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GENERIC MULTI-OBJECTIVE OPTIMIZATION METHOD 
OF INDOOR AND ENVELOPE SYSTEMS’ CONTROL 

Florent BOITHIAS1, Mohamed EL MANKIBI2, Pierre MICHEL3 

Growing concerns about energy consumption reduction and comfort 
improvement inside buildings make it necessary to optimize the control of any 
indoor and envelope thermal system. This study proposes a generic on-line method 
based on Genetic Algorithms for controllers’ setting optimization, with regard to 
two objectives: energy consumption and indoor discomfort. Consumption and 
discomfort prediction is used for performance assessment of individuals. Even 
though prediction is carried out by using physical modelling in this article, the 
method is doomed to use Neural Networks prediction in the future, in order to save 
development and simulation time. The method was assessed by being compared to 
off-line optimization, and showed similar performance. 

Keywords: Genetic Algorithms, on-line control optimization, energy 
consumption, Indoor discomfort 

1. Introduction 

In the last decade, there has been a growing demand for improving indoor 
comfort while reducing energy consumption. It is still necessary to make efforts in 
that sense today, as fossil resources’ price is expected to increase again and 
concerns about the healthiness of indoor environments are still at high level. 
Meanwhile, demand for high indoor comfort standards makes it necessary to 
optimize the control of each of the buildings’ equipments. Indoor comfort is a 
very important issue as human beings meanly spend 80% of their time inside 
buildings [1]. Moreover, poor comfort in employees’ environment can reduce 
their productivity at work [2]. Therefore, research is facing a multi-objective 
problem. 

Previous research has showed that energy consumption reduction with 
high level of comfort could be reached by improving the way thermal systems are 
controlled [3, 4], without necessarily changing those systems. This is an 
interesting result for ancient buildings’ retrofitting. However, recent buildings are 
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more and more complex systems, with high-performance equipments. Fine 
optimization of these equipments’ control is therefore necessary.  

Recent studies have already showed the efficiency of on-line approaches 
[5]. Predictive control is also a method for on-line control optimization of many 
thermal devices, using extremely basic physical modeling and enumerative 
optimization method at regular time step [6]. However, such a method requires 
model calibration before use. 

Optimization can be carried out by many methods: enumerative methods, 
calculus-based methods and stochastic methods [7]. The first two categories need 
the objective functions to be explicitly known, continuous and differentiable. 
Genetic Algorithms (GAs) are stochastic methods. They are already used for 
buildings’ energy systems design optimization [8], buildings or systems 
dimensioning optimization [9] and off-line control optimization [10]. On-line 
optimization of systems’ control requires robust stochastic optimization method 
such as GAs, as no explicit objective function is known. 

The aim of this study is to develop a generic on-line method, based on 
GAs, for basic and advanced controllers’ setting optimization, avoiding physical 
modeling and calibration. The method should be autonomous from any human 
action, to avoid development and implementation tasks. It is intended to be 
applicable to all buildings’ indoor and envelope equipments. 

In this paper, the optimization method will first be described. Then, its 
implementation and assessment procedure on a heating device will be detailed. 
Finally, assessment results will be presented and discussed. 

2. Methods 

2.1 General description of the on-line optimization method 
 
The on-line optimization method presented in this section is based on 

GAs. GAs are capable of doing multi-objective optimization of a given problem. 
The possible solutions for this optimization problem are called individuals, as a 
reference to Darwin’s evolutionary theory: a population of N individuals adapts to 
its environment, one generation after the other, by selecting its best individuals 
and making them reproduce. Mutation of some of the individuals is also possible. 

To do so, each individual has to be evaluated by being given a rating 
corresponding to each objective function. In this study, individuals represent 
settings of controllers, and the objective functions to be minimized are energy 
consumption and indoor discomfort. 

The settings of three types of controllers were optimized: ON-OFF, 
Proportional–Integral–Derivative (PID) and fuzzy controllers. Optimization is 
done on-line at every beginning of periods of fixed duration to find optimal 
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setting for the next period (see Fig. 1). 2- and 6-hour periods were tested in this 
survey. Only monozonal buildings were considered. 

 

 
 
2.2 Description of the optimization algorithm: NSGA-II 
 
NSGA (Non-Dominated Sorting in GAs) algorithm was developed by 

Srinivas and Deb [11] in 1994. It is a non-domination based GA for multi-
objective optimization. It has been updated in 2002 [12] to improve its sorting 
algorithm and was named NSGA-II. 

An initial population of N individuals is randomly chosen: each individual 
is made of P parameters randomly chosen within specific ranges, called the 
decision space. Individuals are sorted based on non-domination and crowding 
distance. An individual dominates another if the rating for all objectives, called 
objective functions, are not worse than the other and at least in one of its objective 
functions it is better than the other. Non-domination sorting assigns every 
individual a rank and all individuals having the same rank form a front. The front 
with rank equal to 1 is called the Pareto front and contains all non-dominated 
individuals (see Fig. 2). The front with rank 2 contains individuals dominated only 
by individuals from the Pareto front and so on. The crowding distance is the 
Euclidian distance calculated between individuals in a front in the two-
dimensional hyper space associated to the objective functions. The higher the 
crowding distance, the higher the diversity of the population. Once the population 
is sorted, selection is carried out by using binary tournament selection. The winner 
of the tournament has either the lowest rank or the highest crowding distance, in 
case both individuals have the same rank. This way, diversity of the population is 
preserved. 

Reproduction between selected individuals uses Simulated Binary 
Crossover [13] operator and polynomial mutation [12]. Offspring population is 
added to the parents’ population and the resulting population is sorted using non-
domination and crowding distance. The next generation is created by selecting the 
N best individuals in this population. The same process is repeated to generate the 
following generations. 

 Setting 
optimization  Setting 

optimization  Setting 
optimization  Setting 

optimization 

Periods of 2 or 6 hours 

Fig. 1. Time sequencing in periods of constant duration
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NSGA-II algorithm used in this study was programmed by Seshadri [14] 
using Mathworks MATLAB software. A major change was made on the 
algorithm in this study: the choice of random individuals in the decision space is 
no more only restricted by ranges, but also by specific variation paces for each 
parameter. Each random parameter is rounded to the nearest multiple of the 
corresponding variation pace. New parameters obtained by crossover and 
mutation are also rounded the same way. This change was made to have better 
control on convergence speed by reducing the number of possible values without 
modifying the ranges. 

 

 
 
Next section deals with the definition of the objective functions used in 

this survey. 
 
2.3 Calculation of the objective functions 
 
NSGA-II calls objective functions to evaluate hourly discomfort level and 

hourly energy consumption generated by each of the tested controllers’ settings on 
the coming period of time. Objective functions were calculated by running 
simulations on the numerical model HYBCELL described in section 0. The 
building described in the same section was modeled. Hourly discomfort was 
calculated by summing the differences between indoor temperature and 
temperature setpoint at each time step, multiplied by the time step. Temperature 
setpoint was 20 °C in this study. Energy consumption was the demand of the 
heating device. 

 
2.4 Setting of NSGA-II 
 
NSGA-II has a lot of parameters to be fixed before it can be used. Table 1 

shows a list of these parameters and the corresponding selected values in this 
study. Tested values are also reported in this table. Selected values were those 
which caused minimum computation time to reach convergence. Convergence 

Objective function 1

Rank 2 
          Pareto front 
              Objective function 2 

Low crowding 
distance High crowding 

distance 

Fig. 2. Representation of individuals in the two-dimensional 
hyper space associated to the objective functions
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was considered to be reached when the Pareto front was not modified from one 
generation to another. Some parameters were fixed at commonly used values. 

 
Table 1 

Selected parameters for NSGA-II 
Parameter Selected value Tested values
Population size (individuals) 200 {100 ; 200} 
Number of generations 20 [1 ; 200] 
Crossover probability 0.9 0.9 
Mutation probability 0.7 {0.3 ; 0.5 ; 0.6 ; 0.7 ; 0.8} 
Distribution index for crossover 20 20 
Distribution index for mutation 20 20 
 

2.5 Choice of generic controllers 
 
As seen previously, the aim of this survey is to optimize the setting of 

controllers without using heavy physical modeling and without requiring 
calibration on each specific building. Therefore, the chosen controllers must be 
applicable to a large range of buildings if not all types of buildings. Such 
controllers are called generic controllers: 
• ON-OFF (0-100%) controllers are the most basic way of regulating systems. 

They can be implemented on every kind of systems to be maintained to a given 
setpoint; 

• Proportional–Integral–Derivative (PID) controllers are applicable to any first 
order system. A building can be considered as a first-order system to a first 
approximation; 

• Fuzzy controllers [15] were demonstrated as being advanced and precise 
controllers [16]. They are applicable to a large typology of buildings [17]. 

These three controllers where considered as generic controllers in this 
study and were used for setting optimization. The decision space for each of them 
was defined after doing a first optimization on a large decision space with small 
variation paces, and observing the composition of the final Pareto front. Ranges 
presented in Table 2 were chosen based on this front. Stability, which is not an 
objective function in this study, was taken into account by preventing ON-OFF 
dead band of being lower than 0.5 °C. 

 
Table 2 

Decision space for controllers’ setting optimization 
Controller Parameter Unit Range Variation pace 
ON-OFF Dead band °C [0.5 ; 3] 0.1 
PID Kp % / °C [1 ; 10] 0.1 

Ti min [0.1 ; 20] 0.1 
Td min [0 ; 5] 0.1 

Fuzzy K % [0.1 ; 3] 0.1 
 θ min [0.5 ; 200] 0.5 
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Fuzzy parameter K in Table 2 is the output gain of the controller. 1/θ is the 
input gain of the derivative input. Fig. 3 shows input membership functions 
(named Negative Medium (NM), Negative Small (NS), Zero (ZE), Positive Small 
(PS) and Positive Medium (PM)), output membership functions as well as fuzzy 
rules. 

 

 
Fig. 3. Setting of the fuzzy controller with parameters K [%] and θ [min] 

 
2.6 Numerical assessment of the on-line optimization method 
 

2.6.1 Modeling 
 
Simulations were carried out on the numerical model called HYBCELL, 

developed and validated by El Mankibi [18]. This model is based on two coupled 
models: a thermal model based on finite differences and a pressure air flow model 
[19]. It was developed under Mathworks MATLAB/SIMULINK environment. It 
was chosen because it has open source, it is fast and controllers such as ON-OFF, 
PID and fuzzy can be easily implemented on the modeled building. Coupling with 
MATLAB functions used for the optimization method is also very easy. 

The modeled building is a 5.1-meter-long, 3.5-meter-wide and 2.9-meter-
high room, which can represent a large office or a meeting room. It is located in 
the ENTPE laboratory. It is monitored by various sensors: temperature, relative 
humidity and CO2 concentration. An electric heater, window motors and a 
ventilation device are controlled by a computer with specific software developed 
under the LABVIEW environment. Human occupancy is simulated by sensible 
heat supply devices and CO2 generation. More details about this experimental 
room are given by El Mankibi [18, 20]. 

 
2.6.2 Assessment 

 
The on-line optimization method was compared to off-line optimization. 

Off-line optimization uses the same optimization algorithm as on-line, except that 
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it only optimizes the setting once, at the very beginning of the simulation, instead 
of optimizing it at each period’s beginning. By doing so, the optimized setting is 
the same as if it was calculated by a specific numerical survey before the 
building’s construction. Efficiency of the off-line optimized setting is used as a 
reference to assess the efficiency of the on-line method. 

The comparison is done for a two-day simulation time (January, 1st and 
2nd) in the climate of Lyon, France. This quite short simulation time is justified by 
very long calculation time. 

3. Results 

Results were obtained for 2- and 6-hour periods for the on-line method. 
For both methods, the selected individual in the final Pareto front was the closest 
one to the origin of the objective-functions’ space. Thus, discomfort and energy 
consumption were considered with equivalent importance. Other individuals 
could have been selected if the objective functions were weighted differently. 

Table 3 and 4 show the results obtained for discomfort and energy 
consumption during the 2-day simulation. The comparison between off-line and 
on-line methods gives information about the efficiency of the developed on-line 
method. 

 
Table 3 

Total discomfort and heating loads for a 2-day simulation with 2-hour periods 
 Discomfort [°C.min]  Heating loads [kWh]
 Off-line method On-line method Benefit Off-line method On-line method Benefit 
ON-OFF 2779.2 2772.8 0.2 % 67.75 68.17 -0.6 % 
PID 110.4 111.6 -1.1 % 70.43 70.43 0.0 % 
Fuzzy 1461.6 1263.8 13.5 % 69.50 69.55 -0.1 % 
 

Table 4 
Total discomfort and heating loads for a 2-day simulation with 6-hour periods 

 Discomfort [°C.min]  Heating loads [kWh]
 Off-line method On-line method Benefit Off-line method On-line method Benefit 
ON-OFF 2779.2 2982.6 -7.0 % 67.75 67.75 0.0 % 
PID 110.4 111.4 -0.9 % 70.43 70.43 0.0 % 
Fuzzy 1806.6 1401.8 22.4 % 69.39 70.35 -1.4 % 
 

4. Discussion 

First, it is to notice that PID controller gave much lower discomfort levels 
than both other controllers, with almost equivalent energy consumption. 
Discomfort for PID represents 4% of discomfort for ON-OFF controller and 9% 
of discomfort for fuzzy controller. 
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Then, the benefits given by Table 3 and 4 make it possible to conclude 
about the performance of the on-line method. It should be pointed that the 
performance of the on-line method was here compared to the performance of a 
fixed setting which has been off-line optimized. Therefore, the comparison 
referential was already very efficient. The difference between both methods was 
less than 2% for most configurations. However, three exceptions are to be noticed: 
• On-line optimization on the fuzzy controller had good results for 2- and 6-hour 

periods, with respectively 13.5% and 22.4% benefit compared to off-line; 
• On-line optimization on ON-OFF controller generated a 7% loss compared to 

off-line, for 6-hour periods. 

5. Conclusion 

The on-line optimization method presented in this article is an efficient 
method. Compared to off-line optimization, it gives similar and sometimes better 
results. 

Future work should be done to get rid of the numerical model in the 
calculation of objective functions. It should be replaced by an Artificial Neural 
Network (ANN) to predict indoor discomfort and energy consumption. The ANN 
could be trained by using data collected from previous periods. Thus, the on-line 
method would probably calculate quicker the optimized setting, and no more 
expensive calibration task of the model would be necessary. The method would be 
autonomous from any human action, and would be able to adapt to each particular 
building by learning its behavior through the ANN. 

Generalization to every kind of buildings’ indoor and envelope 
equipments should follow. 
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