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This study aims to extend and refine the Mizoguchi-Takahashi’s fixed point

theorem in the framework of modular function spaces. Additionally, illustrative examples
are provided to demonstrate the applicability of the main result.
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1. Introduction

The sequence spaces lp, introduced in the early 20th century, provided a framework to
measure and classify the behavior of sequences using the notion of p-norms. Extending this
concept to function spaces, Lebesgue spaces Lp emerged, offering a powerful generalization
that allowed a unifying treatment of integrable functions.

The classical Lebesgue spaces Lp were first generalized by Orlicz and Birnbaum in
[1, 2, 3] in relation to orthogonal expansions. The development of Orlicz spaces was inspired
by their relevance to differential and integral equations, particularly those involving kernels
with growth patterns that deviate from standard power functions.

Orlicz spaces have been generalized in many directions. In 1955, Luxemburg intro-
duced a more general class of function spaces in his Ph.D. thesis [4], which was followed by
a series of papers by Luxemburg-Zaanen [5]. In 1950, Nakano [6] developed the concept of
modular spaces connected to ordered spaces. This method involves substituting the specific
integral representation of the nonlinear functional with a more flexible abstract functional
that possesses certain properties. In 1959, this generalization was further developed by
Musielak-Orlicz [7, 8] and Musielak [9]. We now present some key notions from modular
theory (see Kozlowski [10]).

Definition 1.1 ([10, Preliminaries, page 88]). A functional ϱ : V → [0,∞] defined on a

vector space is called a pseudomodular if the following conditions hold true for arbitrary

u, v ∈ V:

(A) ϱ(0) = 0;

(B) ϱ(cu) = ϱ(u), for every c ∈ K (K = C or K = R) such that |c| = 1;
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(C) ϱ(cu+ dv) ≤ ϱ(u) + ϱ(v) for every c, d ≥ 0, c + d = 1.

If instead of (C) there holds

(C ′) ϱ(cu + dv) ≤ csϱ(u) + dsϱ(v), for every c, d ≥ 0, cs + ds = 1, s ∈ (0, 1], then ϱ is

called s-convex; when s = 1, it is convex.

Replacing condition (A) with

(A′) ϱ(0) = 0 and ϱ(λu) = 0 for every λ > 0 implies u = 0, then ϱ is called a semimodular.

Additionally, if

(A′′) ϱ(0) = 0 and ϱ(u) = 0 implies u = 0, then ϱ is called a modular.

Definition 1.2 ([9, Definition 1.4]). If ϱ is a pseudomodular in V, then the corresponding

modular space is defined as

Vϱ = {u ∈ V : lim
λ→0

ϱ(λu) = 0}.

Remark 1.1. The modular ϱ lacks subadditivity and therefore does not exhibit the char-

acteristics of a norm or a distance.

We will require also the following notions.

Definition 1.3 ([9, page 2]). A functional ∥ · ∥ : V → [0,∞] is said to define an F -

pseudonorm if

(i) ∥0∥ = 0.

(ii) For c ∈ K with |c| = 1 one has ∥cu∥ = ∥u∥, ∀u ∈ V.

(iii) ∥u+ v∥ ≤ ∥u∥ + ∥v∥, ∀u, v ∈ V.

(iv) If ck → c and ∥uk − u∥ → 0, then ∥ckuk − cu∥ → 0.

If, moreover

(i′) ∥u∥ = 0 implies u = 0, then ∥ · ∥ is called an F -norm.

If ∥ · ∥ satisfies the above conditions (i)− (iii) and the condition

(iv′) ∥αu∥ = |α|s ∥u∥, for 0 < s ≤ 1, then ∥ · ∥ is called an s-pseudonorm and adding (i′)

we obtain an s-norm in V which is denoted ∥ · ∥s. If s = 1, then ∥ · ∥ is called a norm.

Remark 1.2 ([10, Preliminaries, page 88]). If ϱ is modular a (pseudomodular) on V, then

∥u∥ϱ = inf{α > 0 : ϱ(u/α) ≤ α}

is an F -norm (F -pseudonorm) on Vϱ.

If ϱ is an s-convex modular (s-convex pseudomodular) on V, then the functional

∥u∥sϱ = inf{α > 0 : ϱ(u/α1/s) ≤ 1}

defines an s-norm (s-pseudonorm) on Vϱ(a norm (pseudonorm) for s = 1, for which one

denotes ∥u∥1ϱ = ∥u∥ϱ).

In 1959, modular theory was further generalized to concepts in connection to Musielak-
Orlicz spaces in [7], i.e., Orlicz spaces with a function ϕ depending on a parameter. This
led to further generalizations of Orlicz spaces.



Mizoguchi-Takahashi type fixed point theorem in modular function spaces 89

Numerous challenges linked to metric fixed point theory can be reexamined and tack-
led using the concept of modular spaces, even without a conventional metric framework. A
landmark contribution in this direction was made by Khamsi [15], who introduced various
results on fixed points for single-valued mappings within modular function spaces.

On the other side, in 1969 Nadler [11] extended the Banach contraction principle to
multivalued mappings in metric spaces. Building on this foundational result, Reich [12]
extended the contractiveness condition. Specifically, he replaced the constant contraction
coefficient with a function θ : (0,∞) → [0, 1), requiring that the inequality H(Tξ, Tη) ≤
θ(d(ξ, η))d(ξ, η) holds for each ξ, η ∈ X. Additionally, θ was subject to the condition
lim supj→z+ θ(j) < 1 for each z ∈ (0,∞), which allowed a broader class of mappings to
satisfy the fixed point criterion.

Furthermore, Reich [12] questioned whether the range of the mapping T could be
extended from K(X) to CB(X) or CL(X). This conjecture was addressed affirmatively by
Mizoguchi-Takahashi [13], who proved the validity of the result, including also the limit case
z = 0. Their work revealed that if T : X → CB(X) satisfies the condition H(Tξ, Tη) ≤
θ(d(ξ, η))d(ξ, η) with a function θ ensuring lim supj→z+ θ(j) < 1 for any z ∈ [0,∞), then T
possesses a fixed point.

Kamran [14] broadened the findings of Mizoguchi-Takahashi [13], applying the concept
of T -orbitally lower semi-continuous mappings to closed multi-valued operators. Kamran [14]
showed that, if for a mapping T from X to CL(X) the inequality d(η, Tη) ≤ θ(d(ξ, η))d(ξ, η)
holds true for all ξ ∈ X and η ∈ Tξ, where θ : (0,∞) → [0, 1) is a function that satisfies
lim supj→z+ θ(j) < 1 for each z ∈ [0,∞), then certain structural properties of the mapping
guarantee the existence of an orbit {ξn} that converges to a fixed point ζ ∈ X. Moreover, if
the fixed point ζ exists, then the function φ(ξ) = d(ξ, T ξ) is T -orbitally lower semi-continuous
at ζ, and conversely.

Our primary aim is to extend these fixed point results within the framework of mod-
ular function spaces. Modular function spaces, which generalize normed spaces, provide a
more flexible framework for studying fixed point theory by replacing norms with modulars.
This generalized framework allows us to address a broader class of problems, including those
where traditional methods may not apply. Here are some notions from modular function
spaces. For further information, see also [15, 16, 17, 18, 19].

2. Preliminaries

Consider a set Ω ̸= ∅, a nontrivial σ-algebra Σ and a nontrivial σ-ring P of subsets
of Ω. Let A ∩ B ∈ P for any B ∈ Σ and A ∈ P. Assume that there exists an increasing
sequence of sets Hn ∈ P such that Ω =

⋃
Hn. Define E as the linear space of all simple

functions with supports from P. Let M denote the space of all measurable functions, i.e.,
all functions p : Ω → R such that there exists a sequence {qn} ⊂ E , |qn| ≤ |p|, and qn(w)
→ p(w) for all w ∈ Ω. The characteristic function of A is denoted by 1A.

Definition 2.1 ([16, Definition 3]). If a functional ϱ : E × Σ → [0,∞] satisfies:

(P1) for any A ∈ Σ, ϱ(0, A) = 0,

(P2) ϱ(p,A) ≤ ϱ(q, A) whenever |p(w)| ≤ |q(w)| for each w ∈ Ω, A ∈ Σ and p, q ∈ E ,

(P3) for any p ∈ E , ϱ(p, .) : Σ → [0,∞] is a σ-subadditive measure,

(P4) ϱ(γ, B) → 0 as γ ↓ 0 for every B ∈ P, where ϱ(γ, B) = ϱ(γ1B , B),

(P5) if there exits γ > 0 such that ϱ(γ, B) = 0, then ϱ(η, B) = 0 for each η > 0,

(P6) for any γ > 0, ϱ(γ, .) is order continuous on P, that is ϱ(γ, Bn) → 0 for every

sequence {Bn} ⊂ P such that Bn ↓ ∅,
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then ϱ is called function modular.

To extend the function modular ϱ to the space of measurable functions M , we ap-
proximate each p in M using simple functions. Since every measurable function can be
expressed as the pointwise limit of an increasing sequence of simple functions [20, page 62],
the definition of ϱ is then extended to measurable p in M as

ϱ(p,A) = sup{ϱ(q, A) : q ∈ E , |q(w)| ≤ |p(w)| ∀ w ∈ Ω}.
This ensures that the modular preserves the fundamental properties established for simple
functions in E and extends naturally to the larger space M . This allows us to define ϱ(γ, A)
for sets A that are not necessarily in P. For convenience, we denote it simply as ϱ(p) instead
of ϱ(p,Ω).

Definition 2.2 ([18, Definition 2.1.3]). If for all γ > 0, ϱ(γ, A) = 0 then the set A is called

ϱ-null. A property b(w) holds ϱ-almost everywhere if the exceptional set of elements in Ω

such that b(w) does not hold is ϱ-null.

Theorem 2.1 ([18, Theorem 2.1.4]). The functional ϱ from M to [0,∞] is a modular.

The modular function space induced by a function modular ϱ is given by

Lϱ = {p ∈ M : ϱ(αp) → 0 asα → 0}.

Definition 2.3 ([19, Definition 2.3]). A function modular ϱ is said to satisfy the ∆2-

condition if, whenever {pn} ⊂ M , Ei ∈ Σ, Ei ↓ ∅ and supn≥1 ϱ(pn, Ei) → 0 as i→ ∞, one

has

sup
n≥1

ϱ(2pn, Ei) → 0.

Definition 2.4 ([19, Definition 2.4]). A function modular ϱ satisfies the ∆2-type condition

if there exists M > 0 such that

ϱ(2p) ≤Mϱ(p), for each p ∈ Lϱ.

The ∆2-type condition guarantees the ∆2-condition. However, the reverse implication
does not necessarily hold.

Definition 2.5 ([15, Definition 3.4]).

(i) A sequence {pn} ⊂ Lϱ is said to be ϱ-convergent to p ∈ Lϱ if ϱ(pn − p) → 0; we write

shortly pn → p (ϱ).

(ii) {pn} ⊂ Lϱ is called ϱ-Cauchy if ϱ(pn − pm) → 0 as n,m → ∞.

(iii) A set B ⊂ Lϱ is called ϱ-closed if for any sequence {pn} in B, the convergence pn →
p (ϱ) implies that p ∈ B.

(iv) A set B ⊂ Lϱ is called ϱ-bounded if

δϱ(B) = sup{ϱ(p− q) : p ∈ B, q ∈ B} <∞.

(v) ϱ has the Fatou property if ϱ(p − q) ≤ ϱ(pn − qn) whenever pn → p (ϱ) and qn → q

(ϱ).

Theorem 2.2 ([18, Theorem 2.3.7]). (Lϱ, ∥ · ∥ϱ) is a complete metric space.
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Proposition 2.1 ([18, Proposition 3.1.6 ]). If ϱ satisfies the ∆2-condition, then convergence

in norm and convergence in modular are equivalent.

This equivalence extends to cases where the ∆2-type condition is satisfied. In the
following discussion, we assume that ϱ is a convex function modular with the ∆2-type
condition.

Definition 2.6 ([15, Definition 3.7]). Define a growth function ψ as follows

ψ(z) = sup

{
ϱ(zp)

ϱ(p)
: p ∈ Lϱ, 0 < ϱ(p) <∞

}
, for all 0 ≤ z <∞.

Lemma 2.1 ([15, Lemma 3.1]). The following are the properties of the growth function ψ:

(i) for all z ∈ [0,∞), ψ(z) < ∞.

(ii) ψ from [0,∞) to [0,∞) is both convex and strictly increasing. Therefore, ψ is contin-

uous.

(iii) For all γ, η ∈ [0,∞), ψ(γη) ≤ ψ(γ)ψ(η).

(iv) For all γ, η ∈ [0,∞), ψ−1(γ)ψ−1(η) ≤ ψ−1(γη), where the function ψ−1 is the inverse

of ψ.

The subsequent lemma demonstrates that ψ can provide an upper bound.

Lemma 2.2 ([15, Lemma 3.1]). Let ϱ be as above. Then

∥p∥ϱ ≤ 1

ψ−1

(
1

ϱ(p)

) , whenever p ∈ Lϱ\{0}.

Let C ⊆ Lϱ and let Cϱ(C) denote the collection of all nonempty ϱ-closed subsets of
C. The map H : Cϱ(Lϱ) × Cϱ(Lϱ) → R+ defined as

Hϱ(A,B) = max{sup
p∈A

distϱ(p,B), sup
q∈B

distϱ(q, A)}, A, B ∈ Cϱ(Lϱ)

is the generalized Hausdorff distance over Cϱ(Lϱ), where

distϱ(p,B) = inf{ϱ(p− q) : q ∈ B}.
A fixed point of a multivalued mapping T : C → Cϱ(C) is a point satisfying p ∈ Tp. In
the following theorems we will assume that ϱ is a convex function modular satisfying the
∆2-type condition, and C is a nonempty ϱ-bounded ϱ-closed subset of Lϱ.

Definition 2.7. Let C be a nonempty subset of Lϱ and T : C → Cϱ(C). If, for a given

point p0 ∈ C, there exists a sequence {pn} ⊂ C such that pn ∈ Tpn−1, then O(p0) =

{p0, p1, p2, . . . } is called an orbit of p0 through operator T .

Definition 2.8. A mapping λ : C → R is T -orbitally ϱ-lower semi-continuous if, for any

sequence {pn} in O(p0) such that p0 ∈ C and pn → p (ϱ),

λ(p) ≤ lim
n→∞

inf λ(pn).

Dhompongsa [19] generalized the contraction theorem in modular function spaces in
the following manner (also see [21]).
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Theorem 2.3 ([19, Theorem 3.1]). Let T : C → Cϱ(C) be a ϱ-contraction mapping, i.e.,

there exists k ∈ [0, 1) such that

Hϱ(Tp, Tq) ≤ kϱ(p− q), ∀p, q ∈ C.

Then T has a fixed point.

Alfuraidan [22] extended Theorem 2.3 in the following way.

Theorem 2.4 ([22, Theorem 3.1]). Let G be a reflexive directed graph which is defined on

C and T : C → Cϱ(C) be a Reich (G, ϱ)-contraction mapping and CT = {p ∈ C; (p, q) ∈
E(G) for some q in Tp}. If C has Property (1), then T has a fixed point provided that CT

̸= ∅.

Remark 2.1 ([22, Remark 3.1]). If we assume that G satisfies E(G) = C × C, then G

is connected, and Theorem 2.4 yields the Mizoguchi-Takahashi’s theorem [13] on modular

function spaces (and consequently Nadler’s theorem [11] when θ(j) is assumed to be con-

stant). Moreover, if T is single-valued, then we obtain Reich’s extension of the Banach

contraction principle [12].

3. Main results

We now present the principal outcome of our work. We assume that ϱ is a convex
function modular satisfying the ∆2-type condition, and C is a nonempty ϱ-bounded ϱ-closed
subset of Lϱ.

Theorem 3.1. Let ϱ be as above and assume additionally that it satisfies the Fatou property.

Let T : C → Cϱ(C) be a multi-valued mapping satisfying

distϱ(q, T q) ≤ θ(ϱ(p− q))ϱ(p− q) for all p ∈ Cand q ∈ Tp, (3.1)

where θ : (0,∞) → [0, 1) is such that

lim sup
j→z+

θ(j) < 1 for all z ∈ [0,∞). (3.2)

Then,

1. for every p0 ∈ C, there exists an orbit {pn} of p0 through operator T and ζ ∈ C such

that limn pn = ζ;

2. if ζ is a fixed point of T , then the function λ(p) = distϱ(p, Tp) is T -orbitally ϱ-lower

semi-continuous at ζ, and conversely.

The proof of Theorem 3.1 relies on an argument presented in [23, Theorem 1.2.1].
We resume it by stating the next key result.

Lemma 3.1. Let ϱ be a convex function modular, C be nonempty ϱ-bounded ϱ-closed subset

of Lϱ, and let B ∈ Cϱ(C). Then, for any p ∈ C and ℓ > 1, there exists an element q ∈ B

satisfying

ϱ(p− q) ≤ ℓ distϱ(p,B). (3.3)
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Proof. Assume first that distϱ(p,B) = 0. It follows that p ∈ B = B, as B is a closed subset

of C. Further, choosing p = q clearly makes inequality (3.3) valid.

Now, let us assume that distϱ(p,B) > 0 and select

ϵ = (ℓ− 1)distϱ(p,B). (3.4)

Since distϱ(p,B) = inf {ϱ(p− q1) : q1 ∈ B}, then there is q ∈ B such that

ϱ(p− q) ≤ distϱ(p,B) + ϵ

≤ ℓdistϱ(p,B) (using (3.4)).

□

Proof of Theorem 3.1. Let p0 ∈ C. Since Tp0 ̸= ∅, there exists p1 ∈ C such that p1 ∈ Tp0.

We may assume that p1 ̸= p0, otherwise the conclusion comes easily. This implies that

ϱ(p0 − p1) > 0.

Since p1 ∈ C and Tp1 ∈ Cϱ(C), by taking ℓ = 1√
θ(ϱ(p0−p1))

> 1 there exists p2 ∈ Tp1

such that

ϱ(p1 − p2) ≤
1√

θ(ϱ(p0 − p1))
distϱ(p1, Tp1) [by Lemma 3.1].

By applying the same reasoning for p2 ∈ C, Tp2 ∈ Cϱ(C), ℓ =
1√

θ(ϱ(p1−p2))
> 1, there

exists p3 ∈ Tp2 such that ϱ(p2 − p3) ≤
1√

θ(ϱ(p1 − p2))
distϱ(p2, Tp2).

Proceeding similarly, we obtain a sequence {pn} ⊂ C such that ϱ(pn − pn+1) ≤
1√

θ(ϱ(pn−1 − pn))
distϱ(pn, Tpn), pn ∈ Tpn−1, n = 1, 2, 3, · · · .

As assumed pn ̸= pn−1, otherwise pn−1 is fixed point of T . Then, it follows from (3.1)

that

ϱ(pn − pn+1) ≤
√

θ(ϱ(pn−1 − pn))ϱ(pn−1 − pn) (3.5)

≤ ϱ(pn−1 − pn).

Hence, {ϱ(pn − pn+1)} is a decreasing sequence, so it converges. Say that b is the limit of

this decreasing sequence. By taking limit in (3.5) we get b = 0. Select ϵ > 0 and 0 < a <

1 such that θ(z) < a2, for z ∈ (0, ϵ) (using (3.2)).

Let M be such that ϱ(pn−1 − pn) < ϵ, for n ≥M.

Now, from (3.5) we get
1

an−M+1(ϱ(p0 − p1))
<

1

ϱ(pn − pn+1)
. Using properties of

ψ(t), we find ψ−1

(
1

an−M+1(ϱ(p0 − p1))

)
< ψ−1

(
1

ϱ(pn − pn+1)

)
. So,

1

ψ−1

(
1

ϱ(pn − pn+1)

) <

1

ψ−1

(
1

a

)n−M+1

ψ−1

(
1

ϱ(p0 − p1)

) .
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Then, by Lemma 2.2, one has

∥pn − pn+1∥ϱ <

 1

ψ−1(
1

a
)


n−M+1

 1

ψ−1

(
1

ϱ(p0 − p1)

)
 .

Since ψ(1) = 1 and a < 1, then
1

ψ−1

(
1

a

) < 1. This implies that sequence {pn} is a Cauchy

in (Lϱ, ∥ · ∥ϱ). By Theorem 2.2, there exists ζ ∈ Lϱ such that {pn} is ∥ · ∥ϱ-convergent to

ζ. Because the ∆2-type condition holds, then {pn} → ζ (ϱ) and ζ ∈ C since C is ϱ-closed.

Next, we must show that ζ is fixed point of mapping T . Since pn ∈ Tpn−1, using (3.1)

and (3.2) we have distϱ(pn, Tpn) < θ(ϱ(pn−1, pn))ϱ(pn−1, pn), < ϱ(pn−1, pn). Letting n →
∞, it follows that limn→∞ distϱ(pn, Tpn) = 0. (⇐) distϱ(ζ, Tζ) = λ(ζ) ≤ lim infn λ(pn) =

lim infn distϱ(pn, Tpn) = 0. Since Tζ is closed, it follows that ζ ∈ Tζ.

(⇒) if ζ is fixed point of T then λ(ζ) = 0 ≤ lim infn λ(pn). □

As distϱ(q, T q) ≤ Hϱ(Tp, Tq) for q ∈ Tp, we may state the following subsequent
result.

Corollary 3.1. Let T : C → Cϱ(C) satisfying Hϱ(Tp, Tq) ≤ θ(ϱ(p− q))ϱ(p− q), for any p

∈ C and q ∈ Tp,

where θ : (0,∞) → [0, 1) is such that lim supj→z+ θ(j) < 1 for any z ∈ [0,∞). Then,

1. for any p0 ∈ C, there is an orbit {pn} of p0 and a point ζ ∈ C such that limn pn = ζ;

2. if ζ is fixed point of T , then the function λ(p) = distϱ(p, Tp) is T -orbitally ϱ-lower

semi-continuous at ζ and conversely.

Remark 3.1.

• Corollary 3.1 extends the result of the Mizoguchi-Takahashi’s theorem [13].

• To show that a fixed point exists, it suffices to ensure that the distϱ(p, Tp) is T -orbitally

continuous at ζ, whereas the condition in the extension of the Mizoguchi-Takahashi’s

theorem [13] specifies that T is continuous from C into Cϱ(C).

Let us give a simple example to validate Theorem 3.1.

Example 3.1. The real number system R is a space modulared by ϱ(p) = |p|. Let C =[
0,

3

5

]
= {p ∈ Lϱ : 0 ≤ p ≤ 3

5
}. Obviously C is nonempty ϱ-closed and ϱ-bounded subset of

R. Define the mapping T : C → Cϱ(C), Tp =
[
0, p2

]
, p ≥ 0.

When p ≥ 0 and q ∈ Tp =
[
0, p2

]
we get

distϱ(q, T q) ≤ distϱ(Tq, Tp) = |p2 − q2| = |p+ q||p− q| ≤ 24

25
ϱ(p− q).

We may consider θ(z)=k, where
24

25
≤ k < 1. See the 2D and 3D graphical behaviors in

Figures 1 and 2. Note that, since all the requirements of Theorem 3.1 and Corollary 3.1 are

fulfilled, then T has a fixed point.
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Figure 1. Depicts the 2D behavior of left hand and right hand side in-

equality in Example 3.1
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Figure 2. Depicts the 3D behavior of left hand and right hand side in-

equality in Example 3.1

Example 3.2. The real number system R is a space modulared by ϱ(p) = |p|. Take

C =

[
−3

5
,
3

5

]
and define the mapping T : C → Cϱ(C), Tp =


[
−3

5
,
p

2

]
if p ≤ 0,[

0, p2
]

if p ∈
(
0,

3

5

]
.

It is no difficult to see that all conditions of Theorem 3.1 are satisfied and T has a
fixed point. Note that [13, Theorem 5] and Theorem 2.3 are not applicable here, since at

p = 0 and q =
3

5
, we have

Hϱ(Tp, Tq)

ϱ(p− q)
= 1.
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4. Conclusion

We extended and refined the Mizoguchi-Takahashi’s fixed point theorem within the
framework of modular function spaces, broadening its applicability under more general con-
ditions. We provided an illustrative example to demonstrate the practical relevance and
effectiveness of the derived result. Additionally, we presented a graphical representation of
the example through MATLAB, using both 2D and 3D plots to visually validate the theo-
retical findings. These contributions not only enhanced the existing field of knowledge but
also opened new directions for further research in fixed point theory and its applications in
modular function spaces.
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