansion to the measured dynamic moment of 

inertia values as a function of frequency. The model parameters are determined by 

using a simulated-fitting search program. An excellent agreement between the 

calculated transition energies and the observed ones supports the model well. 

Dynamic and kinematic moments of inertia have been calculated, and their 

dependence on rotational frequency is discussed. The I = 1 staggering splitting in 

the studied signature partner pairs has been examined through three staggering 

functions, depending on the dipole and quadrupole -ray transition, linking the two 

signature partner bands and quadrupole transition within each band. For these 

signature partner pairs, band head moments of inertia and the intrinsic structure of 

each pair have been found as almost identical and show a large amplitude staggering 

pattern. 
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1. Introduction

      Superdeformation (SD) was first observed [1] in 152Dy (Z = 66, N = 86) 

nucleus whose strongly deformed prolate structure reflects the typical distribution 

of high j and low K of SD nuclei in A  150 mass region with quadrupole 

deformation  = 0.65, corresponding to elongated ellipsoid with an axis ratio close 

to 211. 

Now more than 350 SD bands have been observed experimentally in several nuclear 

mass regions, ranging from A  40 to A  190 [2] . The first observation of 

superdeformation in A  190 was in 191Hg[3] ; since then, more than 90 SD bands 

have been observed in 25 different nuclei identified in Au, Hg, Tl, Pd, Bi and Po 

nuclei. The A  190 mass region is a fascinating region because most A  190 SD 

bands in even-even and odd-A nuclei exhibit the same smooth increase in dynamic 

moment of inertia J(2) with an increasing rotational frequency ħ. The common 

cause of this smooth increase in J(2) is due to the gradual alignment of quasiparticles 

occupying high-N intruder orbital, originating from the i132 proton or j152 neutron 

subshells in the presence of pair correlations. Another interesting feature connected 

to the SD bands in A  190 regions is the measurement of the magnetic properties, 

such as magnetic dipole M1 decay. The branching ratios of M1 transition between 

signature partner SD bands and the cross-talk between them have been measured in 

a few A  190 high-K signature partner SD bands, such as 193Hg [4]  and 193Pb [5] 

, and confirmed the quantum numbers of high-K neutron as well as intruder proton 

orbital near to the Fermi surface. 

The detailed experimental investigation of SD bands reveals many fascinating 

phenomena, such as the identical bands [6-8] , the I = 2 energy staggering [9-11] 

and the identical bands with I = 2 staggering [12] . Different theoretical methods 

were applied for the study of these phenomena in SD bands, such as the cranked 

relativistic mean-field (CRMF) theory [13-15] , the cranked Nilsson Strutinsky 

approach based on Woods-Saxon potential [16, 17] , the self-consistent cranked 

Hartree-Fock-Bogaliubov approach based either on Skyrme[18, 19] or Gogny 

forces [20-22] , nonrelativistic Skyrme-Hartree-Fock formalism[23] and different 

phenomenological methods, such as Harris 2 expressions [24-27] , the Bohr-

Mottelson formula [28-31], the a b and a b c formula [32] , the variable moment of 

inertia (VMI) model [33-36], the interacting boson model (IBM) [37-39] , the 

nuclear softness formula [24, 27, 40-42]  and the particle rotor model (PRM) [43, 

44] . A particularly striking feature in odd SD nuclei is the observation of I = 1

staggering [45-48] .

This paper aims to investigate the  I = 1 energy staggering in signature partner of

odd SD nuclei in 191,193,195Tl and 193,195Pb by using a model which contains pairs

rotational, vibrational and perturbation terms.



  233 Appearance of I=1 Staggering Effects in Signature Partners of Odd Superdeformed Tl and Pb Nuclei 

2. Method of calculations

2.1 Formalism 

I. Spin Assignment and Moments of Inertia

Spins of states in most superdeformed rotational bands (SDRB,s) are not

determined experimentally, this is due to the difficulty of establishing the 

deexcitation of SD band into known yrast states. Several methods were proposed to 

assign the spins [24, 27, 41] . The most familiar method is to use Harris formula 

[49] . A power series expansion in the square of rotational frequency was introduced

by Harris as an extension of the cranking model to describe the excitation energies

in the regions of strongly deformed nuclei. We restrict ourselves to two terms Harris

formula

𝐸(𝐼) =
1

2
𝜃0𝜔2 +

3

4
𝜃1𝜔4    (1) 

with the cranking inertial parameters θ0 and θ1. The dynamical moment of inertia 

J(2) is defined as [50] 

𝐽(2) =
1

𝜔

𝑑𝐸

𝑑𝜔
𝑡ℎ𝑒𝑛     𝐽(2) = 𝜃0 + 3𝜃1𝜔2  (2) 

The parameters θ0 and θ1 are obtained by fitting of J(2) versus  ω2. 

Integrating equation (2) concerning ω leads to an expression for the intermediate 

nuclear spin I  (  𝐽(2) =   (
𝑑𝐸

𝑑𝐼
)−1 /ћ)

ћ𝐼 = ∫ 𝐽(2) 𝑑𝜔 = 𝜃0𝜔 + 𝜃1𝜔3 + 𝑖0                                                                 (3)

The alignment   io   appears as a constant of integration in this approach and can be 

assumed to be zero since no alignment occurs at   ω = 0. 

The corresponding expression for kinematic moment of inertia J(1) of the SD band 

can be derived as 
𝐽(1)

ћ2 =
𝐼

ћ𝜔
= 𝜃0 + 𝜃1𝜔2  (4) 

The two moments of inertia are related as follows 

𝐽(2) = 𝐽(1) + 𝜔
𝑑𝐽(1)

𝑑𝜔
 (5) 

In particular, for a rigid rotor, one has J(1) = J(2). 

Experimentally for the SD bands, γ-ray transition energy Eγ is the only 

spectroscopic quantity detected. Therefore, to compare the structure of SD bands, 

information about their E is commonly translated into values of rotational frequency  

ћω   and dynamical moment of inertia J(2) as: 

ћ𝜔(𝐼) =
1

4
[Eγ(I + 2) + Eγ(I)]     (6) 

𝐽(1)

ћ2
=

4

∆Eγ
 (7) 

Where   ∆Eγ  is the spacing between consecutive SD-band transitions. In other 

words, J(2) can be extracted from the energy difference between consecutive 



A.M. Khalaf et al 234 

transitions in the band; J(2) does not depend on the knowledge of the spin I but only 

on the -ray transition energies.  

The experimentally -ray transition energies themselves may extract kinematic 

moment of inertia J(1):   

J(1) =
2I−1

Eγ2(I)
 (8) 

Eγ2(I) = E(I) − E(I − 2)  (9) 

II. Proposed Nuclear Model

The level energies of a well-deformed nucleus are given by the pure rotator formula  

E(I)=AI(I+1) with the inertial parameter A = ћ2

2J
  where J represents the moment of

inertia of the band. On the other band, the level energies of the collective vibrational 

states for harmonic vibrator are given by E(I) = BI  with  B = ћω    where  ћω   

represent the vibrational frequency  ћω = 𝐸(21
+)/2. The complex nature of the

collective spectra of deformed nuclei leads some authors[51-53] to mix the 

rotational and vibrational collective modes with a phenomenological formula for 

band energies including  𝛼𝐼(𝐼 + 1)   and βI. 

Our proposed model is based on the assumption that the energy E(I) of the 

superdeformed rotational bands as a function of the unknown spin I can be 

expressed in terms of the following rotational, vibrational and perturbation terms:  

E(I) =  Erot + Evib + Epert =  I (I + 1) +  I +  I3                                    (10) 

The perturbation third term is introduced to improve the agreement between theory 

and experimental data. Such a term is based on the assumption that, on rotation, the 

moment of inertia of the nucleus increases as the quadratic function of the angular 

velocity of rotation.  

For SD bands, gamma-ray transition energies E(I) are the only spectroscopic 

information universally available; thus, E(I) within the band has the following 

form: 

E2(I) = E (I) – E (I - 2) = 2I 2 + 3 (I - 2) - ( -  - 4)   (11) 

Now the spins of the levels Io, Io+2, Io+4,…. are known by using the Harris 

approach. As a first-hand estimation for the model parameters ,  and , we use 

the experimental first three consecutive transition energies E (I0), E (I0 + 2) and E

(I0 +4); therefore, by using the bandhead spin Io extracted from Harris approach, 

the trial values for ,  and  are as follows:  

 =
1

16
[−(I0 + 2)E (I0  +  4) + (2I0 + 6)E (I0  +  2) − (I0  +  4)E (I0)] (12)

𝛽 =
1

16
{[I0(I0 + 1) −

10

3
] E (I0  +  4) − [2I0(I0 + 3) −

26

3
] E (I0  +  2) + [I0(I0  +  5) +

8

3
]E (I0)}  (13) 

γ =
1

48
[E (I0  +  4) − 2E (I0  +  2) + E (14)
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2.2 Energy Staggering in SD Signature Partners   

To explore more clearly the  I = 1 energy staggering in SD signature 

partner pairs of odd-A nuclei, we consider three staggering functions: the first 

function depends on the dipole transition energies E1 (I → I - 1), linking the two 

signature partners and the quadrupole transition energies E2 (I → I - 2) within each 

band:  

            𝑌(𝐼) =
2𝐼−1

𝐼

𝐸(𝐼)−𝐸(𝐼−1)

𝐸(𝐼)−𝐸(𝐼−2)
− 1                                                        (15) 

The staggering function Y(I) vanishes for a strongly coupled rotational bands. If we 

plot Y(I) against I, such a plot exhibits significant deviation from the linear I(I + 1) 

dependence and effectively splits into two different curves, leading to the discovery 

of a staggering pattern. The second staggering function S(I) represents the 

difference between the average transition energies   E (I +1→ I - 1),  E (I-1 → I - 

3) in one band and the transition E (I → I - 2)  in the signature partner 

𝑆(𝐼) =
1

2
[𝐸2 (𝐼 − 1) − 2𝐸2 (𝐼) + 𝐸2 (𝐼 + 1)]                                              (16) 

The third staggering function EGOS(I) is defined as the transition energy of 

Gamma-ray Over Spin   

𝐸𝐺𝑂𝑆(𝐼) =
𝐸1(𝐼)

2𝐼
    𝑤𝑖𝑡ℎ    𝐸1 (𝐼) = 𝐸(𝐼) − 𝐸(𝐼 − 1)                                      (17) 

3. Results and discussion 

The experimental data are given in the form of a series of interband gamma-

ray transition energies. The data set include five signature partner pairs in Tl and 

Pb nuclei namely: 191Tl(SD1,SD2), 193Tl(SD1,SD2), 195Tl(SD1,SD2), 

193Pb(SD5,SD6) and 195Pb(SD3,SD4). The dynamical moment of inertia is 

independent of the unknown spins of the levels. Information about γ-ray transition 

energies  Eᵧ in SD bands are translated into values of the dynamical moments of 

inertia J(2) equation (2).  To assign the bandhead spin for each band, the two 

parameters θ0   and θ1 of the  𝐽𝑐𝑎𝑙
(2)

 values in a Harris approach have been calculated 

by fitting  𝐽𝑐𝑎𝑙
(2)

 to the experimental ones  𝐽𝑒𝑥𝑝
(2)

  extracted from the experimental 

energies. The quality of the fit is indicated by the common quantity 

𝑥(𝐽(2)) = {
1

𝑁𝐽
∑ (

𝐽𝑒𝑥𝑝
(2)

 (𝑖)−𝐽𝑐𝑎𝑙
(2)

 

𝛿𝐽𝑒𝑥𝑝
(2)

 (i)
)2

𝑖 }

1/2

                                                       (18) 

where NJ is the total number of data points entering into the fitting procedure and 

𝛿𝐽𝑒𝑥𝑝
(2)

 (i)  are the experimental errors in  𝐽𝑒𝑥𝑝
(2)

. The adapted parameters θ0 and θ1 

have been used to determine the spin with the help of equation (18). The resulting 

best parameters θ0  and θ1   and the values of the band head spin Io are listed in the 

Table(1). The SD bands are identified by the lowest observed. The presently 
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assigned spins for our selected estimated values in previous works [31, 41, 48]. 

After determining the level spins of our selected SD bands, the model parameters 

,  and  can be adjusted to obtain a minimum root mean square derivation of the 

calculated transition energies E 
cal(Ii) from the measured transition energies E 

exp(Ii):      𝑥(𝐸𝛾) = {
1

𝑁𝐽
∑ (

𝐸𝛾
𝑒𝑥𝑝

 (𝐼𝑖)−𝐸𝛾
𝑐𝑎𝑙 (𝐼𝑖) 

𝛿𝐸𝛾
𝑒𝑥𝑝

 (𝐼𝑖)
)2

𝑖 }
1/2

                                        (19) 

N is the number of data points, and E 
exp(Ii) is the experimental error in the -ray 

energies. The experimental data for the transition energies E 
exp(Ii) are taken 

from[2] . The resulting best model parameters ,  and  are listed in Table 1.   

Fig.1 shows the dynamic J(2) and kinematic J(1) moments of inertia for our various 

studied superdeformed rotational bands compared with the experimental ones. It 

can be seen that the J(2) values exhibit a substantial increase as a function of 

rotational frequency ħ. Fig. 2 compares the calculated E with the experimental 

data where perfect agreement has been obtained. For the investigation of the I = 1 

energy staggering effect between signature partner pairs, the staggering function 

Y(I) has been calculated for each signature partner pairs in terms of dipole 

transitions E1 (I → I - 1), linking the partner pairs and the quadrupole transitions 

E2 (I → I - 2) within each band. The calculated values are listed in Table 2 and 

plotted against spin I in Fig. 3. We notice that all signature partner pairs exhibit 

significant amplitude staggering. Also, the results for the other two I = 1 

staggering function S(I) and EGOS(I) are listed in Tables 3 and 4 and Fig. 3. It is 

interesting to note that the band head moments of inertia of each signature partner's 

SD band are almost identical. 
Table 1  

The calculated optimized best model parameters α, β and γ adopted from the fitting 

procedure and the suggested band head spin proposition Io for our selected SD signature 

partners; the experimental lowest transition energy E (Io + 2 → Io) for each SD band is 

given 2. The last column gives the relative root mean square deviation  (E). 
SD band  0θ 

1-MeV 2ħ 
1θ 

3-MeV 4ħ 

α  

) 2ħ ( KeV 

β 

ħ) KeV3-(10 

 

KeV)3-(10 

0I 

(ħ) 

 

)0+2→I0(IE 

 

 

(KeV) 

191Tl 

(SD1) 

92.756 59.949 5.53695 10.3880 10.3880- 13.5 276.5 0.2064 

(SD2)  92.818 66.917 5.916961 16.91916 16.91916- 14.

5 

296.3 0. 0939 

Tl 193

(SD1) 

95.681 73.603 5.344554 9.64450 9.64450- 10.

5 

247.3 0.1787 

(SD2) 95.696 66.593 5.323105 8.19733 8.19733- 9.5 227.3 0.1228 

Tl 195

(SD1) 

95.127 60.699 5.368280 8.80633 8.80633- 5.5 146.2 0.2684 

(SD2) 94.830 76.072 5.398193 10.66366 10.66366- 6.5 167.5 0.3328 

Pb 193

(SD5) 

92.655 94.253 5.460628 9.91466 9.91466- 8.5 213.2 0.0800 

(SD6) 92.363 104.183 5.482892 10.70816 10.70816- 9.5 234.6 0.1716 

Pb 195

(SD3) 

90.818 104.243 5.521662 11.20283 11.20283- 7.5 198.2 0.2930 

(SD4) 91.881 102.048 5.526286 11.18283 11.18283- 8.5 213.6 0.2884 



  237 Appearance of I=1 Staggering Effects in Signature Partners of Odd Superdeformed Tl and Pb Nuclei  

Table2 

 The calculated I = 1 staggering function Y(I) for the studied five signature partner pairs; 

the calculated excitation energies are also given. 
 

Tl(SD1,SD2)191 Tl(SD1,SD2)193 Tl(SD1,SD2)195 

I(ħ)         E(I)(KeV)                Y(I) (KeV) 
 

I(ħ)         E(I)(KeV)                               Y(I) (KeV) I(ħ)         E(I)(KeV)          Y(I) (KeV) 

11.5 782.829  8.5 427.161  5.5 191.032  

12.5 835.882  9.5 525.025  6.5 261.540  

13.5 1061.516 0.55929 10.5 636.227 0.01314 7.5 339.456 -0.02008 

14.5 1130.608 -0. 5473 11.5 754.063 -0.01577 8.5 431.364 0.01876 

15.5 1380.959 0.51686 12.5 885.568 0.01262 9.5 529.260 -0.02293 

16.5 1467.096 -0. 50353 13.5 1023.326 -0.01467 10.5 642.227 0.02045 

17.5 1740.557 0.47747 14.5 1174.645 0.01081 11.5 759.968 -0.02369 

18.5 1844.341 -0. 46465 15.5 1332.354 -0.01224 12.5 893.553 0.02052 

19.5 2139.696 0.44201 16.5 1502.907 0.00763 13.5 1031.097 -0.02297 

20.5 2261.328 -0. 43084 17.5 1680.675 -0.00844 14.5 1184.743 0.01890 

21.5 2577.746 0.41106 18.5 1869.793 0.00307 15.5 1342.151 -0.02055 

22.5 2717.019 -0. 40232 19.5 2067.805 -0.00325 16.5 1515.187 0.01555 

23.5 3054.063 0.38510 20.5 2274.723 -0.00293 17.5 1692.622 -0.01637 

24.5 3210.355 -0. 379312 21.5 2493.246 0.00338 18.5 1884.263 0.01042 

25.5 3567.980 0.36446 22.5 2717.108 -0.01042 19.5 2081.990 -0.01041 

26.5 3740.251 -0. 36206 23.5 2956.488 0.01150 20.5 2291.332 0.00344 

27.5 4118.815 0.34951 24.5 3196.339 -0.01944 21.5 2509.723 -0.00258 

28.5 4305.599 -0. 35081 25.5 3457.006 0.02116 22.5 2735.740 -0.00544 

29.5 4705.862 0.34053 26.5 3711.789 -0.03006 23.5 2975.271 0.00713 

30.5 4905.260 -0. 34586 27.5 3994.255 0.03240 24.5 3216.813 -0.01631 

31.5 5328.390 0.33781 28.5 4262.813 -0.04233 25.5 3478.070 0.01883 

32.5 5538.063 -0. 34751 29.5 4567.676 0.04529 26.5 3733.862 -0.02923 

33.5 5985.643 0.34164 30.5 4848.743 -0.05634 27.5 4017.538 0.03256 

34.5 6202.818 -0.35607 31.5 5176.687 0.05987 28.5 4286.173 -0.04430 

35.5 6676.834 0.35227 32.5 5468.888 -0.07213 29.5 4593.075 0.05072 

36.5 6898.251 -0. 37194 33.5 5820.684 0.07623 30.5 4873.013 -0.06385 

37.5 7401.146 0.37009 34.5 6122.532 -0.08979 31.5 5204.056 0.06644 

   35.5 6499.040 0.09442 32.5 5493.620 -0.08119 

   36.5 6808.927 -0. 10942 33.5 5849.836 0.08674 

   37.5 7211.119 0.11456 34.5 6147.206 -0.10322 

   38.5 7527.285 -0. 13118 35.5 6529.744 0.10941 

   39.5 7956.197 0.13674 36.5 6832.951 -0.12779 

Table2 

 (continued) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Pb(SD5,SD6)193 Pb (SD3,SD4) 195 

I(ħ)            E(I)(KeV)               Y(I))  KeV) I(ħ)                                         E(I)(KeV)                                        Y(I) (KeV) 

8.5 436.429  7.5 349.111  

9.5 540.068  8.5 441.593  

10.5 650.015 -0.01949 9.5 343.819 -0.00522 

11.5 774.916 0.01742 10.5 657.381 0. 00241 

12.5 904.735 -0.02146 11.5 780.155 -0.00619 

13.5 1050.591 0.01898 12.5 914.530 0. 00331 

14.5 1200.036 -0.02274 13.5 1087.498 -0.00720 

15.5 1366.488 0.01984 14.5 1212.412 0.00423 

16.5 1435.353 -0.02332 15.5 1375.213 -0.00823 

17.5 1721.987 0.01998 16.5 1550.387 0.00519 

18.5 1910.105 -0.02317 17.5 1732.652 -0.00929 

19.5 2116.456 0.01939 18.5 1927.802 0.00618 

20.5 2323.702 -0.02227 19.5 2129.152 -0.01040 

21.5 2549.245 0.01803 20.5 2343.987 0.00722 

22.5 2775.533 -0.02061 21.5 2564.033 -0.01155 

23.5 3019.688 0.01589 22.5 2798.254 0.00828 

24.5 3264.974 -0.01814 23.5 3036.599 -0.01273 

25.5 3527.103 0.01293 24.5 3289.900 0.00939 

26.5 3791.380 -0.01486 25.5 3546.135 -0.01396 

27.5 4070.782 0.00913 26.5 3818.199 0.01052 

28.5 4354.092 -0.01072 27.5 4091.903 -0.01523 

29.5 4650.001 0.00443 28.5 4382.407 0.01171 

30.5 4952.417 -0.00569 29.5 4673.146 -0.01655 

31.5 5263.996 -0.00118 30.5 4981.751 0.01292 

32.5 5585.647 -0.00273 31.5 5289.077 -0.01791 

33.5 5882.011 -0.00776 32.5 5715.437 0.01419 

34.5 6253.05 0.00717 33.5 5938.886 -0.01933 

35.5 6563.229 -0.01532    

36.5 6953.854 0.01500    
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Table 3  

Similar to Table 2 except for the staggering function S(I) 
191Tl(SD1,SD2) 

I(ħ)           S (I ) (KeV) 

193Tl(SD1,SD2) 

I(ħ)           S (I ) (KeV) 

195Tl(SD1,SD2) 

I(ħ)           S (I ) (KeV) 

193Pb (SD5,SD6) 

I(ħ)          S (I ) (KeV) 

195Pb (SD3,SD4) 

I(ħ)           S (I ) (KeV) 
14.5 4.339 13.5 0.1655 8.5 -0.7025 11.5 -0.695 10.5 -0.266 

15.5 -3.836 14.5 -0.1905 9.5 0.5365 12.5 0.5415 11.5 0.132 

16.5 3.0325 15.5 -0.054 10.5 -0.607 13.5 -0.6645 12.5 -0.3085 

17.5 -2.7315 16.5 0.0685 11.5 0.385 14.5 0.485 13.5 0.172 

18.5 2.1235 17.5 -0.3585 12.5 -0.406 15.5 -0.5885 14.5 -0.353 

19.5 -2.023 18.5 0.4125 13.5 0.1285 16.5 0.382 15.5 0.214 

20.5 1.608 19.5 -0.7475 14.5 -0.0985 17.5 -0.4645 16.5 -0.399 

21.5 -1.712 20.5 0.84 15.5 -0.2365 18.5 0.231 17.5 0.2565 

22.5 1.4925 21.5 -1.221 16.5 0.3175 19.5 -0.2945 18.5 -0.4455 

23.5 -1.803 22.5 1.354 17.5 -0.7105 20.5 0.033 19.5 0.2995 

24.5 1.782 23.5 -1.783 18.5 0.844 21.5 -0.0755 20.5 -0.4936 

25.5 -2.3025 24.5 1.4565 19.5 -1.2965 22.5 -0.2145 21.5 0.3445 

26.5 2.4805 25.5 -1.434 20.5 1.4815 23.5 0.192 22.5 -0.5435 

27.5 -3.213 26.5 2.149 21.5 -1.994 24.5 -0.512 23.5 0.3905 

28.5 3.593 27.5 -3.1775 22.5 2.233 25.5 0.51 24.5 -0.595 

29.5 -4.5425 28.5 3.434 23.5 -2.8075 26.5 -0.86 25.5 0.437 

30.5 5.1265 29.5 -4.0135 24.5 3.0995 27.5 0.8795 26.5 -0.648 

31.5 -6.296 30.5 4.3125 25.5 -3.738 28.5 -1.2625 27.5 0.4855 

32.5 7.0875 31.5 -4.9445 26.5 4.0855 29.5 1.2995 28.5 -0.702 

33.5 -8.474 32.5 5.2855 27.5 -4.788 30.5 -1.718 29.5 0.534 

34.5 9.467 33.5 -5.9725 28.5 5.19 31.5 1.7835 30.5 -0.7585 

35.5 -11.097 34.5 6.3585 29.5 -5.96 32.5 -2.227 31.5 0.5845 

36.5 12.3185 35.5 -7.1025 30.5 6.4185 33.5 2.3015 32.5 -0.816 

37.5 -14.183 36.5 7.5325 31.5 -7.2575 34.5 -2.7845   

  37.5 -8.336 32.5 7.7735 35.5 2.8845   

  38.5 8.8215 33.5 -8.6035 36.5 -3.4055   

  39.5 -9.702 34.5 9.258     

  40.5 10.2205 35.5 -10.242     

Similar to Table 2 except for the staggering function EGOS(I) 

191Tl(SD1,SD2) 

I (ħ)      EI (EGOS) 

193Tl(SD1,SD2) 

I(ħ)        EGOS(I) 

195Tl(SD1,SD2) 

I(ħ)         EGOS(I) 

193Pb (SD5,SD6) 

I(ħ)       EGOS(I) 

195 Pb (SD3,SD4) 

I(ħ)       EGOS(I) 

12.5 4.24424 9.5 10.30147 6.5 10.84738 9.5 10.90936 8.5 10.88023 

13.5 16.71362 10.5 10.59828 7.5 10.3888 10.5 10.47114 9.5 10.76063 

14.5 4.76496 11.5 10.24660 8.5 10.81270 11.5 10.86095 10.5 10.81542 

15.5 16.15167 12.5 10.5204 9.5 10.30484 12.5 10.38552 11.5 10.6760 

16.5 5.22042 13.5 10.20429 10.5 10.75876 13.5 10.80414 12.5 10.7500 

17.5 15.62634 14.5 10.43575 11.5 10.23834 14.5 10.30655 13.5 10.59022 

18.5 5.60994 15.5 10.17477 12.5 10.6868 15.5 10.73883 14.5 10.68372 

19.5 15.14641 16.5 10.33654 13.5 10.18844 16.5 10.23424 15.5 10.50329 

20.5 5.93326 17.5 10.15817 14.5 10.59627 17.5 10.6648 16.5 10.61660 

21.5 14.71711 18.5 10.22259 15.5 10.15535 18.5 10.16854 17.5 10.41514 

22.5 6.18991 19.5 10.15446 16.5 10.48703 19.5 10.58210 18.5 10.54859 

23.5 14.34229 20.5 10.09356 17.5 10.13914 20.5 10.10956 19.5 10.32564 

24.5 6.37926 21.5 10.16386 18.5 10.35897 21.5 10.49037 20.5 10.47975 

25.5 14.02450 22.5 9.94942 19.5 10.13984 22.5 10.05724 21.5 10.23469 

26.5 6.50079 23.5 10.18638 20.5 10.21180 23.5 10.38957 22.5 10.40982 

27.5 13.76596 24.5 9.78983 21.5 10.15772 24.5 10.01167 23.5 10.14234 

28.5 6.55382 25.5 10.22223 22.5 10.0452 25.5 10.27956 24.5 10.33881 

29.5 13.56823 26.5 9.61445 23.5 10.19280 26.5 9.99271 25.5 10.04843 

30.5 6.53763 27.5 10.27149 24.5 9.85885 27.5 10.16007 26.5 10.26656 

31.5 13.43269 28.5 9. 42308 25.5 10.24537 28.5 9.94070 27.5 9.95287 

32.5 6.45157 29.5 10.33433 26.5 9.65252 29.5 10.03081 28.5 10.19312 

33.5 13.36059 30.5 9.21531 27.5 10.31549 30.5 9.91527 29.5 9.85555 

34.5 6.29492 31.5 10.41092 28.5 9.42578 31.5 9.89139 30.5 10.11819 

35.5 13.35256 32.5 8.9908 29.5 10.42633 32.5 9.89695 31.5 9.75638 

33.5 13.36059 33.5 10.50137 30.5 9.15616 33.5 9.74220 32.5 10.04184 

34.5 6.29492 34.5 8.74921 31.5 10.50930 34.5 9.88518 33.5 9.65519 

35.5 13.35256 35.5 10.60585 32.5 8.90966 35.5 9.58250   

36.5 6.06621 36.5 8.49005 33.5 10.63313 36.5 9.88013   

37.5 13.41053 37.5 10.72512 34.5 8.61942 37.5 9.41210   

38.5 5.76441 38.5 8.21210 35.5 10.77571     

  39.5 10.85853 36.5 8.30704     

  40.5 7.91646 37.5 10.93674     
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Fig. 1. The calculated kinematic J(1) (closed circles) and dynamic J(2) (open circles) moments of 

inertia as a function of rotational frequency ħω for all the ten studied SD bands. The experimental 

J(2) are labeled by a closed circle with error bars. 
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Fig. 2.The calculated gamma-ray transition energies Eɤ(I) pairs of signature partners against spin I 

for the five SD bands in 191Tl(SD1, SD2), 193Tl(SD1, SD2),  195Tl(SD1, SD2), 193Pb(SD5, SD6) and 
195Pb(SD3, SD4) are compared to the experimental values [2]. The solid curves indicate the 

theoretical values while closed circles indicate the experimental values. 
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Fig. 3. The calculated staggering function Y(I) , S(I) and EGOS(I)) versus nuclear spin I for the 

studied signature partner SD bands observed in Tl and Pb nuclei. 
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4. Conclusion 

The band head spins were suggested using the Harris expansion. The -ray 

transition energies within an SD band were calculated using a proposed energy 

formula, depending on the influence of the rotational, vibrational modes and 

perturbation terms. The calculation results agree with the experimental data very 

well. The evolution of moments of inertia with rotational frequency was examined. 

Three different proposal functions Y(I), S(I) and EGOS were tested to exhibit the 

I = 1 energy staggering in some chosen signature partners of odd mass Tl, Pb SD 

nuclei in A  190 mass regions.   
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