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MIZOGUCHI-TAKAHASHI TYPE FIXED POINT THEOREM IN
MODULAR FUNCTION SPACES
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This study aims to extend and refine the Mizoguchi-Takahashi’s fixed point
theorem in the framework of modular function spaces. Additionally, illustrative examples
are provided to demonstrate the applicability of the main result.
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1. Introduction

The sequence spaces [P, introduced in the early 20th century, provided a framework to
measure and classify the behavior of sequences using the notion of p-norms. Extending this
concept to function spaces, Lebesgue spaces LP emerged, offering a powerful generalization
that allowed a unifying treatment of integrable functions.

The classical Lebesgue spaces LP were first generalized by Orlicz and Birnbaum in
[1, 2, 3] in relation to orthogonal expansions. The development of Orlicz spaces was inspired
by their relevance to differential and integral equations, particularly those involving kernels
with growth patterns that deviate from standard power functions.

Orlicz spaces have been generalized in many directions. In 1955, Luxemburg intro-
duced a more general class of function spaces in his Ph.D. thesis [4], which was followed by
a series of papers by Luxemburg-Zaanen [5]. In 1950, Nakano [6] developed the concept of
modular spaces connected to ordered spaces. This method involves substituting the specific
integral representation of the nonlinear functional with a more flexible abstract functional
that possesses certain properties. In 1959, this generalization was further developed by
Musielak-Orlicz [7, 8] and Musielak [9]. We now present some key notions from modular
theory (see Kozlowski [10]).

Definition 1.1 ([10, Preliminaries, page 88]). A functional ¢ : V — [0,00] defined on a
vector space is called o pseudomodular if the following conditions hold true for arbitrary

u, v € V:

(A) 0(0) = 0;
(B) ofcu) = o(u), for every c € K (K = C or K = R) such that |c| = 1;
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(C) o(lcu+ dv) < o(u) + o(v) for everyc,d > 0,c+ d = 1.
If instead of (C) there holds

(C") o(cu + dv) < c®o(u) + d®o(v), for everyc, d > 0, ¢® + d* =1, s € (0,1], then g is

called s-convex; when s =1, it is convezx.
Replacing condition (A) with

(A") 0(0) =0 and o(Au) = 0 for every N > 0 implies u = 0, then g is called a semimodular.
Additionally, if

(A”) 0(0) = 0 and o(u) = 0 implies uw = 0, then g is called a modular.

Definition 1.2 ([9, Definition 1.4]). If ¢ is a pseudomodular in 'V, then the corresponding

modular space is defined as
V,={ue€V: lim o(Au) = 0}.
A—=0

Remark 1.1. The modular g lacks subadditivity and therefore does not exhibit the char-

acteristics of a norm or a distance.

We will require also the following notions.

Definition 1.3 ([9, page 2]). A functional || - ||: V — [0,00] is said to define an F-
pseudonorm if
() 0]} = 0.
(it) For ¢ € K with |c| = 1 one has ||cu|]| = ||u||, Yu € V.
(150) |lu+ol < |lull + |v|, Yu,v € V.
(iv) If e, — ¢ and |Jug — ul|| — 0, then |crug — cul|| — 0.

If, moreover

(#") |lu|]| = 0 implies uw =0, then || - || is called an F-norm.
If || - || satisfies the above conditions (i) — (ii1) and the condition
(") ||au|| = |a|® ||ull, for 0 < s <1, then || - | is called an s-pseudonorm and adding (i')
we obtain an s-norm in 'V which is denoted ||-||°. If s =1, then || -|| is called a norm.

Remark 1.2 ([10, Preliminaries, page 88]). If p is modular a (pseudomodular) on V, then
[lu]|p = inf{a > 0 : p(u/a) < a}
is an F-norm (F-pseudonorm) on V,.
If o is an s-convex modular (s-convex pseudomodular) on V, then the functional
Jullf = inf{a > 0: o(u/a’/*) < 1}
defines an s-norm (s-pseudonorm) on V,(a norm (pseudonorm) for s = 1, for which one
denotes ||u|\é = Jlull,)-

In 1959, modular theory was further generalized to concepts in connection to Musielak-
Orlicz spaces in [7], i.e., Orlicz spaces with a function ¢ depending on a parameter. This
led to further generalizations of Orlicz spaces.
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Numerous challenges linked to metric fixed point theory can be reexamined and tack-
led using the concept of modular spaces, even without a conventional metric framework. A
landmark contribution in this direction was made by Khamsi [15], who introduced various
results on fixed points for single-valued mappings within modular function spaces.

On the other side, in 1969 Nadler [11] extended the Banach contraction principle to
multivalued mappings in metric spaces. Building on this foundational result, Reich [12]
extended the contractiveness condition. Specifically, he replaced the constant contraction
coefficient with a function 0 : (0,00) — [0,1), requiring that the inequality H(T¢,Tn) <
0(d(&,m))d(€,n) holds for each &, n € X. Additionally, © was subject to the condition
limsup;_,.+ 0(j) < 1 for each 2 € (0,00), which allowed a broader class of mappings to
satisfy the fixed point criterion.

Furthermore, Reich [12] questioned whether the range of the mapping T could be
extended from K (X) to CB(X) or CL(X). This conjecture was addressed affirmatively by
Mizoguchi-Takahashi [13], who proved the validity of the result, including also the limit case
z = 0. Their work revealed that if T : X — CB(X) satisfies the condition H(T&,Tn) <
0(d(&,m))d(§,n) with a function 8 ensuring limsup;_, .+ 0(j) < 1 for any z € [0,00), then T
possesses a fixed point.

Kamran [14] broadened the findings of Mizoguchi-Takahashi [13], applying the concept
of T-orbitally lower semi-continuous mappings to closed multi-valued operators. Kamran [14]
showed that, if for a mapping T from X to C'L(X) the inequality d(n,Tn) < 0(d(&,n))d(&,n)
holds true for all £ € X and n € T¢, where 0 : (0,00) — [0,1) is a function that satisfies
limsup;_, .+ 0(j) < 1 for each z € [0,00), then certain structural properties of the mapping
guarantee the existence of an orbit {¢,,} that converges to a fixed point ¢ € X. Moreover, if
the fixed point ¢ exists, then the function ¢(&) = d(&, T¢) is T-orbitally lower semi-continuous
at ¢, and conversely.

Our primary aim is to extend these fixed point results within the framework of mod-
ular function spaces. Modular function spaces, which generalize normed spaces, provide a
more flexible framework for studying fixed point theory by replacing norms with modulars.
This generalized framework allows us to address a broader class of problems, including those
where traditional methods may not apply. Here are some notions from modular function
spaces. For further information, see also [15, 16, 17, 18, 19].

2. Preliminaries

Consider a set Q # (), a nontrivial o-algebra ¥ and a nontrivial o-ring & of subsets
of Q. Let AN B € & for any B € ¥ and A € &. Assume that there exists an increasing
sequence of sets H,, € & such that Q = (JH,. Define & as the linear space of all simple
functions with supports from &2. Let .# denote the space of all measurable functions, i.e.,
all functions p : £ — R such that there exists a sequence {g,} C &, |¢.| < |p|, and ¢, (w)
— p(w) for all w € Q. The characteristic function of A is denoted by 14.

Definition 2.1 ([16, Definition 3]). If a functional o: & x ¥ — [0, 00] satisfies:
) forany A € %, 0(0,A) =0,

P) o(p, A) < o(q, A) whenever |p(w)| < |g(w)| for each w € Q, A€ X and p,q € &,

Ps) for anyp € &, o(p,.) : ¥ — [0,00] is a o-subadditive measure,

Py) o(y,B) = 0 asy | 0 for every B € &, where o(y,B) = o(ylg, B),

Ps) if there exits y > 0 such that o(y, B) = 0, then o(n, B) = 0 for each 1 > 0,

Ps) for any vy > 0, o(y,.) is order continuous on &2, that is o(y,B,) — 0 for every

sequence { By} C & such that By, | 0,

(P1
(
(
(
(
(
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then o is called function modular.

To extend the function modular ¢ to the space of measurable functions .Z, we ap-
proximate each p in .# using simple functions. Since every measurable function can be
expressed as the pointwise limit of an increasing sequence of simple functions [20, page 62],
the definition of o is then extended to measurable p in .Z as

o(p, A) =sup{o(q,4) : g € &, |g(w)| < |p(w)| ¥V w € Q}.
This ensures that the modular preserves the fundamental properties established for simple

functions in & and extends naturally to the larger space .#. This allows us to define p(y, A)
for sets A that are not necessarily in &. For convenience, we denote it simply as o(p) instead

of o(p, ).

Definition 2.2 ([18, Definition 2.1.3]). If for all'y > 0, o(y, A) = 0 then the set A is called
o-null. A property b(w) holds o-almost everywhere if the exceptional set of elements in Q
such that b(w) does not hold is o-null.

Theorem 2.1 ([18, Theorem 2.1.4]). The functional o from 4 to [0,00] is a modular.

The modular function space induced by a function modular g is given by

L,={pe A :o(ap) - 0asa — 0}.

Definition 2.3 ([19, Definition 2.3]). A function modular ¢ is said to satisfy the Ag-
condition if, whenever {p,} C M, E; € ¥, E; | 0 and sup,,>, 0(pn, Ei) = 0 as i — oo, one
has

sup o(2pn, E;) — 0.
n>1

Definition 2.4 ([19, Definition 2.4]). A function modular o satisfies the Aq-type condition
if there exists M > 0 such that
0(2p) < Mo(p), for eachp € L,.

The As-type condition guarantees the As-condition. However, the reverse implication
does not necessarily hold.
Definition 2.5 ([15, Definition 3.4]).
(i) A sequence {p,} C L, is said to be p-convergent to p € L, if o(pn, —p) — 0; we write

shortly p, — p (0).

(13) {pn} C L, is called o-Cauchy if o(pn, — pm) — 0 as n,m — oo.

(131) A set B C L, is called o-closed if for any sequence {p,} in B, the convergence p, —
p (o) implies that p € B.

(iv) A set B C L, is called p-bounded if

do(B) =sup{o(p—q) :p € B,q € B} < 0.

(v) o has the Fatou property if o(p — q) < o(pn — qn) whenever p, — p (0) and ¢, — q

(0)-

Theorem 2.2 ([18, Theorem 2.3.7]). (Ly, || - |lo) s a complete metric space.
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Proposition 2.1 ([18, Proposition 3.1.6 |). If ¢ satisfies the Ay-condition, then convergence

in norm and convergence in modular are equivalent.

This equivalence extends to cases where the As-type condition is satisfied. In the
following discussion, we assume that o is a convex function modular with the As-type
condition.

Definition 2.6 ([15, Definition 3.7]). Define a growth function v as follows

w(Z)ZSUP{QQ((Z;)) :p € Ly, 0 < 0(p) <oo}, for all0 < z < 0.

Lemma 2.1 ([15, Lemma 3.1]). The following are the properties of the growth function :
(1) for all z € [0,00), ¥(2) < 0.

(it) ¥ from [0,00) to [0,00) is both convex and strictly increasing. Therefore, 1) is contin-

uUous.

(i) For ally,n € [0,00), ¥(yn) < ¥(y)¥ (™).
(iv) For ally,m € [0,00), v~ (y)y~t(m) < v ~1(yn), where the function 1)~ is the inverse

of .

The subsequent lemma demonstrates that ¢ can provide an upper bound.

Lemma 2.2 ([15, Lemma 3.1]). Let ¢ be as above. Then

Iplly < ———
()

Let C C L, and let C,(C') denote the collection of all nonempty g-closed subsets of
C. The map H : Cy(L,) x C,(L,) — R* defined as

H,(A, B) = max{supdist,(p, B), supdist,(q,A)}, A, B e Cy(L,)
peA qEB

, whenever p € L,\{0}.

is the generalized Hausdorff distance over C,(L,), where
dist,(p, B) = inf{o(p — ¢) : ¢ € B}.
A fixed point of a multivalued mapping T': C — C,(C) is a point satisfying p € Tp. In

the following theorems we will assume that o is a convex function modular satisfying the
Ao-type condition, and C' is a nonempty p-bounded o-closed subset of L,.

Definition 2.7. Let C be a nonempty subset of L, and T : C — C,(C). If, for a given
point pg € C, there exists a sequence {p,} C C such that p, € Tp,_1, then O(py) =
{po,p1,p2,. ..} is called an orbit of py through operator T.

Definition 2.8. A mapping A: C — R is T-orbitally o-lower semi-continuous if, for any
sequence {p,} in O(po) such that py € C' and p, — p (0),

A(p) < lim inf A(py).

n— o0

Dhompongsa [19] generalized the contraction theorem in modular function spaces in
the following manner (also see [21]).
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Theorem 2.3 ([19, Theorem 3.1)). Let T: C' — €,(C) be a p-contraction mapping, i.e.,
there exists k € [0,1) such that

Hy(Tp,Tq) < ko(p—q), Vp,q € C.
Then T has a fixed point.

Alfuraidan [22] extended Theorem 2.3 in the following way.

Theorem 2.4 ([22, Theorem 3.1]). Let G be a reflexive directed graph which is defined on
C and T: C — C,(C) be a Reich (G, )-contraction mapping and Cr = {p € C;(p,q) €
E(G) for some q in Tp}. If C has Property (1), then T has a fized point provided that Cr
# 0.

Remark 2.1 ([22, Remark 3.1]). If we assume that G satisfies E(G) = C x C, then G
is connected, and Theorem 2.4 yields the Mizoguchi-Takahashi’s theorem [13] on modular
function spaces (and consequently Nadler’s theorem [11] when 6(j) is assumed to be con-
stant). Moreover, if T is single-valued, then we obtain Reich’s extension of the Banach

contraction principle [12].

3. Main results

We now present the principal outcome of our work. We assume that ¢ is a convex
function modular satisfying the As-type condition, and C'is a nonempty p-bounded g-closed
subset of L,.

Theorem 3.1. Let o be as above and assume additionally that it satisfies the Fatou property.
Let T: C — C,(C) be a multi-valued mapping satisfying

dist,(q, Tq) < 0(o(p — q))o(p — q) for all p € Cand q € Tp, (3.1)
where © : (0,00) — [0,1) is such that
limsup8(j) <1 for all z € [0, 0). (3.2)
j—zt
Then,
1. for every py € C, there exists an orbit {p,} of po through operator T and C € C such
that lim,, p, = (;
2. if ¢ is a fized point of T, then the function A(p) = dist,(p, Tp) is T-orbitally o-lower
semi-continuous at C, and conversely.

The proof of Theorem 3.1 relies on an argument presented in [23, Theorem 1.2.1].
We resume it by stating the next key result.

Lemma 3.1. Let ¢ be a convex function modular, C' be nonempty o-bounded p-closed subset
of Ly, and let B € C,(C). Then, for any p € C and £ > 1, there exists an element ¢ € B
satisfying

o(p — q) < ldist,y(p, B). (3.3)
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Proof. Assume first that dist,(p, B) = 0. It follows that p € B = B, as B is a closed subset
of C. Further, choosing p = ¢ clearly makes inequality (3.3) valid.
Now, let us assume that dist,(p, B) > 0 and select

e = (¢ — 1)dist,(p, B). (3.4)
Since dist,(p, B) = inf {o(p — ¢1) : (1 € B}, then there is ¢ € B such that

o(p — q) < disto(p, B) + ¢
< ldisty(p, B) (using (3.4)).

O

Proof of Theorem 3.1. Let py € C. Since T)py # 0, there exists p; € C such that p; € Tpg.

We may assume that p; # pg, otherwise the conclusion comes easily. This implies that

o(po —p1) > 0.
Since p; € C and Tp; € C,(C), by taking £ = ——2L— > 1 there exists po € Tpy

0(e(po—p1))
such that

1 .
o(p1 — p2) < —) dist,(p1,Tp1) [by Lemma 3.1].

0(e(po — p1)

By applying the same reasoning for ps € C, Tpy € C,(C), £ = ﬁ > 1, there
o(p1—p2
1

exists p3 € T'pz such that o(ps — p3) < ——=—=———=Adist,(p2, TP2).
0(e(p1 — p2))
Proceeding similarly, we obtain a sequence {p,} C C such that o(p, — pn+1) <
1
0(o(pn—1 —pn))
As assumed p,, # pp—1, otherwise p,,—1 is fixed point of T. Then, it follows from (3.1)

diStQ(pnann)7 Pn € Tp’nflan = 17 27 3a R

that

0(pn = pnt1) < V0(0(Pn—1 — Pn))0(Pn-1 — Pn) (3.5)
< 0(Pn—1 — Pn)-

Hence, {0(pn — pnt1)} is a decreasing sequence, so it converges. Say that b is the limit of
this decreasing sequence. By taking limit in (3.5) we get b = 0. Select € > 0 and 0 < a <
1 such that 8(z) < a?, for z € (0,€) (using (3.2)).

Let M be such that o(pp—1 — pn) <1e, for n > M.

1 . .
Now, from (3.5) we get T TES Y a— < r—t Using properties of
1 1 1
t), we find 1( >< 1< >.So,
v i) v am=M+1(o(py — p1)) v 0(Pn — Pn+1) P ( 1 )
o(Pn — Pnt1)

<
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Then, by Lemma 2.2, one has

n—M+1
1 1
[P — Prtille < 17(1) 1
w8 e
a o(po — p1)
Since ¥(1) = 1 and a < 1, then N < 1. This implies that sequence {p,} is a Cauchy
- (3)
a

in (Ly, | - |lo)- By Theorem 2.2, there exists ¢ € L, such that {p,} is || - || ,-convergent to
C. Because the As-type condition holds, then {p,} — C (0) and { € C since C is p-closed.
Next, we must show that ¢ is fixed point of mapping T. Since p, € Tp,—1, using (3.1)
and (3.2) we have disty(pn, TPn) < 0(0(Pn-1,Pn))0(Prn-1,Pn), < 0(Pn—1,pn). Letting n —
00, it follows that lim,,_, o disty(pn, TPn) = 0. (<=) dist,(¢, TC) = A(¢) < liminf, A(p,) =
lim inf,, dist,(pn, T'pn) = 0. Since T'C is closed, it follows that ¢ € TC.

(=) if ¢ is fixed point of T' then A({) = 0 < liminf,, A(py). O

As dist,(q,Tq) < Hy(T'p,Tq) for q € Tp, we may state the following subsequent
result.

Corollary 3.1. Let T : C — C,(C) satisfying Ho(Tp,Tq) < 0(o(p —q))o(p— q), for any p
€ Candq € Tp,

where 6 : (0,00) — [0, 1) 4s such that limsup;_, .+ 0(j) <1 for any z € [0,00). Then,

1. for any po € C, there is an orbit {p,} of po and a point { € C such that lim, p, = ;

2. if C is fizred point of T, then the function A(p) = dist,(p, Tp) is T-orbitally o-lower

semi-continuous at ¢ and conversely.

Remark 3.1.

e Corollary 3.1 extends the result of the Mizoguchi-Takahashi’s theorem [13].
e To show that a fixed point exists, it suffices to ensure that the dist,(p, T'p) is T-orbitally
continuous at (¢, whereas the condition in the extension of the Mizoguchi-Takahashi’s

theorem [13] specifies that 7" is continuous from C' into C,(C).

Let us give a simple example to validate Theorem 3.1.

Example 3.1. The real number system R is a space modulared by o(p) = |p|. Let C =
3 3
{0, 5] ={peLl,:0<p< 5} Obviously C' is nonempty o-closed and p-bounded subset of

R. Define the mapping T': C' — C,(C), Tp = [0,p*], p=>0.
When p > 0 and ¢ € Tp = [0, p?] we get

. . 24
dist,(q, Tq) < dist,(Tq, Tp) = |p* = ¢*| = [p+allp — ¢ < Sz e(p — q).
24
We may consider 8(z)=Fk, where % < k < 1. See the 2D and 3D graphical behaviors in
Figures 1 and 2. Note that, since all the requirements of Theorem 3.1 and Corollary 3.1 are

fulfilled, then T has a fixed point.
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Comparison of LHS and RHS in Case Il
T

Function Values

—w-q
| | | | - = —(2425)Ip-al

0 0.1 0.2 0.3 0.4 0.5 0.6
p.q

FIGURE 1. Depicts the 2D behavior of left hand and right hand side in-
equality in Example 3.1

3D Comparison of LHS and RHS in Case Il

06 —
1p*-a% 05
I (24/25) |p - o

0.5 —

Function Values
o °
w S
] /

9
]

0.1 —

FIGURE 2. Depicts the 3D behavior of left hand and right hand side in-
equality in Example 3.1

Example 3.2. The real number system R is a space modulared by o(p) = |p|. Take
3 p

__ & if <
5’ 2 1 p - 07

[0, p?] if pe (0, ‘z] .

It is no difficult to see that all conditions of Theorem 3.1 are satisfied and T has a
fixed point. Note that [13, Theorem 5] and Theorem 2.3 are not applicable here, since at
H,(Tp.Tq) _

o(p—q) '

C = {—2, ﬂ and define the mapping T': C' — C,(C), Tp =

szandq:%wehave
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4. Conclusion

We extended and refined the Mizoguchi-Takahashi’s fixed point theorem within the
framework of modular function spaces, broadening its applicability under more general con-
ditions. We provided an illustrative example to demonstrate the practical relevance and
effectiveness of the derived result. Additionally, we presented a graphical representation of
the example through MATLAB, using both 2D and 3D plots to visually validate the theo-
retical findings. These contributions not only enhanced the existing field of knowledge but
also opened new directions for further research in fixed point theory and its applications in
modular function spaces.
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