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OPTIMAL CONTROL ON A MATHEMATICAL MODEL OF
MALARIA

Adesoye ldowu ABIOYE?!, Mohammed Olanrewaju IBRAHIM?, Olumuyiwa
James PETER?, Hammed Abiodun OGUNSEYE*

In this paper, a malaria mathematical model is formulated by incorporating
four control strategies: insecticide-treated bednets control, infected humans
treatment control, sterile mosquitoes technique control and use of control on
pregnant women and newborn births. It also explains the various stages of the
disease jointly in humans and mosquitoes as well as the treatment of both
asymptomatic and infectious humans. Preventive measures are developed to control
the spread of disease. Forward-backward fourth-order Runge-Kutta method (Sweep
method) is used to see the spread of disease and how to eradicate the disease. This
is based on the fact that these measures are deployed adequately using control tools
and without control tools respectively. On the other hand, their achievement
depends on the appropriate and planned organization and dissemination.

Keywords: Transmission; Sterile Mosquitoes; Insecticides; Asymptomatic;
Preventive Measures; Sweep Method.

1. Introduction

Malaria is an ancient disease and according to the record, malaria
occurred from sixth century BC in Hindu. From 1570 BC in Egyptian
Papyri, slabs of clay from 2000 BC in Mesopotamia and from about 2700
BC in a Chinese document [1]. Malaria can be seen largely in hot and sultry
(tropical) regions such as the Pacific Islands, Indian subcontinent, South
America, Central America, Sub-Saharan African and Southeast Asia [2].
Malaria continues to be a public health problem and a life-threatening
disease transmitted by female anopheles mosquitoes, according to the World
Health Organization report [3]. Globally, 212 million new cases and 429000
deaths were recorded. In Africa, millions of people still lack access to
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preventive tools such as insecticides, insecticide-treated bednets, proper
treatment using effective drugs and others. The very essential result of the
transmission dynamics of the Malaria model and optimal control have come

out in the last decades. For instance; Khamis et al. [4]; Olaniyi et al. [5];
Bakare and Abolarin [6]; Joshi et al. [7]; Munzir et al. [8]; Otieno et al. [9];
Panja and Mondal [10]; Romero-Leiton et al. [11].

All of the above studies reveal an important result for malaria model dynamics by
considering the different situations. But we have identified that till now no study
has been done on malaria model which include nonlinear forces of infections with
the application of optimal control which are; insecticide-treated bednets control,
infected human’s treatment control, sterile mosquitoes technique control and use
of control on pregnant women and newborn births as control strategies. Because
of the above, we developed a deterministic mathematical model of malaria by
extending the model developed by Osman et al. [12] incorporating the above
controls. We also include nonlinear forces of infection, the disease-induced death
rate on the exposed compartment for the human population and relapse.

2. Materials and Methods

The model under consideration comprises of four stages for the human
(host) population and three stages for the mosquito (vector) population. These are
Susceptible humans (5;), Exposed humans (E;), Infectious humans (;), Recovered
humans (&;) and Susceptible mosquitoes (5,), Exposed mosquitoes (&),
Infectious mosquitoes (I..) respectively. This shows the movement of human and
mosquito from one stage to another at different rates. N,A, is the rate at which
humans enters into the susceptible population (recruitment rate), S, is the force
of infection in humans, v is the developing rate of exposed humans (the rate at
which humans move from exposed to infectious class), @ is the recovery rate of
human from the disease, y, is the relapse rate of humans that is, the rate at which
humans with low immunity return from recovered class back to infectious class,
w is the rate of newborn birth with infection of humans, « is the natural death
rate of humans, o, is the disease-induced death rate of humans, y, is the rate of

loss of immunity in humans, N_A_ is the recruitment rate of mosquitoes, £, is

the force of infection in mosquitoes, « is the developing rate of exposed
mosquitoes that is, the rate at which mosquitoes move from exposed class to
infectious class, 7 is the natural death rate of mosquitoes, o, is the disease-

induced death rate of mosquitoes, o, is the interaction rate between human and
mosquitoes and o, is the interaction rate between human and mosquitoes. The
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total population of human is one (1) thatis, N, =S, + E, + 1, +R, =1 and the total
population of mosquitoes is also one (1) thatis, N, =S_+E, +I,+R, =1.

The reduction in the reproduction rate of a mosquito through insecticide-treated
bednets and reduction rate in fecundity due to mating with released sterile male’s

mosquito population are by factors (1—u,) and (1—u,) respectively. There is an
increase in the death rate of a mosquito population at a proportional rate u,
andu, . Also, the reduction of the mortality rate of pregnant women and newborn
births is by a factor of (1-u, ), a is the constant rate due to treatment and b is the

constant rate due to the use of insecticide-treated bednets. The description of the
parameters and values are given in table 1 below.

Table 1
Parameters and values of the model
Parameter Value Source Parameter Value Source
A, 1.2 Osman et al. [12] A, 0.7 Osman et al. [12]
L 0.05 Osman et al. [12] n 0.00083 Assumed
w 0.0035 Osman et al. [12] a 0.083 Osman et al. [12]
¥ 0.00017 Osman et al. [12] & 0.12 Olaniyi and Obabiyi
' [13]
7, 0.04 Mwamtobe et al. o, 0.1 Olaniyi and Obabiyi
[18] [13]
H 0.01146 Osman et al. [12] o 0.09 Olaniyi and Obabiyi
[13]
5h 0.068 Osman et al. [12] v 0.003 Osman et al. [12]
5, 0.001 Assumed g, 1.0 Assumed
& 1.0 Assumed
2.1. Differential Equations of the Model
The following normalized differential equations govern the model.
ds, (1) £onln (DS, (1)
ey —[(@—u)+(1- UJ]W—#& (t)+7R, (1)
dE, (t) Eol, (1)S, (1)
1-u)+(l-u,) | —"—"2 (v+u+d,)E, (t
[( )+ ( 4)] 1t+e,0, (1) (0+p+3,)E, (1)
dlh—()—uE () —(w+au, +u+8,) 1, (t)+wl, (t)+ 7R, (t
dat o 2t HT O )T, 4 h( ) V2 h( )
dR, (t
%:(mauz)|h(t)_(y+yl+yz)Rh(t) (1)
ds, (1) Eoula (1)S4 (1)
— 2 =A,—-|(1-y)+(1-u T =2 —(bu,+7)S,_ (t
dt I: ) 3):' 1+gm|h(t) ( 1 77) m( )
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E L) )2 (o e ()

dlg—t(t)=aEm (t)—(bu, +7+35,) 1, (1)

Where {us, uz, us, us} € [0, 1] that is, when u, =u, =u, =u, =0, it means none of
the controls are effective but when u, =u, =u, =u, =1, it means all the controls
are effective.

2.2. Autonomous Equations of the Model

In the absence of the four-time dependent control functions from the non-
autonomous model (1) and by setting the control variables to zero that

is,u; (t)=u, (t)= u,(t)=u,(t)=0. Then, model (1) is given as
das, (t) _ A _%ln (t)S, (1)

— uS, (t)+71Rh (t)

dt h 1+¢g,1,
dEgt(t):(thlli(:h)li w (1) —(u+3,+0)E, (1)
M) o (1) (a6, + @)1y (04971, (1) + 1R, ()
R _ o, (1)~ (sa+ 71472 R 1) @
dSm—(t):A _éo'mlh(t)sm(t)_ns (t)
dt m 1+g,1, "
dEdt(t) 2o (80 (ane, 1)

(t) @E, (1)~ (17+S,) 1, (1)

3. Optimal Control

Optimal control is one of the tools used in mathematical biology to
eradicate, reduce or minimize the infected and death rates of humans in the
population. In formulating an optimal control problem on malaria, we propose a
model to minimize the number of exposed humans to malaria, the number of
infected humans and the total population of mosquitoes. As a way of eradicating
or controlling malaria in our society, control measures have to be introduced such
as, treated insecticide bednets (ITNs), insecticide spray against mosquitoes
(ISAM), sterile insect technique (SIT) e.g. male mosquitoes and awareness
approach (AA) e.g. Social media network, television broadcast, house-to-house
awareness, e.t.c.
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To find the solution to model (1), we considered the following steps: To
(i) describe the optimal control.
(if) show the existence of optimal control.
(iii) show the uniqueness of optimal control.
(iv) solve the optimal control numerically.
(v) show the graphical solution with the effects of control variables on the
model.

3.1. Description of the Optimal Control

The objective function of the system (1) is used to minimize the total
number of exposed humans, infected humans and mosquitoes using the control
variables u, (t),u, (t),u,(t) and u, (t). It is very important to show that all the

control variables are non-negative. The objective function is defined as

t

3= j(leh (V)4 Bty (£) + BN, (8) + 5 (RUZ () + P (1) + P (1) + P (t))}n ©)

Subject to the system (1), where B,B,,B,,P,P,,P, and P,are positive weight
constants. The quadratic costs Pu; (t),Pu; (t),Puz (t) and Pu;(t) are the cost
associated with the use of insecticide-treated bednets, treatment of infectious
human, use of sterile mosquito and treatment to protect pregnant women and
newborn births respectively. This quadratic cost and objective function are chosen
in line with the literature on epidemic controls by Lashari et al. [14], Sharomi and
Malik [15] and Momoh and Flgenschuh [16]. We intend to find an optimal
control u; (t),u,(t),us(t) and u,(t) such that

3 (uy, U3, ug,uy ) = min{(uy, Uy, Uy, U, ) Uy, Uy, Uy, U, € Q) (4)
Where Q = {u,:0<u,(t)<1 Lebesgue measurable t=0,t, | for i=12,34} is
the control set.

3.2. Existence of the Optimal Control

To show the existence of the optimal control with the initial conditions t = 0, we
state and prove theorems 1 and 2 below. This will also help us to analyze the
properties of the system (1) with positive initial conditions V t > 0 since the model
describes human and mosquito populations. Using the optimal control in the
system (1) to see the existence of optimal control with the necessary conditions
satisfying the Pontryagin’s Maximum Principle. Pontryagin et al. [17]. We
applied Pontryagin’s Maximum Principle to convert equations (1), (3) and (4) into
a problem of minimizing point-wise Lagrange, L, with respect to u,,u,,u,,u, and

to find the minimal value of the Lagrangian. This could be achieved according to
Mwantobe et al. [18] by considering Hamiltonian, H.
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H =BE, (t)+B,l, (t)+B;N, (t)+%(P1uf (t)+PuZ (t)+Pu; (t)+Pu; (1))

+2, {Ah —[(@—u)+@-u, )]M —uS, (t)+nR, (t)}

1+e,1, (1)

cafl-u) e @ou) )OO o s e 0
iy

VE, (t)—(@+au, + u+5,) 1, (t)+wl, (t)+7,R, ()}
+4, (a)+au2)|h(t)—(y+71+72)Rh (t)}

An-[(A-u)+(1-u;)] 8% M5 () s (t)} ®)

+s

1+£m|h(t)

—N ——

o1, (1)S, (t
+4 [(1_u1)+(1_u3)] : 1_'_251 |)h (t)( ) _(bul ta +77) E, (t)}
+2, {aE, (t)—(bu, +7+5,)1, (1)}
The existence of optimal control of the system (1) will be considered by applying

the following theorems in Lashari et al. [14], Lashari et al. [19], Lenhart and
Workman [21]

Theorem 1: There exists an optimal control u; e Q for i=1,2,3,4 such that
J(uy, g, ug,uy ) = min{(u;, Uy, Uy, U, ) Uy, Uy, Uy, U, € QY subject to the
control system (1) with initial conditions at t = 0.

Proof: The state and control variables of the system (1) are positive values and the

control set Q is closed and convex. Therefore the integrand of the objective
function J in which it was expressed in the system (1) is a convex function of
(u,,U,,Uy,u,) on the control set Q. Since the state solutions are bounded, then
Lipschitz property of the state system with respect to the state variables is
satisfied. It can also be seen that 3 positive numbers 7,, 77, and a constant
¢ >1 such that, J (u,,u,,u,,u,)> 771(|ul|2 | usf ,|u4|2)é —1, (6)

Therefore, the state variables are bounded and the existence of optimal control of
the system (1) is concluded.
3.3. The uniqueness of Optimal Control

Pontryagin’s Maximum Principle is used to reveal the necessary
conditions for this optimal control. This is as a result of the fact that minimizing
the cost-functional in equation (3) subject to the system (1) is the existence of
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optimal control. According to Lashari et al. [14], If (x,u) is an optimal solution

of an optimal control problem then 7 a non-trivial vector function A = (A1, A2, As,
A4,.., An) that satisfies the following equations
dx _ OH (t,x,u, 4) 0= oH (t,x,u, 1) s oH (t,x,u, 1) 7
dt oA ou OX
Therefore, we can now apply necessary conditions to the Hamiltonian, H, in
equation (5). Olaniyi et al [5] and Lashari et al. [19]

Theorem 2: Let s’ E,17,R,,s.,E;and |, be optimal state solutions with

associated optimal control variables (u1u2u3u4) for the optimal control
problem in (1) and (3). Then there exist the co-states A. which verify (8) with

the transversality conditions 4 (t, )=0 in (9) for i=1,2,3,...,7 and in (11) the
control variables (ul*,u;,u;,uZ).

Proof: Consider the system of differential equations in (8) governing the adjoint
variables A1, A2, A3, A4, 45, ds, A7. This is obtained by differentiating the
Hamiltonian H in equation (5) with respect to Sn, En, In, Rh, Sm, Im and Im.
According to Fleming and Rishel [20], these are the state variables, by
applying the first and third equations in equation (7) into equation (5)

dAa, 8H ol

ot = as, LATw) () (A=)l s,

- SH 02— Aa)+(u+8,) 2B,

LB ) (2 2) (L) 1)) - A)

+(ﬂ+5h_‘/’)’7~3 B,

dd/%':_S?H:/—1/14_7’1(%_14)_72(23_14) (8)

=L )] - ) (b ) 2B,

%:_%:a(ﬂe_%)_’_(buf"ﬂ)ﬂs_%

%_ 2:* (-u)+(1-u,)) (A - %)(fge:lm) T (bu,+77+5,)4, — B,

With the transversality conditions
A‘l(tf):A?(tf):%(tf):2'4(tf):ﬁ“5(tf):A‘B(tf)zﬁﬁ(tf):0 9)

To evaluate the optimal control of the control variable set, where u, =(0,1). Let
S, =S, E,=E, I,=1",R,=R’,S,, =S, E, =E, and 1_ =1, and applying the
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second equation in equation (7), and differentiating the Hamiltonian, H, in
equation (5) with respect to the control variables u,,u,,u, and u,

aH * hlmsh thSm

o= R =T ()~ TR (2 )b (A + 2y ) =0
a—H:Puz—a(ﬂs—/lll):

a_H: * fO’mthm 10
o Ru; -2 (;L6 J5)=0 (10)

8_H: * fo_h m h
au, e (ﬂ? A)

By applying the optlmal control to the control variable set, uT:(O,l) for
i =1,2,3,4into equation (10)

u*=ma><{o mlnL PiSh (o =) = P (% —25) +D(AsSn + B + Aol )J}

R

uZ = max {o mln[ %Tft)'}
u = max{o, min [1, WJ} (11)

u::max{o,m.n( MJ}

P

4

where g _ ouln_ and B = $owla_. This shows that the uniqueness of the
"4l " dve |

optimal control of the model has been achieved for small tr based on prior
boundedness of the state variables as well as adjoint variables. This is made
possible through the use of Lipschitz property of the ordinary differential
equations.

3.4. Numerical Simulation of the Optimal Control

The optimality system consists of state system in system (1), optimal control set in
equation (11), adjoint system in equation (8), boundary conditions in equation (9)
and initial conditions S, (0)=100,E,(0)=25,1,(0)=15,R,(0)=5,S,(0)=
1000,E,,(0)=20 and 1,(0)=30 according to Olaniyi et al. [5]. Using this
optimality system, the state variables and optimal control can be calculated. It

shows that the second equation in system (7) applied on Hamiltonian equation (5)
is positive which means that the optimal problem is minimal at controls u;,u;,u;

and u;. We carried out the numerical simulation with Maple 18 by using the
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forward-backward fourth-order Runge-Kutta method and the result is shown in
the graphs below.

3.5. Graphical Solution of the Optimal Control

25

Exposed Himan 13 Infectious Human

0 50 w00 150 200 0 S0 100 150 200
Time(days) Time(days)
[+« ul=2=w3=us=0 ul=0, u220, ud=u4=0| [+ - ul=nd=uw3=ui=0 ulE0, w0, ud=ud=0|
(a): Optimal Control graph of Exposed Human (b): Optimal Control graph of Infectious
against Time Human against Tim
- w0 IEEEREEE
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1204 : i .
: . 600 N
100y: 5004
ExposedMosquira 80 Infectious Mosquito 4 ;"

sof 300 _.:
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20 100—:.

2 so 100 150 200 o so 100 150 200
Time|days) Time(days)
[+ - ul=uz=wi=ud=0 w10, u2=0, ud=wi=0] [+ - ul=u2=w3=ud=0 w120, w20, ud=u4=0)
(c): Optimal Control graph of Exposed (d): Optimal Control graph of Infectious
Mosquito against Time Mosquito against Time

1

0384

06

04

0 30 100 150 200

ul === u2

(e): Control Profiles graph of u; and u;

Fig. 1: Simulation of the model showing the effects of insecticide-treated bednets(ul) and infected

human treatment (uz) on malaria transmission
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(e): Control Profiles graph of U,,U, and U,

Fig. 2: Simulation of the model showing the effects of insecticide-treated bednets (ul) , infected

humans treatment(uz) and pregnant women & newborn births (u4)
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Fig. 3: Simulation of the model showing the effects of insecticide-treated bednets(ul), infected

humans treatment (uz) and sterile mosquitoes technique (ug)
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Fig. 4: Control Profiles graph of of U,,U,,U; and U,

4. Results and Discussion

The results from the numerical simulation can be classified in the
following categories:

4.1. Category A: Insecticide Treated Bednets and Infected Humans
Treatment

In this category, figure 1 illustrates the impact of the insecticide-treated
bednets control (u,) and infected humans treatment control (u,) in eradicating
malaria in the population. It is verified that by applying the controls, the exposed
and infectious humans, as well as exposed and infectious mosquitoes, decrease
more rapidly to extinction compared to when there is no control. The control
profile in figure 1(e) shows that u, and u, are at their upper bound until time t =

20 days and time t = 141 days respectively before decreasing to the lower bound.

4.2. Category B: Insecticide Treated Bednets, Infected Humans
Treatment and Pregnant women & newborn births

In this category, figure 2 shows the collective impact of Insecticide-treated
bednets control (u,), infected humans treatment control (u,) and pregnant

women & newborn births control (u,) on malaria spread for both human and

mosquito populations. It is verified that by applying the control, the exposed and
infectious humans, as well as exposed and infectious mosquitoes, diminish more
rapidly compared to when control. The control profile in figure 2(e) shows that
u,u, and u, are at their upper bound until time t = 20 days, t =141 days and t

=196 days respectively before decreasing to the lower bound.
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4.3. Category C: Insecticide Treated Bednets, Infected Humans
Treatment and Sterile mosquitoes technique

In this category, figure 3 shows the collective impact of Insecticide-treated
bednets control (u,), infected humans treatment control (u,) and Sterile

mosquitoes technique control (u3) on malaria transmission for both human and

mosquito populations. It is verified that by applying the control, exposed and
infectious humans, as well as exposed and infectious mosquitoes decrease more
rapidly to extinction compared to without control. The control profile in figure
3(e) illustrates that u,,u, and u, are at their upper bound until time t = 20 days, t

=141 days and t =200 days respectively before decreasing to the lower bound.
The control profile in figure 4 illustrates that the Insecticide mosquitoes bednets
(u,), infected humans treatment control (u,), Sterile mosquitoes technique

control (u,) and Pregnant women & newborn births (u,) are at their upper bound

until time t = 20 days, t = 141 days, t = 200 days and t = 196 days respectively
before decreasing to the lower bound.

5. Conclusion

In this paper, we derived and analyzed a deterministic mathematical model
on malaria with seven compartments, the optimal control analysis is achieved
from the formulated model in line with the arrangement of the four control
measures and the analysis gave credence to Pontryagin’s Maximum Principle
(PMP) together with numerical simulations. We conclude that if the controls are
well managed and implemented, then it would curb or limit the transmission of
malaria between vector-host related populations.
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