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THE MAIN EQUATION OF INVERSE PROBLEM FOR DIRAC

OPERATORS

Ozge Akcay1, Khanlar R. Mamedov2

In this paper, the main equation or Gelfand-Levitan-Marchenko type equa-

tion of inverse problem for Dirac operators with piecewise continuous coefficient is de-
rived. The uniqueness theorem for inverse spectral problem according to the sequences
of eigenvalues and normalized numbers is proved.
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1. Introduction

The theory of inverse problems for differential operators plays an important role in
the development of the spectral theory of linear operators. The inverse spectral problem
is the reconstruction of a linear operator from some of its spectral characteristics, such as
spectral data, spectral function, spectra (for different boundary conditions), scattering data,
Weyl function, etc. According to the spectral characteristic, different inverse problems can
be considered. The most comprehensive information on the theory of inverse problems can
be found in the books [4, 8, 13].

The direct and inverse problems for Dirac operators have attracted considerable at-
tention in both mathematics and physics. Especially, since Dirac equation is related to
nonlinear wave equation (this was discovered in [1, 3]), there has been many investigations
based on Dirac equation and the investigations have been continuing to be developed in
many directions.

In this paper, our aim is to prove the uniqueness theorem of inverse problems for
Dirac operators with discontinuous coefficient according to the sequences of eigenvalues and
normalized numbers and give an algorithm to construct the potential function. Then, we
consider the following boundary value problem

Bu′ +Q(x)u = λr(x)u, 0 < x < π, (1)

u1(0) = (λ+ h1)u1(π) + h2u2(π) = 0, (2)

where

B =

(
0 1
−1 0

)
, Q (x) =

(
q1(x) q2(x)
q2(x) −q1(x)

)
, u =

(
u1 (x)
u2 (x)

)
,

the functions q1 (x) ∈ L2(0, π) and q2 (x) ∈ L2(0, π) are real valued, λ is a spectral parameter,

r(x) =

{
1, 0 ≤ x ≤ a,
α, a < x ≤ π,

0 < α ̸= 1, h1 and h2 > 0 are real numbers.
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In the finite interval, in the case of r(x) ≡ 1 in the equation (1.1) and the potential
function Q(x) is continuous, the solvability of inverse problem according to two spectra was
examined in [5] and according to one spectrum and normalized numbers was given in [2]. The
inverse problem contained spectral parameter in boundary condition by spectral function
was studied in [9]. Inverse spectral problems for Dirac operator with summable potential
were worked in [14, 17]. An algorithm for reconstructing the Dirac operator was given in
[10, 12, 15, 20, 21]. The uniqueness theorem of the inverse problem for Dirac operators with
spectral parameter in boundary conditions by Weyl function was proved in [11]. Moreover,
the works [16, 18, 19] can be examined for the physical applications of Dirac equation.

As different from other works, the problem (1.1), (1.2) has piecewise continuous
coefficient, so the integral representation (not operator transformation) for the solution of
equation (1.1) obtained in [6] is used. This paper is organized as follows: In section 2,
we give an operator formulation of the problem (1.1), (1.2) and the asymptotic behaviour
of eigenvalues, eigenfunctions and normalized numbers of problem (1.1), (1.2) obtained by
using the integral representation. In section 3, Gelfand-Levitan-Marchenko type equation
with respect to the kernel of this integral representation is derived and it is obtained that
this equation has a unique solution. Then, we prove the uniqueness theorem for the solution
of inverse problem by its eigenvalues and normalized numbers. Finally, we give an algorithm
to construct the potential function Q(x).

2. Operator Formulation and Some Spectral Properties

We denote the inner product in Hilbert space Hr = L2,r(0, π;C2)⊕ C by

⟨U, V ⟩ :=
∫ π

0

[u1(x)v1(x) + u2(x)v2(x)] r(x)dx+
1

h2
u3v3,

where

U = (u1(x), u2(x), u3)
T ∈ Hr, V = (v1(x), v2(x), v3)

T ∈ Hr.

Let us define the operator L by

L(U) :=

(
l(u)

−h1u1(π)− h2u2(π)

)
with the domain

D(U) =

{
U | U = (u1(x), u2(x), u3)

T ∈ Hr, u1(x), u2(x) ∈ AC[0, π],
u3 = u1(π), l(u) ∈ L2,r(0, π;C2), u1(0) = 0

}
where

l(u) =
1

r(x)
(Bu′ +Q(x)u) .

Thus, the considered problem (1.1), (1.2) is equivalent the equation LU = λU.
Denote by ϕ(x, λ) and ϑ(x, λ) the solutions of the equation (1.1) under the initial

conditions
ϕ1(0, λ) = 0, ϕ2(0, λ) = −1,

ϑ1(π, λ) = h2, ϑ2(π, λ) = −λ− h1.
(3)

The integral representation of the solution ϕ(x, λ) has the form

ϕ(x, λ) = ϕ0(x, λ) +

∫ µ(x)

0

G(x, y)

(
sinλy

− cosλy

)
dy, (4)

where

ϕ0(x, λ) =

(
sinλµ(x)

− cosλµ(x)

)
, µ(x) =

{
x, 0 ≤ x ≤ a,
αx− αa+ a, a < x ≤ π,
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Gij(x, .) ∈ L2(0, π), i, j = 1, 2 for fixed x ∈ [0, π] (see [6, 10]). Moreover, the kernel G(x, y)
satisfies the following problem

BG′
x(x, y) + r(x)G′

y(x, y)B = −Q(x)G(x, y),

Q(x) = r(x)[G(x, µ(x))B −BG(x, µ(x))], (5)

G11(x, 0) = G21(x, 0) = 0.

Here, we specify that the relation (2.3) expresses the connection between the kernel G(x, t)
and the potential function Q(x) of the equation (1.1) and this relation is used to prove the
uniqueness theorem for inverse problem.

Define the characteristic function ω(λ) of L by

ω(λ) := ϕ2(x, λ)ϑ1(x, λ)− ϕ1(x, λ)ϑ2(x, λ). (6)

Then, it follows from (2.4) that

ω(λ) = −ϑ1(0, λ) = (λ+ h1)ϕ1(π, λ) + h2ϕ2(π, λ).

Lemma 2.1. [11] The zeros λn of the characteristic function ω(λ) coincide with the eigen-
values of the problem L. The functions ϕ(x, λn) and ϑ(x, λn) are eigenfunctions and there
exists the sequence κn such that

ϑ(x, λn) = κnϕ(x, λn), κn ̸= 0. (7)

The normalized numbers are defined by

γn :=

∫ π

0

(
|ϕ1(x, λn)|2 + |ϕ2(x, λn)|2

)
r(x)dx+

1

h2
|ϕ1(π, λn)|2 .

Lemma 2.2. [11] The relation

ω̇(λn) = κnγn, (8)

is valid, where ω̇(λ) = d
dλω(λ).

Remark 2.1. The following estimates are obtained by using the integral representation (2.2)
as |λ| → ∞ uniformly in x ∈ [0, π]

ϕ1(x, λ) = sinλµ(x) +O
(

1
|λ|e

|Imλ|µ(x)
)
,

ϕ2(x, λ) = − cosλµ(x) +O
(

1
|λ|e

|Imλ|µ(x)
)
.

(9)

Let us substitute the estimates (2.7) in the characteristic function ω(λ). Then, we
find

ω(λ) = λ sinλµ(π) +O
(
e|Imλ|µ(π)

)
, |λ| → ∞. (10)

Theorem 2.1. The asymptotic formulas for eigenvalues λn for n ∈ Z, eigenfunctions and
normalized numbers of boundary value problem (1.1), (1.2) are as follows, respectively:

λn = λ0
n + ϵn, {ϵn} ∈ l2, (11)

ϕ(x, λn) =

(
sin nπµ(x)

µ(π)

− cos nπµ(x)
µ(π)

)
+

(
ζ
(1)
n (x)

ζ
(2)
n (x)

)
, (12)

γn = µ(π) + τn, {τn} ∈ l2, (13)

where λ0
n = nπ

µ(π) ,
{
ζ
(1)
n (x)

}
∈ l2 and

{
ζ
(2)
n (x)

}
∈ l2 for all x ∈ [0, π].

Proof. The proof of this theorem is similarly obtained in [11]. �
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Moreover, in consideration of (2.8), since the function ω(λ) is entire function, it is
obtained from Hadamard’s theorem (see [7]) that

ω(λ) = −µ(π)(λ2
0 − λ2)

∞∏
n=1

(λ2
n − λ2)

(λ0
n)

2
. (14)

Lemma 2.3. [11] The eigenfunction expansion formula

g(x) =
∞∑

n=−∞
βnϕ(x, λn), βn =

1

γn
⟨g(x), ϕ(x, λn)⟩ (15)

holds for the absolutely continuous function g(x), x ∈ [0, π] and the series converges uni-
formly in x ∈ [0, π].

3. The Uniqueness Theorem for Inverse Problem

In this section, the uniqueness of the solution of inverse problem will be proved by
using the Gelfand-Levitan-Marchenko method. In this method, the transformation operator
is used and the main role is played by linear integral equation with respect to the kernel of the
transformation operator. On the other hand, it should be pointed out that since the equation
(1.1) has r(x) piecewise continuous coefficient, the solution of this problem forms the integral
representation not operator transformation and we use this integral representation for the
solution of inverse problem of considered problem (1.1), (1.2). First of all, we derive the
linear integral equation by the kernel of the integral representation and then we show that
this equation has a unique solution. Finally, we prove the uniqueness theorem of inverse
problem.

Now, we will refer to the sequences {λn} and {γn}, (n ∈ Z) as the spectral data of
the boundary value problem (1.1), (1.2). Consider the functions

F0(x, y) =
∞∑

n=−∞

[
1

γn

(
sinλnx

− cosλnx

)
ϕT
0 (y, λn)−

1

µ(π)

(
sinλ0

nx
− cosλ0

nx

)
ϕT
0 (y, λ

0
n)

]
(16)

and

F (x, y) = F0(µ(x), y). (17)

Then, it is obtained from (3.1) and (3.2) that

F (x, y) =

∞∑
n=−∞

[
1

γn
ϕ0(x, λn)ϕ

T
0 (y, λn)−

1

µ(π)
ϕ0(x, λ

0
n)ϕ

T
0 (y, λ

0
n)

]
. (18)

Theorem 3.1. The following linear integral equation named by Gelfand-Levitan-Marchenko
type equation is satisfied for each fixed x ∈ (0, π] by the kernel G(x, y) of the integral repre-
sentation (2.2):

G(x, µ(y)) + F (x, y) +

∫ µ(x)

0

G(x, s)F0(s, y)ds = 0, 0 < y < x. (19)

Proof. It can be written from (2.2) that

ϕ0(x, λ) = ϕ(x, λ)−
∫ µ(x)

0

G(x, y)

(
sinλy

− cosλy

)
dy. (20)

It is obtained from (2.2) and (3.5) that

N∑
n=−N

1

γn
ϕ(x, λn)ϕ

T
0 (y, λn) =

N∑
n=−N

1

γn
ϕ0(x, λn)ϕ

T
0 (y, λn)+
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+

∫ µ(x)

0

G(x, s)

(
N∑

n=−N

1

γn

(
sinλns

− cosλns

)
ϕT
0 (y, λn)

)
ds,

N∑
n=−N

1

γn
ϕ(x, λn)ϕ

T
0 (y, λn) =

N∑
n=−N

1

γn
ϕ(x, λn)ϕ

T (y, λn)−

−
N∑

n=−N

1

γn
ϕ(x, λn)

∫ µ(y)

0

(sinλns, − cosλns)G
T (y, s)ds.

Then, according to these equalities, we can write

ΨN (x, y) = ΦN (x, y) + Φ′
N (x, y) + Φ′′

N (x, y) + Φ′′′
N (x, y), (21)

where

ΨN (x, y) =
N∑

n=−N

[
1

γn
ϕ(x, λn)ϕ

T (y, λn)−
1

µ(π)
ϕ(x, λ0

n)ϕ
T (y, λ0

n)

]
,

ΦN (x, y) =
N∑

n=−N

[
1

γn
ϕ0(x, λn)ϕ

T
0 (y, λn)−

1

µ(π)
ϕ0(x, λ

0
n)ϕ

T
0 (y, λ

0
n)

]
,

Φ′
N (x, y) =

∫ µ(x)

0

G(x, s)

N∑
n=−N

[
1

µ(π)

(
sinλ0

ns
− cosλ0

ns

)
ϕT
0 (y, λ

0
n)

]
ds,

Φ′′
N (x, y) =

∫ µ(x)

0

G(x, s)
N∑

n=−N

[
1

γn

(
sinλns

− cosλns

)
ϕT
0 (y, λn)−

− 1

µ(π)

(
sinλ0

ns
− cosλ0

ns

)
ϕT
0 (y, λ

0
n)

]
ds,

Φ′′′
N (x, y) =

N∑
n=−N

1

γn
ϕ(x, λn)

∫ µ(y)

0

(sinλns, − cosλns)G
T (y, s)ds.

Now, let us examine these expressions respectively. Assume that g(x), x ∈ [0, π] is absolutely
continuous function. Then, from Lemma 2.3, it is calculated uniformly with respect to
x ∈ [0, π] that

lim
N→∞

∫ π

0

ΨN (x, y)g(y)r(y)dy =

∞∑
n=−∞

βnϕ(x, λn)−
∞∑

n=−∞
β0
nϕ(x, λ

0
n) = 0. (22)

It follows from (3.3) that

lim
N→∞

∫ π

0

ΦN (x, y)g(y)r(y)dy =

= lim
N→∞

∫ π

0

N∑
n=−N

[
1

γn
ϕ0(x, λn)ϕ

T
0 (y, λn)−

1

µ(π)
ϕ0(x, λ

0
n)ϕ

T
0 (y, λ

0
n)

]
g(y)r(y)dy

=

∫ π

0

F (x, y)g(y)r(y)dy. (23)

It can be written from (2.2) that(
sinλs

− cosλs

)
=

{
ϕ0(s, λ), s < a,
ϕ0

(
s
α + a− a

α , λ
)
, s > a.

(24)
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Using (2.13) and (3.9), we have

lim
N→∞

∫ π

0

Φ′
N (x, y)g(y)r(y)dy =

= lim
N→∞

∫ π

0

[∫ µ(x)

0

G(x, s)

N∑
n=−N

1

µ(π)

(
sinλ0

ns
− cosλ0

ns

)
ϕT
0 (y, λ

0
n)ds

]
g(y)r(y)dy

=

∫ π

0

[∫ a

0

G(x, s)
∞∑

n=−∞

1

µ(π)
ϕ0(s, λ

0
n)ϕ

T
0 (x, λ

0
n)ds

]
g(y)r(y)dy

+

∫ π

0

[∫ αx−αa+a

a

G(x, s)

∞∑
n=−∞

1

µ(π)
ϕ0

( s
α
+ a− a

α
, λ0

n

)
×ϕT

0 (x, λ
0
n)ds

]
g(y)r(y)dy

=

∫ a

0

G(x, s)g(s)ds+

∫ αx−αa+a

a

G(x, s)g
( s
α
+ a− a

α

)
ds.

Substituting s
α + a− a

α → η and then changing the denotation for integration variables, we
get

lim
N→∞

∫ π

0

Φ′
N (x, y)g(y)r(y)dy =

=

∫ a

0

G(x, s)g(s)ds+ α

∫ x

a

G(x, αη − αa+ a)g(η)dη

=

∫ a

0

G(x, y)g(y)dy + α

∫ x

a

G(x, αy − αa+ a)g(y)dy

=

∫ x

0

G(x, µ(y))g(y)r(y)dy. (25)

It is found that

lim
N→∞

∫ π

0

Φ′′
N (x, y)g(y)r(y)dy =

= lim
N→∞

∫ π

0

∫ µ(x)

0

G(x, s)
N∑

n=−N

[
1

γn

(
sinλns

− cosλns

)
ϕT
0 (y, λn)−

− 1

µ(π)

(
sinλ0

ns
− cosλ0

ns

)
ϕT
0 (y, λ

0
n)

]
g(y)r(y)dsdy

=

∫ π

0

[∫ µ(x)

0

G(x, s)F0(s, y)ds

]
g(y)r(y)dy. (26)

According to the expressions (2.5), (2.6) and residue theorem, we have

lim
N→∞

∫ π

0

Φ′′′
N (x, y)g(y)r(y)dy =

= lim
N→∞

∫ π

0

[
N∑

n=−N

1

γn
ϕ(x, λn)

∫ µ(y)

0

(sinλns,− cosλns)G
T (y, s)ds

]
g(y)r(y)dy

= lim
N→∞

∫ π

0

[
N∑

n=−N

ϑ(x, λn)

ω̇(λn)

∫ µ(y)

0

(sinλns,− cosλns)G
T (y, s)ds

]
g(y)r(y)dy
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= lim
N→∞

∫ π

0

[
N∑

n=−N

Res
λ=λn

ϑ(x, λ)

ω(λ)

∫ µ(y)

0

(sinλs,− cosλs)GT (y, s)ds

]
g(y)r(y)dy

= lim
N→∞

∫ π

0

[
1

2πi

∫
IN

ϑ(x, λ)

ω(λ)

∫ µ(y)

0

(sinλs, − cosλs)GT (y, s)dsdλ

]
g(y)r(y)dy

= lim
N→∞

∫ π

0

[
1

2πi

∫
IN

ϑ(x, λ)

ω(λ)
e|Imλ|µ(y)×

×e−|Imλ|µ(y)
∫ µ(y)

0

(sinλs, − cosλs)GT (y, s)dsdλ

]
g(y)r(y)dy, (27)

where IN =
{
λ : |λ| = λ0

N + π
2µ(π)

}
, N is sufficiently large number. Since as |λ| → ∞, the

estimates

ϑ1(x, λ) = h2 cosλα(π − x)− (λ+ h1) sinλα(π − x) +O
(
e|Imλ|α(π−x)

)
,

ϑ2(x, λ) = −h2 sinλα(π − x)− (λ+ h1) cosλα(π − x) +O
(
e|Imλ|α(π−x)

)
,

and the following expressions ([13], Lemma 1.3.1)

lim
|λ|→∞

max
0≤y≤π

e−|Imλ|µ(y)

∣∣∣∣∣
∫ µ(y)

0

Gi,1(y, s) sinλsds

∣∣∣∣∣ = 0,

lim
|λ|→∞

max
0≤y≤π

e−|Imλ|µ(y)

∣∣∣∣∣
∫ µ(y)

0

Gi,2(y, s) cosλsds

∣∣∣∣∣ = 0, i = 1, 2,

are valid, it is obtained from (2.9) and (3.12) that

lim
N→∞

∫ π

0

Φ′′′
N (x, y)g(y)r(y)dy = 0. (28)

In this way, it is calculated by using (3.6), (3.7), (3.8), (3.10) (3.11) and (3.13) that∫ x

0

G(x, µ(y))g(y)r(y)dy +

∫ π

0

F (x, y)g(y)r(y)dy+

+

∫ π

0

∫ µ(x)

0

G(x, s)F0(s, y)g(y)r(y)dsdy = 0.

Then, in view of the arbitrariness of g(x), this yields

G(x, µ(y)) + F (x, y) +

∫ µ(x)

0

G(x, s)F0(s, y)ds = 0, 0 < y < x.

�

Theorem 3.2. The equation (3.4) has a unique solution G(x, .) ∈ L2(0, µ(x)) for each fixed
x ∈ (0, π].

Proof. In the case of x < a, due to r(x) ≡ 1, this theorem is proved in [12]. Now, assume
that a < x. Then, the equation (3.4) can be rewritten as

TxG(x, .) +KxG(x, .) = −F (x, .),

where

(Txg) (y) =

{
g(y), y ≤ a < x,
g(αy − αa+ a), a < y ≤ x,

(29)

(Kxg) =

∫ αx−αa+a

0

g(s)F0(s, y)ds, 0 < y < x.
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Let us obtain that Tx has a bounded inverse in L2(0, π). Suppose that (Txg) (y) =
φ(y), φ(y) ∈ L2(0, π) and φ(y) = 0 for y > x. Using this and (3.14), we can write

g(y) =
(
T−1
x φ

)
(y) =

{
φ(y), y ≤ a,
φ
(
y
α + a− a

α

)
, a < y.

Then, we calculate

∥g∥L2
=

∫ π

0

(
|g1(y)|2 + |g2(y)|2

)
dy =

∫ a

0

(
|φ1(y)|2 + |φ2(y)|2

)
dy +

+

∫ π

a

(∣∣∣φ1

( y
α
+ a− a

α

)∣∣∣2 + ∣∣∣φ2

( y
α
+ a− a

α

)∣∣∣2) dy

=

∫ a

0

(
|φ1(y)|2 + |φ2(y)|2

)
dy + α

∫ π+αa−a
α

a

(
|φ1(y)|2 + |φ2(y)|2

)
dy

≤ c

∫ π

0

(
|φ1(y)|2 + |φ2(y)|2

)
dy = c ∥φ∥L2

.

Thus, we have
∥g∥L2

=
∥∥T−1

x φ
∥∥
L2

≤ c ∥φ∥L2
.

Therefore, the operator Tx is invertible in L2(0, π) and the main equation (3.4) can be
expressed as follows

G(x, .) + T−1
x KxG(x, .) = −T−1

x F (x, .),

where T−1
x Kx is completely continuous operator in L2(0, π). In that case, it suffices to show

that the homogeneous equation

t(µ(y)) +

∫ µ(x)

0

t(s)F0(s, y)ds = 0 (30)

has only trivial solution t(y) = 0. Let t(y) be a non-trivial solution of (3.15) and t(y) = 0
for y ∈ (x, π). Then, from (3.1) and (3.15), we have∫ x

0

(
t21(µ(y)) + t22(µ(y))

)
r(y)dy+

+

∫ x

0

∫ µ(x)

0

t(s)

∞∑
n=−∞

[
1

γn

(
sinλns

− cosλns

)
ϕT
0 (y, λn)−

− 1

µ(π)

(
sinλ0

ns
− cosλ0

ns

)
ϕT
0 (y, λ

0
n)

]
tT (µ(y))r(y)dsdy = 0.

In this equality, using (3.9) we get∫ x

0

(
t21(µ(y)) + t22(µ(y))

)
r(y)dy+

+

∫ x

0

∫ a

0

t(s)
∞∑

n=−∞

1

γn
ϕ0(s, λn)ϕ

T
0 (y, λn)t

T (µ(y))r(y)dsdy

−
∫ x

0

∫ a

0

t(s)

∞∑
n=−∞

1

µ(π)
ϕ0(s, λ

0
n)ϕ

T
0 (y, λ

0
n)t

T (µ(y))r(y)dsdy

+

∫ x

0

∫ αx−αa+a

0

t(s)
∞∑

n=−∞

1

γn
ϕ0

( s
α
+ a− a

α
, λn

)
ϕT
0 (y, λn)t

T (µ(y))r(y)dsdy

−
∫ x

0

∫ αx−αa+a

0

t(s)
∞∑

n=−∞

1

µ(π)
ϕ0

( s
α
+ a− a

α
, λ0

n

)
×

×ϕT
0 (y, λ

0
n)t

T (µ(y))r(y)dsdy = 0.
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Substituting s
α + a− a

α → s, we find∫ x

0

(
t21(µ(y)) + t22(µ(y))

)
r(y)dy+

+

∫ x

0

∫ a

0

t(s)
∞∑

n=−∞

1

γn
ϕ0(s, λn)ϕ

T
0 (y, λn)t

T (µ(y))r(y)dsdy

−
∫ x

0

∫ a

0

t(s)
∞∑

n=−∞

1

µ(π)
ϕ0(s, λ

0
n)ϕ

T
0 (y, λ

0
n)t

T (µ(y))r(y)dsdy

+α

∫ x

0

∫ x

a

t(αs− αa+ a)
∞∑

n=−∞

1

γn
ϕ0(s, λn)ϕ

T
0 (y, λn)t

T (µ(y))r(y)dsdy

−α

∫ x

0

∫ x

a

t(αs− αa+ a)
∞∑

n=−∞

1

µ(π)
ϕ0(s, λ

0
n)ϕ

T
0 (y, λ

0
n)t

T (µ(y))r(y)dsdy

=

∫ x

0

(
t21(µ(y)) + t22(µ(y))

)
r(y)dy

+

∫ x

0

∫ x

0

t(µ(s))
∞∑

n=−∞

1

γn
ϕ0(s, λn)ϕ

T
0 (y, λn)t

T (µ(y))r(y)r(s)dsdy

−
∫ x

0

∫ x

0

t(µ(s))

∞∑
n=−∞

1

µ(π)
ϕ0(s, λ

0
n)ϕ

T
0 (y, λ

0
n)t

T (µ(y))r(y)r(s)dsdy = 0. (31)

In the expression (3.16), using Parseval equality

∥t(µ(y))∥2 =
∞∑

n=−∞

1

µ(π)

(∫ x

0

t(µ(y))ϕ0(y, λ
0
n)r(y)dy

)2

we obtain
∞∑

n=−∞

1

γn

(∫ x

0

t(µ(y))ϕ0(y, λn)r(y)dy

)2

.

The system {φ0(y, λn)} , (n ∈ Z) is complete in L2,r(0, π) (see [11]), therefore t(µ(y)) ≡ 0,
namely (Txt) (y) = 0. Since Tx has a bounded inverse in L2(0, π), we have G(x, .) = 0. �

Consequently, the following theorem is proved by using Theorem 3.1 and Theorem
3.2:

Assume that L(Q(x), h1, h2) and L̃(Q̃(x), h̃1, h̃2) be two boundary value problems and

also if a certain symbol θ denotes an object related to L, then the symbol θ̃ denotes the
corresponding object to related L̃.

Theorem 3.3. If λn = λ̃n, γn = γ̃n, (n ∈ Z), then Q(x) = Q̃(x) a.e. on (0, π) and h1 = h̃1,

h2 = h̃2. Namely, the spectral data {λn, γn}, (n ∈ Z) uniquely determines the boundary value
problem (1.1), (1.2).

Proof. Considering (3.1) and (3.2), we have F0(x, y) = F̃0(x, y) and F (x, y) = F̃ (x, y). It is

obtained from the main equation (3.4) that G(x, y) = G̃(x, y). The expression (2.3) implies

that Q(x) = Q̃(x) a.e. on (0, π). Now, according to order of precedence, respectively in

the consideration of the equalities (2.2), (2.12) and (2.6), we calculate ϕ(x, λn) = ϕ̃(x, λn),

ω̇(λn) = ˙̃ω(λn) and κn = κ̃n. Finally, h1 = h̃1 and h2 = h̃2 are obtained by using (2.1) and
(2.5). �
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Algorithm 3.1. According to spectral data {λn, γn}, (n ∈ Z), the construction of the po-
tential function Q(x) is as follows:

• From the given numbers {λn, γn}, (n ∈ Z) construct the functions F0(x, y) and F (x, y)
respectively by the formulas (3.1) and (3.2),

• Find the function G(x, y) by solving the main equation (3.4),
• Calculate Q(x) by the formula (2.3).
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