

**A FIXED POINT APPROACH TO THE STABILITY OF
DOUBLE JORDAN CENTRALIZERS AND JORDAN
MULTIPLIERS ON BANACH ALGEBRAS**

M. Eshaghi Gordji¹, A. Bodaghi², C. Park³

We say a functional equation (ξ) is stable if any function g satisfying the equation (ξ) approximately is near to true solution of (ξ) , moreover, a functional equation (ξ) is superstable if any function g satisfying the equation (ξ) approximately is a true solution of (ξ) . In the present paper, we investigate the stability and the superstability of double centralizers and of multipliers on Banach algebras by using the fixed point methods.

Keywords: Double centralizer; Multiplier; Hyers-Ulam stability.

MSC2000: 39B82, 39B52.

1. Introduction

In this paper, we assume that A is a complex Banach algebra. A linear mapping $L : A \rightarrow A$ is said to be *left Jordan centralizer* on A if $L(a^2) = L(a)a$ for all $a \in A$. Similarly, a linear mapping $R : A \rightarrow A$ satisfying that $R(a^2) = aR(a)$ for all $a \in A$ is called *right Jordan centralizer* on A . A *double Jordan centralizer* on A is a pair (L, R) , where L is a left Jordan centralizer, R is a right Jordan centralizer and $aL(b) = R(a)b$ for all $a, b \in A$. For example, (L_c, R_c) is a double Jordan centralizer, where $L_c(a) := ca$ and $R_c(a) := ac$ (see [9] and [11]).

A mapping $T : A \rightarrow A$ is said to be a *Jordan multiplier* (see [12]) if $aT(a) = T(a)a$ for all $a \in A$. Clearly, if $A_l(A) = \{0\}$ ($A_r(A) = \{0\}$, respectively) then T is a left (right) Jordan centralizer (see [14]).

In 1940, Ulam [26] proposed the following question concerning stability of group homomorphisms: *under what condition does there is an additive mapping near an approximately additive mapping?* Hyers [10] answered the problem of Ulam for the case where G_1 and G_2 are Banach spaces. A generalized version of the theorem of Hyers for approximately linear mapping was given by Th.

¹Department of Mathematics, Semnan University, P. O. Box 35195-363, Semnan, Iran.; Center of Excellence in Nonlinear Analysis and Applications (CENAA), Semnan University, Semnan, Iran., e-mail:madjid.eshaghi@gmail.com

²Department of Mathematics, Islamic Azad University, Garmas Branch, Garmas, Iran, e-mail: abasalt.bodaghi@gmail.com

³Department of Mathematics, Research Institute for Natural Sciences, Hanyang University, Seoul 133-791, South Korea, e-mail:baak@hanyang.ac.kr

M. Rassias [25]. After that, several functional equations have been extensively investigated by a number of authors (for instances, [4]–[7], [13] and [15]–[24]).

In 2003, Cădariu and Radu applied the fixed point method to the investigation of the Jensen functional equation [1] (see also [2, 3, 8]). They presented a short and a simple proof (no “*direct method*”, initiated by Hyers in 1941) for the Hyers-Ulam stability of the Jensen functional equation [1], for the Cauchy functional equation [3] and for some other functional equations [1, 2, 3].

We need the following known fixed point theorem which is useful for our goals.

Theorem 1.1. (*The alternative of fixed point [5]*) Suppose (Ω, d) be a complete generalized metric space and let $\mathcal{J} : \Omega \rightarrow \Omega$ be a strictly contractive mapping with Lipschitz constant $L < 1$. Then for each element $x \in \Omega$, either $d(\mathcal{J}^n x, \mathcal{J}^{n+1} x) = \infty$ for all $n \geq 0$, or there exists a natural number n_0 such that:

- (*) $d(\mathcal{J}^n x, \mathcal{J}^{n+1} x) < \infty$ for all $n \geq n_0$;
- (**) the sequence $\{\mathcal{J}^n x\}$ is convergent to a fixed point y^* of \mathcal{J} ;
- (***) y^* is the unique fixed point of \mathcal{J} in the set

$$\Lambda = \{y \in \Omega : d(\mathcal{J}^{n_0} x, y) < \infty\};$$

$$(\ast \ast \ast) d(y, y^*) \leq \frac{1}{1-L} d(y, \mathcal{J}y) \text{ for all } y \in \Lambda.$$

Moreover, we will use the following known lemma in the proof of main results of our paper. We do not remove the proof of lemma. We suppose that $\mathbb{T}^1 := \{z \in \mathbb{C} : |z| = 1\}$.

Lemma 1.1. Let $n_0 \in \mathbb{N}$ be a positive integer number and let X, Y be linear vector spaces on \mathbb{C} . Suppose that $f : X \rightarrow Y$ is an additive mapping. Then f is \mathbb{C} –linear if and only if $f(\lambda x) = \lambda f(x)$ for all x in X and λ in $\mathbb{T}_{\frac{1}{n_0}}^1 := \{e^{i\theta} ; 0 \leq \theta \leq \frac{2\pi}{n_0}\}$.

Proof. Suppose that f is additive and $f(\lambda x) = \lambda f(x)$ for all x in X and all λ in $\mathbb{T}_{\frac{1}{n_0}}^1$. Now, let $\mu \in \mathbb{T}^1$. Then we have $\mu = e^{i\theta}$ such that $0 \leq \theta \leq 2\pi$. We set

$$\mu_1 = e^{\frac{i\theta}{n_0}},$$

thus μ_1 belongs to $\mathbb{T}_{\frac{1}{n_0}}^1$ and

$$f(\mu x) = f(\mu_1^{n_0} x) = \mu_1^{n_0} f(x) = \mu f(x)$$

for all x in X . If μ belongs to $n\mathbb{T}^1 = \{nz ; z \in \mathbb{T}^1\}$ then by additivity of f , $f(\mu x) = \mu f(x)$ for all x in X and μ in $n\mathbb{T}^1$. If $t \in (0, \infty)$ then by archimedean property there exists a natural number n such that the point $(t, 0)$ lies in the interior of circle with center at origin and radius n in \mathbb{C} . Put

$$t_1 := t + \sqrt{n^2 - t^2} i \in n\mathbb{T}^1$$

and

$$t_2 := t - \sqrt{n^2 - t^2} \quad i \in nT^1.$$

We have $t = \frac{t_1+t_2}{2}$ and

$$f(tx) = f\left(\frac{t_1+t_2}{2}x\right) = \frac{t_1+t_2}{2}f(x) = tf(x)$$

for all x in X .

If $\mu \in \mathbb{C}$, then

$$\mu = |\mu|e^{i\mu_1},$$

therefore

$$f(\mu x) = f(|\mu|e^{i\mu_1}x) = |\mu|e^{i\mu_1}f(x) = \mu f(x)$$

for all x in X . In the other words f is \mathbb{C} -linear. The converse is clear. \square

From now on, we suppose that $n_0 \in \mathbb{N}$ is a positive integer number, and that

$$\mathbb{T}_{\frac{1}{n_0}}^1 := \{e^{i\theta} ; 0 \leq \theta \leq \frac{2\pi}{n_0}\}.$$

2. Stability of double centralizers

For every $x, y \in A$, we put $x^0 - y^0 = 0, x^0y = y$ and also denote $\underbrace{A \times A \times \dots \times A}_{n-times}$ by A^n . We establish the Hyers-Ulam stability of double Jordan centralizers as follows.

Theorem 2.1. *Let $f_j : A \rightarrow A$ be mappings with $f_j(0) = 0$ ($j = 0, 1$), and let $\varphi : A^4 \rightarrow [0, \infty)$ be a function such that*

$$\begin{aligned} & \|f_j(\lambda x + \lambda y + z^2) - \lambda f_j(x) - \lambda f_j(y) - [j(zf_j(z))^j + (1-j)(f_j(z)z)^{1-j}] \\ & \quad + f_{1-j}(a)a - af_j(a)\| \leq \varphi(x, y, z, a) \end{aligned} \quad (1)$$

for all $\lambda \in \mathbb{T}_{\frac{1}{n_0}}^1$. If

$$\lim_{n \rightarrow \infty} \frac{\varphi(2^n x, 2^n y, 2^n z, 2^n a)}{2^n} = 0, \quad (2)$$

and there exists a constant K in which $0 < K < 1$ such that

$$\psi(2x) \leq 2K\psi(x) \quad (3)$$

for all $x \in A$, then there exists a unique double Jordan centralizer (L, R) on A satisfying

$$\|f_0(x) - L(x)\| \leq \frac{\psi(x)}{2(1-K)}, \quad (4)$$

$$\|f_1(x) - R(x)\| \leq \frac{\psi(x)}{2(1-K)} \quad (5)$$

for all $x \in A$, where $\psi(x) = \varphi(x, x, 0, 0)$.

Proof. We consider the set Ω as follows:

$$\Omega = \{h : A \longrightarrow A \mid h(0) = 0\}.$$

We also define the generalized metric on Ω :

$$d(g, h) := \inf\{C \in [0, \infty] : \|g(x) - h(x)\| \leq C\psi(x) \text{ for all } x \in A\}.$$

One can show that (Ω, d) is a complete metric space. Now, we define a mapping $\mathcal{J} : \Omega \longrightarrow \Omega$ by

$$\mathcal{J}h(x) = \frac{1}{2}h(2x) \quad (6)$$

for all $x \in A$. Given $g, h \in \Omega$, let $C \in [0, \infty]$ be an arbitrary constant with $d(g, h) \leq C$, i.e.,

$$\|g(x) - h(x)\| \leq C\psi(x) \quad (7)$$

for all $x \in A$. Substituting x by $2x$ in the inequality (7) and using from (3) and (6), we have

$$\|\mathcal{J}g(x) - \mathcal{J}h(x)\| \leq \frac{1}{2}\|g(2x) - h(2x)\| \leq \frac{1}{2}C\psi(2x) \leq CK\psi(x)$$

for all $x \in A$, and so $d(\mathcal{J}g, \mathcal{J}h) \leq CK$. This shows that \mathcal{J} is strictly contractive on Ω . Hence we can conclude that

$$d(\mathcal{J}g, \mathcal{J}h) \leq Kd(g, h)$$

for all $g, h \in \Omega$. Now, we prove that for all $h \in \Omega$, $d(\mathcal{J}h, h) < \infty$. Letting $j = 0, \lambda = 1, x = y, z = a = 0$ in (1), we obtain $\|f_0(2x) - 2f_0(x)\| \leq \psi(x)$ for all $x \in A$. Thus

$$\left\| \frac{1}{2}f_0(2x) - f_0(x) \right\| \leq \frac{1}{2}\psi(x) \quad (8)$$

for all $x \in A$.

It follows from (8) that $d(\mathcal{J}f, f) \leq \frac{1}{2}$. By Theorem 1.1, the sequence $\{\mathcal{J}^n f_0\}$ converges to a unique fixed point $L : A \rightarrow A$ in the set $\Omega_1 = \{h \in \Omega, d(f, h) < \infty\}$, i.e.,

$$\lim_{n \rightarrow \infty} \frac{f_0(2^n x)}{2^n} = L(x) \quad (9)$$

for all $x \in A$, and so

$$d(f_0, L) \leq \frac{1}{1-K}d(\mathcal{J}f_0, L) \leq \frac{1}{2(1-K)}.$$

Thus the inequality (4) holds for all $x \in A$. Now, replace $2^n x$ and $2^n y$ by x and y , respectively, and put $z = a = 0$ in (1). If we divide both sides of the

resulting inequality by 2^n , and letting n tend to infinity, then it follows from (1), (2) and (9) that

$$L(\lambda x) = \lambda L(x),$$

for all $x \in A$ and all $\lambda \in \mathbb{T}_{\frac{1}{n_o}}^1$. It follows from Lemma 1.1 that L is \mathbb{C} -linear. It is routine to show that $L(a^2) = L(a)^2$ from (1), and so it is a left Jordan centralizer on A .

According the above argument, one can show that there exists a unique mapping $R : A \rightarrow A$ which is a point of T such that

$$\lim_{n \rightarrow \infty} \frac{f_1(2^n x)}{2^n} = R(x) \quad (10)$$

for all $x \in A$. Indeed, R belongs to the set Ω_1 . If we put $i = 0, x = y = z = 0$ and substitute a by $2^n a$ in (1) and we divide the both sides of the obtained inequality by 2^n , then we get

$$\left\| a \frac{f_0(2^n a)}{2^n} - \frac{f_1(2^n a)}{2^n} a \right\| \leq \frac{\varphi(0, 0, 0, 2^n a)}{2^n}.$$

Passing to the limit as $n \rightarrow \infty$, and from (2) we conclude that $aL(a) = R(a)a$, for all $a \in A$. \square

Corollary 2.1. *Let r and θ be nonnegative real numbers such that $r < 1$, and let $f_j : A \rightarrow A$ be mappings with $f_j(0) = 0$ ($j = 0, 1$) such that*

$$\begin{aligned} & \|f_j(\lambda x + \lambda y + z^2) - \lambda f_j(x) - \lambda f_j(y) - [j(z f_j(z))^j + (1-j)(f_j(z)z)^{1-j}] \\ & - a f_j(a) + f_{1-j}(a)a\| \leq \theta(\|x\|^r + \|y\|^r + \|z\|^r + \|a\|^r) \end{aligned} \quad (11)$$

for all $\lambda \in \mathbb{T}_{\frac{1}{n_o}}^1$ and all $x, y, z, a \in A$. Then there exists a unique double centralizer (L, R) on A satisfying

$$\|f_0(x) - L(x)\| \leq \frac{\theta}{2 - 2^r},$$

$$\|f_1(x) - R(x)\| \leq \frac{\theta}{2 - 2^r}$$

for all $x, y \in A$.

Proof. By putting $K = 2^{r-1}$ and

$$\varphi(x, y, z, w, a) = \theta(\|x\|^r + \|y\|^r + \|z\|^r + \|a\|^r)$$

for all $x, y, z, a \in A$ in Theorem 2.1, we obtain the desired result. \square

In the following corollary, we prove the superstability of double centralizers under some conditions.

Corollary 2.2. *Let r and θ be nonnegative real numbers such that $r < \frac{1}{6}$, and let $f_j : A \rightarrow A$ be mappings with $f_j(0) = 0$ ($j = 0, 1$) such that*

$$\begin{aligned} & \|f_j(\lambda x + \lambda y + z^2) - \lambda f_j(x) - \lambda f_j(y) - [j(z f_j(z))^j + (1-j)(f_j(z)z)^{1-j}] \\ & - af_j(a) + f_{1-j}(a)a\| \leq \theta(\|x\|^r \|y\|^r \|z\|^r \|a\|^r) \end{aligned} \quad (12)$$

for all $\lambda \in \mathbb{T}_{\frac{1}{n_0}}^1$ and all $x, y, z, a \in A$. Then (f_0, f_1) is a double centralizer.

Proof. It follows from Theorem 2.1 by taking

$$\varphi(x, y, z, a) = \theta(\|x\|^r \|y\|^r \|z\|^r \|a\|^r)$$

for all $x, y, z, a \in A$. \square

3. Stability Of multipliers

In this section, we investigate the Hyers-Ulam stability and the superstability of multipliers on Banach algebras. First we need the next theorem which is the main key to investigation of the stability and superstability.

Theorem 3.1. *let $f : A \rightarrow A$ be a mapping with $f(0) = 0$ and let $\phi : A^3 \rightarrow [0, \infty)$ be a function such that*

$$\|f(\lambda x + \lambda y) - \lambda f(x) - \lambda f(y) - f(z)z + zf(z)\| \leq \phi(x, y, z) \quad (13)$$

for all $\lambda \in \mathbb{T}_{\frac{1}{n_0}}^1$ and all $x, y, z \in A$. If

$$\lim_{n \rightarrow \infty} \frac{\varphi(2^n x, 2^n y, 2^n z)}{2^n} = 0, \quad (14)$$

and there exists a constant K , $0 < K < 1$, such that

$$\psi(2x) \leq 2K\psi(x) \quad (15)$$

for all $x \in A$, then there exists a unique multiplier T on A satisfying

$$\|f(x) - L(x)\| \leq \frac{1}{2(1-K)}\psi(x) \quad (16)$$

for all $x \in A$, where $\psi(x) = \varphi(x, x, 0)$.

Proof. First, similar to the proof of Theorem 2.1, we Consider the set $\Omega := \{h : A \rightarrow A \mid h(0) = 0\}$ and introduce the generalized metric d on Ω as follows:

$$d(g, h) := \inf\{C \in \mathbb{R}^+ : \|g(x) - h(x)\| \leq C\psi(x) \text{ for all } x \in A\}.$$

Again, similar to the proof of Theorem 2.1, the space Ω equipped to the metric d is complete. Now we define a mapping $\mathcal{J} : \Omega \rightarrow \Omega$ by

$$\mathcal{J}(h)(x) = \frac{1}{2}h(2x)$$

for all $x \in A$. By the same reasoning as in the proof of Theorem 2.1, \mathcal{J} is strictly contractive on Ω . Putting $\lambda = 1, x = y$ and $z = 0$ in (13), we obtain

$$\|f(2x) - 2f(x)\| \leq \psi(x)$$

for all $x \in A$. So

$$\left\| \frac{1}{2}f(2x) - f(x) \right\| \leq \frac{1}{2}\psi(x) \quad (17)$$

for all $x \in A$. The inequality (17) shows that

$$d(\mathcal{J}f, f) \leq \frac{1}{2}.$$

By Theorem 1.1, \mathcal{J} has a unique fixed point in the set $\Omega_1 := \{h \in \Omega : d(f, h) < \infty\}$. Let T be the fixed point of \mathcal{J} . Then T is the unique mapping with

$$T(2x) = 2T(x)$$

for all $x \in A$ such that there exists $C \in (0, \infty)$ such that

$$\|T(x) - f(x)\| \leq K\psi(x)$$

for all $x \in A$. On the other hand, we have

$$\lim_{n \rightarrow \infty} d(\mathcal{J}^n(f), h) = 0.$$

Thus

$$\lim_{n \rightarrow \infty} \frac{1}{2^n} f(2^n x) = h(x) \quad (18)$$

for all $x \in A$. Hence

$$d(f, T) \leq \frac{1}{1-K} d(T, \mathcal{J}(f)) \leq \frac{1}{2(1-L)}. \quad (19)$$

This implies the inequality (16). From (13), (14) and (18) we obtain

$$\begin{aligned} \|T(x+y) - T(x) - T(y)\| &= \lim_{n \rightarrow \infty} \frac{1}{2^n} \|f(2^n(x+y)) + f(2^n(x)) - f(2^ny)\| \\ &\leq \lim_{n \rightarrow \infty} \frac{1}{2^n} \phi(2^n x, 2^n y, 0) = 0 \end{aligned}$$

for all $x, y \in A$. So $T(x+y) = T(x) + T(y)$ for all $x, y \in A$. Thus T is Cauchy additive. If we put $y = x, z = 0$ in (13), we can conclude that

$$\|2\lambda f(x) - f(2\lambda x)\| \leq \psi(x)$$

for all $x \in A$. It follows that

$$\begin{aligned} \|T(2\lambda x) - 2\lambda T(x)\| &= \lim_{n \rightarrow \infty} \frac{1}{2^n} \|f(2\lambda 2^n x) - 2\lambda f(2^n x)\| \\ &\leq \lim_{n \rightarrow \infty} \frac{1}{2^n} \phi(2^n x, 2^n x, 0) = 0 \end{aligned}$$

for all $\lambda \in \mathbb{T}$ and all $x \in A$. So $T(\lambda x) = \lambda T(x)$ for all $\lambda \in \mathbb{T}_{\frac{1}{n_0}}$ and all $x \in A$. Linearity of T follows from the proof of Theorem 2.1. If we substitute z by

$2^n z$ in (13), and put $x = y = 0$ and we divide the both sides of the obtained inequality by 2^n , we get

$$\left\| z \frac{f(2^n z)}{2^n} - \frac{f(2^n z)}{2^n} z \right\| \leq \frac{\phi(0, 0, 2^n z)}{2^n}.$$

Passing to the limit as $n \rightarrow \infty$, and from (16) we conclude that $zT(z) = T(z)z$ for all $z \in A$. \square

Corollary 3.1. *Let r and θ be nonnegative real numbers such that $r < 1$, and let $f : A \rightarrow A$ be a mapping with $f(0) = 0$ such that*

$$\|f(\lambda x + \lambda y) - \lambda f(x) - \lambda f(y) - f(z)z + zf(z)\| \leq \theta(\|x\|^r + \|y\|^r + \|z\|^r)$$

for all $\lambda \in \mathbb{T}_{\frac{1}{no}}^1$ and all $x, y, z \in A$. Then there exists a unique multiplier T on A satisfying

$$\|f(x) - T(x)\| \leq \frac{\theta}{2 - 2^r}$$

for all $x \in A$.

Proof. The proof follows from Theorem 3.1 by taking

$$\phi(x, y, z) = \theta(\|x\|^r + \|y\|^r + \|z\|^r)$$

for all $x, y, z \in A$ and by putting $K = 2^{r-1}$. \square

Now, we have the following result for the superstability of multipliers.

Corollary 3.2. *Let r and θ be nonnegative real numbers such that $r < \frac{1}{4}$, and let $f : A \rightarrow A$ be a mapping with $f(0) = 0$ such that*

$$\|f(\lambda x + \lambda y) - \lambda f(x) - \lambda f(y) - f(z)z + zf(z)\| \leq \theta(\|x\|^r \|y\|^r \|z\|^r)$$

for all $\lambda \in \mathbb{T}_{\frac{1}{no}}^1$ and all $x, y, z \in A$. Then f is a multiplier on A .

Proof. It follows from Theorem 3 by taking

$$\phi(x, y, z) = \theta(\|x\|^r \|y\|^r \|z\|^r)$$

for all $x, y, z \in A$. \square

Acknowledgement

The third author was supported by Basic Science Research Program through the National Research Foundation of Korea funded by the Ministry of Education, Science and Technology (NRF-2009-0070788).

REFERENCES

- [1] *L. Cădariu and V. Radu*, Fixed points and the stability of Jensen's functional equation, *J. Inequal. Pure Appl. Math.* **4**, Art. 4 (2003).
- [2] *L. Cădariu and V. Radu*, Fixed points and the stability of quadratic functional equations, *An. Univ. Timișoara, Ser. Mat. Inform.* **41** (2003), 25–48.
- [3] *L. Cădariu and V. Radu*, On the stability of the Cauchy functional equation: a fixed point approach, *Grazer Math. Ber.* **346** (2004), 43–52.
- [4] *P. W. Cholewa*, Remarks on the stability of functional equations, *Aequationes Math.* **27** (1984), 76–86.
- [5] *J. B. Diaz and B. Margolis*, A fixed point theorem of the alternative for contractions on a generalized complete metric space, *Bull. Amer. Math. Soc.*, **74** (1968), 305–309.
- [6] *M. Eshaghi Gordji, M. Ramezani, A. Ebadian and C. Park*, Quadratic double centralizers and quadratic multipliers, *Ann. Univ. Ferrara Sez. VII Sci. Mat.*, (2011), Doi: 10.1007/s11565-011-0115-7..
- [7] *M. Eshaghi Gordji and A. Bodaghi*, On the stability of quadratic double centralizers on Banach algebras, *J. Comput. Anal. Appl.* Vol.13, NO.4, (2011) 724–729.
- [8] *M. Eshaghi Gordji and A. Najati*, Approximately J^* -homomorphisms: A fixed point approach, *Journal of Geometry and Physics* **60** (2010), 809–814.
- [9] *G. Hochschild*, Cohomology and representations of associative algebras, *Duke Math. J.* **14** (1947), 921–948.
- [10] *D. H. Hyers*, On the stability of the linear functional equation, *Proc. Nat. Acad. Sci. U.S.A.* **27** (1941), 222–224.
- [11] *B. E. Johnson*, An introduction to the theory of centralizers, *Proc. London Math. Soc.* **14** (1964), 299–320.
- [12] *R. Larsen*, *Introduction to the Theory of Multipliers*, Springer-Verlag, New York, 1971.
- [13] *T. Miura, G. Hirasawa and S. E. Takahashi* Stability of multipliers on Banach algebras, *Internat. J. Math. Math. Sci.* **45** (2004), 2377–2381.
- [14] *T. W. Palmer*, *Banach Algebras and General Theory of $*$ -Algebras*, Vol. I, *Algebras and Banach Algebras*, *Encyclopedia of Mathematics and its Applications* 49, Cambridge University Press, Cambridge, 1994.
- [15] *C. Park*, On the stability of the linear mapping in Banach modules, *J. Math. Anal. Appl.* **275** (2002), 711–720.
- [16] *C. Park*, On an approximate automorphism on a C^* -algebra, *Proc. Amer. Math. Soc.* **132** (2004), 1739–1745.
- [17] *C. Park*, Homomorphisms between Poisson JC^* -algebras, *Bull. Braz. Math. Soc.* **36** (2005), 79–97.
- [18] *C. Park*, Fixed points and Hyers-Ulam-Rassias stability of Cauchy-Jensen functional equations in Banach algebras, *Fixed Point Theory and Applications* **2007**, Art. ID 50175 (2007).

- [19] *C. Park and J. M. Rassias*, Stability of the Jensen-type functional equation in C^* -algebras: A fixed point approach, *Abstract and Applied Analysis* **2009**, Art. ID 360432 (2009).
- [20] *J. M. Rassias*, On approximation of approximately linear mappings by linear mappings, *J. Funct. Anal.* **46** (1982), 126–130.
- [21] *J. M. Rassias*, Solution of a problem of Ulam, *J. Approx. Theory* **57** (1989), 268–273.
- [22] *J. M. Rassias and M. J. Rassias*, Refined Ulam stability for Euler-Lagrange type mappings in Hilbert spaces, *Internat. J. Appl. Math. Stat.* **7** (2007), 126–132.
- [23] *Th. M. Rassias*, On the stability of the linear mapping in Banach spaces, *Proc. Amer. Math. Soc.* **72** (1978), 297–300.
- [24] *Th. M. Rassias*, On the stability of functional equations in Banach spaces, *J. Math. Anal. Appl.* **251** (2000), 264–284.
- [25] *Th. M. Rassias*, On the stability of the linear mapping in Banach spaces, *Proc. Amer. Math. Soc.* **72** (1978), 297–300.
- [26] *S. M. Ulam*, Problems in Modern Mathematics, Chapter VI, Science ed., Wiley, New York, 1940.