
U.P.B. Sci. Bull., Series A, Vol. 73, Iss. 2, 2011 ISSN 1223-7027

A FIXED POINT APPROACH TO THE STABILITY OF
DOUBLE JORDAN CENTRALIZERS AND JORDAN

MULTIPLIERS ON BANACH ALGEBRAS

M. Eshaghi Gordji1, A. Bodaghi2, C. Park3

We say a functional equation (ξ) is stable if any function g satisfying
the equation (ξ) approximately is near to true solution of (ξ), moreover, a
functional equation (ξ) is superstable if any function g satisfying the equa-
tion (ξ) approximately is a true solution of (ξ). In the present paper, we
investigate the stability and the superstability of double centralizers and of
multipliers on Banach algebras by using the fixed point methods.
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1. Introduction

In this paper, we assume that A is a complex Banach algebra. A linear
mapping L : A→ A is said to be left Jordan centralizer on A if L(a2) = L(a)a
for all a ∈ A. Similarly, a linear mapping R : A → A satisfying that R(a2) =
aR(a) for all a ∈ A is called right Jordan centralizer on A. A double Jordan
centralizer on A is a pair (L,R), where L is a left Jordan centralizer, R is
a right Jordan centralizer and aL(b) = R(a)b for all a, b ∈ A. For example,
(Lc, Rc) is a double Jordan centralizer, where Lc(a) := ca and Rc(a) := ac (see
[9] and [11]).

A mapping T : A → A is said to be a Jordan multiplier (see [12]) if
aT (a) = T (a)a for all a ∈ A. Clearly, if Al(A) = {0} (Ar(A) = {0}, respec-
tively) then T is a left (right) Jordan centralizer (see [14]).

In 1940, Ulam [26] proposed the following question concerning stability of
group homomorphisms: under what condition does there is an additive mapping
near an approximately additive mapping? Hyers [10] answered the problem of
Ulam for the case where G1 and G2 are Banach spaces. A generalized version
of the theorem of Hyers for approximately linear mapping was given by Th.
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M. Rassias [25]. After that, several functional equations have been extensively
investigated by a number of authors (for instances, [4]–[7], [13] and [15]–[24]).

In 2003, Cădariu and Radu applied the fixed point method to the investi-
gation of the Jensen functional equation [1] (see also [2, 3, 8]). They presented
a short and a simple proof ( no “direct method ”, initiated by Hyers in 1941) for
the Hyers-Ulam stability of the Jensen functional equation [1], for the Cauchy
functional equation [3] and for some other functional equations [1, 2, 3].

We need the following known fixed point theorem which is useful for our
goals.

Theorem 1.1. (The alternative of fixed point [5]) Suppose (Ω, d) be a com-
plete generalized metric space and let J : Ω → Ω be a strictly contractive
mapping with Lipschitz constant L < 1. Then for each element x ∈ Ω, either
d(Jnx, Jn+1x) = ∞ for all n ≥ 0, or there exists a natural number n0 such
that:
(∗) d(Jnx, Jn+1x) <∞ for all n ≥ n0;
(∗∗) the sequence {Jnx} is convergent to a fixed point y∗ of J;
(∗ ∗ ∗) y∗ is the unique fixed point of J in the set

Λ = {y ∈ Ω : d(Jn0x, y) <∞};
(∗ ∗ ∗∗) d(y, y∗) ≤ 1

1−L
d(y, Jy) for all y ∈ Λ.

Moreover, we will use the following known lemma in the proof of main
results of our paper. We do not remove the proof of lemma. We suppose that
T1 := {z ∈ C : |z| = 1}.

Lemma 1.1. Let n0 ∈ N be a positive integer number and let X, Y be linear
vector spaces on C. Suppose that f : X → Y is an additive mapping. Then
f is C−linear if and only if f(λx) = λf(x) for all x in X and λ in T1

1
no

:=

{eiθ ; 0 ≤ θ ≤ 2π
no
}.

Proof. Suppose that f is additive and f(λx) = λf(x) for all x in X and all λ
in T 1

1
no

. Now, let µ ∈ T 1. Then we have µ = eiθ such that 0 ≤ θ ≤ 2π. We set

µ1 = e
iθ
no ,

thus µ1 belongs to T 1
1
no

and

f(µx) = f(µno
1 x) = µno

1 f(x) = µf(x)

for all x in X. If µ belongs to nT 1 = {nz ; z ∈ T 1} then by additivity of f,
f(µx) = µf(x) for all x in X and µ in nT 1. If t ∈ (0,∞) then by archimedean
property there exists a natural number n such that the point (t, 0) lies in the
interior of circle with center at origin and radius n in C. Put

t1 := t+
√
n2 − t2 i ∈ nT 1
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and
t2 := t−

√
n2 − t2 i ∈ nT 1.

We have t = t1+t2
2

and

f(tx) = f(
t1 + t2

2
x) =

t1 + t2
2

f(x) = tf(x)

for all x in X.
If µ ∈ C, then

µ = |µ|eiµ1 ,

therefore
f(µx) = f(|µ|eiµ1x) = |µ|eiµ1f(x) = µf(x)

for all x in X. In the other words f is C−linear. The converse is clear. �
From now on, we suppose that n0 ∈ N is a positive integer number, and

that

T1
1
no

:= {eiθ ; 0 ≤ θ ≤ 2π

no

}.

2. Stability of double centralizers

For every x, y ∈ A, we put x0 − y0 = 0, x0y = y and also denote
n−times︷ ︸︸ ︷

A× A× ...× A by An. We establish the Hyers-Ulam stability of double Jor-
dan centralizers as follows.

Theorem 2.1. Let fj : A→ A be mappings with fj(0) = 0 (j = 0, 1), and let
φ : A4 → [0,∞) be a function such that

∥fj(λx+ λy + z2)− λfj(x)− λfj(y)− [j(zfj(z))
j + (1− j)(fj(z)z)

1−j]

+f1−j(a)a− afj(a)∥ ≤ φ(x, y, z, a) (1)

for all λ ∈ T1
1
no

. If

lim
n→∞

φ(2nx, 2ny, 2nz, 2na)

2n
= 0, (2)

and there exists a constant K in which 0 < K < 1 such that

ψ(2x) ≤ 2Kψ(x) (3)

for all x ∈ A, then there exists a unique double Jordan centralizer (L,R) on A
satisfying

∥f0(x)− L(x)∥ ≤ ψ(x)

2(1−K)
, (4)

∥f1(x)−R(x)∥ ≤ ψ(x)

2(1−K)
(5)
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for all x ∈ A, where ψ(x) = φ(x, x, 0, 0).

Proof. We consider the set Ω as follows:

Ω = {h : A −→ A|h(0) = 0}.

We also define the generalized metric on Ω:

d(g, h) := inf{C ∈ [0,∞] : ∥g(x)− h(x)∥ ≤ Cψ(x) for all x ∈ A}.

One can show that (Ω, d) is a complete metric space. Now, we define a mapping
J : Ω −→ Ω by

Jh(x) =
1

2
h(2x) (6)

for all x ∈ A. Given g, h ∈ Ω, let C ∈ [0,∞] be an arbitrary constant with
d(g, h) ≤ C, i.e.,

∥g(x)− h(x)∥ ≤ Cψ(x) (7)

for all x ∈ A. Substituting x by 2x in the inequality (7) and using from (3)
and (6), we have

∥Jg(x)− Jh(x)∥ ≤ 1

2
∥g(2x)− h(2x)∥ ≤ 1

2
Cψ(2x) ≤ CKψ(x)

for all x ∈ A, and so d(Jg, Jh) ≤ CK. This shows that J is strictly contractive
on Ω. Hence we can conclude that

d(Jg, Jh) ≤ Kd(g, h)

for all g, h ∈ Ω. Now, we prove that for all h ∈ Ω, d(Jh, h) < ∞. Letting
j = 0, λ = 1, x = y, z = a = 0 in (1), we obtain ∥f0(2x) − 2f0(x)∥ ≤ ψ(x) for
all x ∈ A. Thus

∥1
2
f0(2x)− f0(x)∥ ≤ 1

2
ψ(x) (8)

for all x ∈ A.
It follows from (8) that d(Jf, f) ≤ 1

2
. By Theorem 1.1, the sequence

{Jnf0} converges to a unique fixed point L : A → A in the set Ω1 = {h ∈
Ω, d(f, h) <∞}, i.e.,

lim
n→∞

f0(2
nx)

2n
= L(x) (9)

for all x ∈ A, and so

d(f0, L) ≤
1

1−K
d(Jf0, L) ≤

1

2(1−K)
.

Thus the inequality (4) holds for all x ∈ A. Now, replace 2nx and 2ny by x
and y, respectively, and put z = a = 0 in (1). If we divide both sides of the
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resulting inequality by 2n, and letting n tend to infinity, then it follows from
(1), (2) and (9) that

L(λx) = λL(x),

for all x ∈ A and all λ ∈ T1
1
no

. It follows from Lemma 1.1 that L is C−linear.

It is routine to show that L(a2) = L(a)2 from (1), and so it is a left Jordan
centralizer on A.

According the above argument, one can show that there exists a unique
mapping R : A→ A which is a point of T such that

lim
n→∞

f1(2
nx)

2n
= R(x) (10)

for all x ∈ A. Indeed, R belongs to the set Ω1. If we put i = 0, x = y = z = 0
and substitute a by 2na in (1) and we divide the both sides of the obtained
inequality by 2n, then we get

∥af0(2
na)

2n
− f1(2

na)

2n
a∥ ≤ φ(0, 0, 0, 2na)

2n
.

Passing to the limit as n→ ∞, and from (2) we conclude that aL(a) = R(a)a,
for all a ∈ A. �

Corollary 2.1. Let r and θ be nonnegative real numbers such that r < 1, and
let fj : A→ A be mappings with fj(0) = 0 (j = 0, 1) such that

∥fj(λx+ λy + z2)− λfj(x)− λfj(y)− [j(zfj(z))
j + (1− j)(fj(z)z)

1−j]

−afj(a) + f1−j(a)a∥ ≤ θ(∥x∥r + ∥y∥r + ∥z∥r + ∥a∥r) (11)

for all λ ∈ T1
1
no

and all x, y, z, a ∈ A. Then there exists a unique double

centralizer (L,R) on A satisfying

∥f0(x)− L(x)∥ ≤ θ

2− 2r
,

∥f1(x)−R(x)∥ ≤ θ

2− 2r

for all x, y ∈ A.

Proof. By putting K = 2r−1 and

φ(x, y, z, w, a) = θ(∥x∥r + ∥y∥r + ∥z∥r + ∥a∥r)

for all x, y, z, a ∈ A in Theorem 2.1, we obtain the desired result. �

In the following corollary, we prove the superstability of double central-
izers under some conditions.
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Corollary 2.2. Let r and θ be nonnegative real numbers such that r < 1
6
, and

let fj : A→ A be mappings with fj(0) = 0 (j = 0, 1) such that

∥fj(λx+ λy + z2)− λfj(x)− λfj(y)− [j(zfj(z))
j + (1− j)(fj(z)z)

1−j]

−afj(a) + f1−j(a)a∥ ≤ θ(∥x∥r∥y∥r∥z∥r∥a∥r) (12)

for all λ ∈ T1
1
no

and all x, y, z, a ∈ A. Then (f0, f1) is a double centralizer.

Proof. It follows from Theorem 2.1 by taking

φ(x, y, z, a) = θ(∥x∥r∥y∥r∥z∥r∥a∥r)
for all x, y, z, a ∈ A. �

3. Stability Of multipliers

In this section, we investigate the Hyers-Ulam stability and the super-
stability of multipliers on Banach algebras. First we need the next theorem
which is the main key to investigation of the stability and superstability.

Theorem 3.1. let f : A → A be a mapping with f(0) = 0 and let ϕ : A3 →
[0,∞) be a function such that

∥f(λx+ λy)− λf(x)− λf(y)− f(z)z + zf(z)∥ ≤ ϕ(x, y, z) (13)

for all λ ∈ T1
1
no

and all x, y, z ∈ A. If

lim
n→∞

φ(2nx, 2ny, 2nz)

2n
= 0, (14)

and there exists a constant K, 0 < K < 1, such that

ψ(2x) ≤ 2Kψ(x) (15)

for all x ∈ A, then there exists a unique multiplier T on A satisfying

∥f(x)− L(x)∥ ≤ 1

2(1−K)
ψ(x) (16)

for all x ∈ A, where ψ(x) = φ(x, x, 0).

Proof. First, similar to the proof of Theorem 2.1, we Consider the set Ω :=
{h : A→ A | h(0) = 0} and introduce the generalized metric d on Ω as follows:

d(g, h) := inf{C ∈ R+ : ∥g(x)− h(x)∥ ≤ Cψ(x) for all x ∈ A}.
Again, similar to the proof of Theorem 2.1, the space Ω equipped to the metric
d is complete. Now we define a mapping J : Ω → Ω by

J(h)(x) =
1

2
h(2x)
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for all x ∈ A. By the same reasoning as in the proof of Theorem 2.1, J is
strictly contractive on Ω. Putting λ = 1, x = y and z = 0 in (13), we obtain

∥f(2x)− 2f(x)∥ ≤ ψ(x)

for all x ∈ A. So

∥1
2
f(2x)− f(x)∥ ≤ 1

2
ψ(x) (17)

for all x ∈ A. The inequality (17) shows that

d(Jf, f) ≤ 1

2
.

By Theorem 1.1, J has a unique fixed point in the set Ω1 := {h ∈ Ω : d(f, h) <
∞}. Let T be the fixed point of J. Then T is the unique mapping with

T (2x) = 2T (x)

for all x ∈ A such that there exists C ∈ (0,∞) such that

∥T (x)− f(x)∥ ≤ Kψ(x)

for all x ∈ A. On the other hand, we have

limn→∞d(J
n(f), h) = 0.

Thus

limn→∞
1

2n
f(2nx) = h(x) (18)

for all x ∈ A. Hence

d(f, T ) ≤ 1

1−K
d(T, J(f)) ≤ 1

2(1− L)
. (19)

This implies the inequality (16). From (13), (14) and (18) we obtain

∥T (x+ y)− T (x)− T (y)∥ = limn→∞
1

2n
∥f(2n(x+ y)) + f(2n(x))− f(2ny)∥

≤ limn→∞
1

2n
ϕ(2nx, 2ny, 0) = 0

for all x, y ∈ A. So T (x+ y) = T (x) + T (y) for all x, y ∈ A. Thus T is Cauchy
additive. If we put y = x, z = 0 in (13), we can conclude that

∥2λf(x)− f(2λx)∥ ≤ ψ(x)

for all x ∈ A. It follows that

∥T (2λx)− 2λT (x)∥ = limn→∞
1

2n
∥f(2λ2nx)− 2λf(2nx)∥

≤ limn→∞
1

2n
ϕ(2nx, 2nx, 0) = 0

for all λ ∈ T and all x ∈ A. So T (λx) = λT (x) for all λ ∈ T1
1
no

and all x ∈ A.

Linearity of T follows from the proof of Theorem 2.1. If we substitute z by
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2nz in (13), and put x = y = 0 and we divide the both sides of the obtained
inequality by 2n, we get

∥z f(2
nz)

2n
− f(2nz)

2n
z∥ ≤ ϕ(0, 0, 2nz)

2n
.

Passing to the limit as n→ ∞, and from (16) we conclude that zT (z) = T (z)z
for all z ∈ A. �

Corollary 3.1. Let r and θ be nonnegative real numbers such that r < 1, and
let f : A→ A be a mapping with f(0) = 0 such that

∥f(λx+ λy)− λf(x)− λf(y)− f(z)z + zf(z)∥ ≤ θ(∥x∥r + ∥y∥r + ∥z∥r)

for all λ ∈ T1
1
no

and all x, y, z ∈ A. Then there exists a unique multiplier T on

A satisfying

∥f(x)− T (x)∥ ≤ θ

2− 2r

for all x ∈ A.

Proof. The proof follows from Theorem 3.1 by taking

ϕ(x, y, z) = θ(∥x∥r + ∥y∥r + ∥z∥r)

for all x, y, z ∈ A and by putting K = 2r−1. �

Now, we have the following result for the superstability of multipliers.

Corollary 3.2. Let r and θ be nonnegative real numbers such that r < 1
4
, and

let f : A→ A be a mapping with f(0) = 0 such that

∥f(λx+ λy)− λf(x)− λf(y)− f(z)z + zf(z)∥ ≤ θ(∥x∥r∥y∥r∥z∥r)

for all λ ∈ T1
1
no

and all x, y, z ∈ A. Then f is a multiplier on A.

Proof. It follows from Theorem 3 by taking

ϕ(x, y, z) = θ(∥x∥r∥y∥r∥z∥r)

for all x, y, z ∈ A. �
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