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ON THE TWO PARAMETER MOTIONS IN THE COMPLEX PLANE

Doğan ÜNAL1, Muhsin ÇELİK2, Mehmet Ali GÜNGÖR3

In this article, we investigate two-parameter motions in the complex plane. Also, we refer to
some definitions, theorems and corollaries related to velocities, accelerations, poles and hodograph of a
point in the complex planar motion.
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1. Introduction

We know that the angular velocity vector has an important role in the kinematics of
two rigid bodies, especially one rolling on another [1-3]. The investigation of the geometry
of the motion of a line or a point in the motion of a plane is important in the study of planar
kinematics, planar mechanisms or in physics. Mathematicians and physicists have inter-
preted rigid body motions in various ways. Nomizu has studied the one-parameter motion
of orientable surface M on tangent space along the pole curves, using parallel vector fields
at the contact points and he gave some characterizations of the angular velocity vector of
rolling without sliding [4]. Hacısalihoğlu showed some of the properties of one-parameter
motions in Euclidean space [5]. The geometry of the motion of a point or a line has a num-
ber of applications in geometric modeling and model-based manufacturing of mechanical
products or in the design of robotic motions. These are specifically used to generate geo-
metric models of shell-type objects and thick surfaces [6-8]. Alternative definitions of the
imaginary unit i other than i2 = −1 can give rise to interesting and useful complex number
systems. Complex numbers were first discovered by Cardan, who called them ”fictitious”,
during his attempts to find solutions to cubic equations [9]. Müller has introduced one
and two parameter planar motions and obtained the relationship between absolute, rela-
tive, sliding velocity and pole curves of these motions. Moreover, the relationship between
the complex velocities in terms of one-parameter motion in the complex plane were pro-
vided by [10]. One-parameter planar homothetic motion was defined in the complex plane
[11]. In [12,13], the fluid dynamics in complex sense and the parametric design in archi-
tecture with complex geometries were studied. The instantaneous kinematics of a special
two-parameter motion and all one-parameter motions obtained from two-parameter mo-
tions on the Euclidean plane were investigated in [14,15]. And in [16], these investigations
were adapted to Lorentzian plane. Two-parametric motions in the Lobatchevski plane were
given in [17]. Two-parameter Lorentzian homothetic motions were defined [18]. Besides,
Brownian motions were constructed with two-parameter processes and transformations
[19,20]. Two parameter modeling is used for building of a new model of LV wall motion in
biomedical area and of effective elastic tensor for cortical bone in biomechanics area [21,22].
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Finally, two-parameter notion is applied for uid mixture, boundary crisis, mechanical sys-
tems, Newton-Hooke symmetry, cell polarity models, spatial motions and exponential dis-
tribution [23-28].

In this paper, two-parameter motions in the complex plane are defined. Sliding ve-
locity, pole lines, hodograph and acceleration poles of two-parameter complex motions at
the positions of ∀ (λ, µ) are obtained. Some characteristic properties of the velocity vectors,
the acceleration vectors and the pole curves are given.

2. Two Parameter Motions in the Complex Plane

Let E, E′ be the moving and the fixed complex planes and O, O′ be the origin points

of their coordinate systems, respectively. If
−−→
O

′
O = C

′
(λ, µ), then

Y (λ, µ) = eiθ(λ,µ)X(λ, µ) + C ′(λ, µ) (2.1)

where θ(λ, µ) is the rotation angle of E with respect to E′ and X(λ, µ) = (X1(λ, µ), X2(λ, µ))
and Y (λ, µ) = (Y1(λ, µ), Y2(λ, µ)) are the coordinate functions of the moving and the fixed
plane, respectively, and this motion is shown by BII [10]. If λ and µ are given by the dif-
ferentiable functions of time parameter t, then the complex motion BI , which is called the
complex motion BI obtained from the complex motion BII is obtained. Here Y1(λ, µ), Y2(λ, µ), X1(λ, µ),
X2(λ, µ), A(λ, µ) and B(λ, µ) are complex elements. They can be denoted by

Y (λ, µ) = [Y1 Y2]
T
, X(λ, µ) = [X1 X2]

T
, C ′(λ, µ) = [A B]

T
.

Without losing generality, we can take θ(0, 0) = A(0, 0) = B(0, 0) = 0 to make two complex
planes congruent at the position (λ, µ) = (0, 0).

2.1. Velocities

If we take Y (λ, µ) = 0 and
−−→
OO′ = X(λ, µ) = C(λ, µ), then we obtain from Eq. (2.1)

C ′(λ, µ) = −C(λ, µ)eiθ(λ,µ). (2.2)

If Eq. (2.2) is substituted into Eq. (2.1), we get

Y (λ, µ) = [X(λ, µ)− C(λ, µ)]eiθ(λ,µ). (2.3)

The relative velocity of the point X(λ, µ) is the velocity of the point X(λ, µ) with
respect to the moving plane E and the relative velocity vector of the point X(λ, µ) in the
moving plane is given by

−→
Xr = Ẋ(λ, µ) = Xλλ̇+Xµµ̇. (2.4)

This vector is deduced in the fixed coordinate system as follows;
−→
Yr =

−→
Xre

iθ(λ,µ) = Ẋ(λ, µ)eiθ(λ,µ) = (Xλλ̇+Xµµ̇)e
iθ(λ,µ). (2.5)

The velocity of the point X(λ, µ) with respect to the fixed plane E′ is the absolute ve-
locity of the point X(λ, µ). By differentiating Eq. (2.3) with respect to (λ, µ) and simplifying
it, we get

−→
Ya = −

[
Cλλ̇+ Cµµ̇+ i

(
θλλ̇+ θµµ̇

)
C (λ, µ)

]
eiθ(λ,µ)

+i
(
θλλ̇+ θµµ̇

)
X (λ, µ) eiθ(λ,µ) +

−→
Yr.

(2.6)
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The sliding velocity vector of the point X(λ, µ) is given by
−→
Yf = −

[
Cλλ̇+ Cµµ̇+ i

(
θλλ̇+ θµµ̇

)
C (λ, µ)

]
eiθ(λ,µ)

+i
(
θλλ̇+ θµµ̇

)
X (λ, µ) eiθ(λ,µ).

(2.7)

The expressions of the absolute and the sliding velocity vectors with respect to the
coordinate axis of the moving plane are, respectively:

−→
Xa = Yae

−iθ(λ,µ) = −
[
Cλλ̇+ Cµµ̇+ i

(
θλλ̇+ θµµ̇

)
C (λ, µ)

]
+i

(
θλλ̇+ θµµ̇

)
X (λ, µ) +

−→
Xr

(2.8)

and −→
Xf = Yfe

−iθ(λ,µ) = −
[
Cλλ̇+ Cµµ̇+ i

(
θλλ̇+ θµµ̇

)
C (λ, µ)

]
+i

(
θλλ̇+ θµµ̇

)
X (λ, µ) .

(2.9)

From Eq. (2.5), (2.6) and (2.7) it can be written

Ya = Yf + Yr. (2.10)

Let θ̇ (λ, µ) = θλλ̇ + θµµ̇ be the angular velocity of the complex motion BI obtained
from the complex motion BII . To avoid the case of pure translation, let us assume that

θ̇ (λ, µ) = θλλ̇+ θµµ̇ ̸= 0.

Now, let us investigate what happens when the sliding velocity is equal to zero. Such
points as these shall be fixed, not only in the moving plane E, but also in the fixed plane
E

′
. In this case, we obtain an equation from Eq. (2.7) as follows;

−→
Yf = −(Ċ + iCθ̇)eiθ + iθ̇Xeiθ = 0

and this gives us

P (P1, P2) = C − i
Ċ

θ̇
(2.11)

which is the pole points of the complex motion BI obtained from the complex motion BII .
From Eq. (2.11) Ċ can be obtained as follows;

Ċ = i(P − C)θ̇.

By substituting the equality of Ċ into Eq. (2.7), we have the sliding velocity vector of the
point X(λ, µ) which is taken into consideration with the pole point P (P1, P2) as follows;

−→
Yf = iθ̇ (X − P ) eiθ. (2.12)

Theorem 2.1. The pole points of the complex motion BI obtained from the complex motion BII on
the moving plane lie on a line at the position of ∀ (λ, µ).

Proof. If Eq. (2.11) is written clearly and C =

[
−Ae−iθ

−Be−iθ

]
is regarded in this equation, we obtain

P =

[
P1

P2

]
=

[
−Ae−iθ

−Be−iθ

]
− i

[
−Ȧe−iθ+iθ̇Ae−iθ

θ̇
−Ḃe−iθ+iθ̇Be−iθ

θ̇

]
.

Then

P1 = i
e−iθ

θ̇
Ȧ (2.13)

and

P2 = i
e−iθ

θ̇
Ḃ (2.14)
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are obtained. Here λ̇
µ̇ is taken from the equality of P2 and then substituted in the equality of P1,

giving us:
ie−iθBµ − P2θµ
P2θλ − ie−iθBλ

=
ie−iθAµ − P1θµ
P1θλ − ie−iθAλ

.

Thus the following line equation is obtained

(θλBµ −Bλθµ)P1 + (Aλθµ − θλAµ)P2 = ie−iθ (AλBµ −BλAµ) . (2.15)

Corollary 2.1. If (λ, µ) = (0, 0) i.e., A(0, 0) = B(0, 0) = θ(0, 0) = 0, then the pole points of the
moving plane lie on a line as follows;

(θλBµ −Bλθµ)P1 + (Aλθµ − θλAµ)P2 = i (AλBµ −BλAµ) . (2.16)

Theorem 2.2. The pole points of the complex motion BI obtained from the complex motion BII on
the fixed plane lie on a line at the position of ∀(λ, µ).
Proof. If the equation P (P1, P2) is substituted into Eq. (2.1), then P̄ (P̄1, P̄2) pole point of the fixed
plane is obtained. Then the pole point on the fixed plane is

P̄1 = i
Ȧ

θ̇
+A (2.17)

and

P̄2 = i
Ḃ

θ̇
+B. (2.18)

Here λ̇
µ̇ is taken from the equality of P̄2 and then substituted in the equality of P̄1 and we get

iBµ +Bθµ − P̄2θµ
P̄2θλ − iBλ −Bθλ

=
iAµ +Aθµ − P̄1θµ
P̄1θλ − iAλ −Aθλ

.

Thus, the following line equation is obtained

(iθλBµ − iBλθµ)P̄1 + (iAλθµ − iθλAµ)P̄2 = BAλθµ +AθλBµ −ABλθµ
−BθλAµ + i (AλBµ −BλAµ) .

(2.19)

Corollary 2.2. If (λ, µ) = (0, 0) i.e., A(0, 0) = B(0, 0) = θ(0, 0) = 0, then the pole points of the
complex motion BI obtained from the complex motion BII on the fixed plane lie on a line as follows;

(θλBµ −Bλθµ)P̄1 + (Aλθµ − θλAµ) P̄2 = i (AλBµ −BλAµ) . (2.20)

Corollary 2.3. The pole lines of the complex motion BI obtained from the complex motion BII on
the moving and the fixed plane at the position of λ = µ = 0 are congruent.

If the pole line of the complex motion BI obtained from the complex motion BII is
y-axis on the moving plane, then the equation Ȧ (λ, µ) = Aλλ̇+Aµµ̇ vanishes. Since λ̇ and
µ̇ are independent motion parameters, they never vanish. So Aλ and Aµ should be equal
to zero at the position of λ = µ = 0. Then, we obtain

P1=0, (2.21)

P2=i
Ḃ

θ̇
. (2.22)

Because of this special case, the pole line and y-axis of the fixed plane are congruent at the
position of (λ, µ) = (0, 0). Therefore, we obtain

P̄1=0, (2.23)

P̄2=i
Ḃ

θ̇
. (2.24)

If the y-axis is chosen as the pole axis, that is, Aλ = Aµ = 0 is taken, then the sliding velocity
of any fixed point Q(X1, X2) on the moving plane at the position of λ = µ = 0 is equal to
the absolute velocity.
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Theorem 2.3. In the complex motion BI obtained from the complex motion BII , let the y-axis be
the pole axis at the position of λ = µ = 0. Then, the pole ray

−−→
PQ = (Q − P )eiθ going from the

pole point P (0, P2) to the point Q (X1, X2) and the sliding velocity
−→
Yf of the point Q (X1, X2) are

perpendicular.
Proof. If the pole axis is the y-axis,

−−→
PQ = (X1, X2 − P2)

and −→
Yf =

[
−θ̇ (X2 − P2) , θ̇X1

]
. (2.25)

Hence, ⟨−→
Yf ,

−−→
PQ

⟩
= 0. (2.26)

Thus, the proof is completed.

Theorem 2.4. The length of the sliding velocity vector
−→
Yf of the complex motion BI obtained from

the complex motion BII is given by ∥∥∥−→Yf

∥∥∥ =
∣∣∣θ̇∣∣∣ ∥∥∥−−→PQ

∥∥∥ . (2.27)

at the position of ∀ (λ, µ).
Proof. It is known that⟨−→a eiθ,

−→
b eiθ

⟩
= ⟨(a1 + ia2) (cos θ + i sin θ) , (b1 + ib2) (cos θ + i sin θ)⟩

=

⟨
(a1 cos θ − a2 sin θ, a1 sin θ + a2 cos θ),
(b1 cos θ − b2 sin θ, b1 sin θ + b2 cos θ)

⟩
= a1b1 + a2b2

=
⟨−→a ,

−→
b
⟩
.

Therefore, the length of the sliding velocity vector
−→
Yf with the pole point is∥∥∥−→Yf

∥∥∥ =
∣∣∣θ̇∣∣∣√(X2 − P2)

2
+ (X1 − P1)

2

and ∥∥∥−→Yf

∥∥∥ =
∣∣∣θ̇∣∣∣ ∥∥∥−−→PQ

∥∥∥ .
Theorem 2.5. For the complex motion BI obtained from the complex motion BII , let Ψ be an
angle between the pole ray

−−→
PQ = (X − P ) eiθgoing from the pole point P = (P1, P2) to the point

Q(X1,X2) and the sliding velocity vector
−→
Yf . Then, the following relation holds

Ψ(λ, µ) =
π

2
+ 2kπ, k = 0, 1, 2, ... (2.28)

at the position of ∀(λ, µ).
Proof. Since

−→
Yf =

[
−θ̇eiθ (X2 − P2) , θ̇e

iθ (X1 − P1)
]

and −−→
PQ =

[
eiθ (X1 − P1) , e

iθ (X2 − P2)
]
,

if we get the inner product, then⟨−−→
PQ,

−→
Yf

⟩
= ⟨[(X1 − P1) , (X2 − P2)] , [− (X2 − P2) , (X1 − P1)]⟩ θ̇ = 0.

On the other hand, it is known that⟨−−→
PQ,

−→
Yf

⟩
=

∥∥∥−−→PQ
∥∥∥ ∥∥∥−→Y f

∥∥∥ cosΨ (λ, µ).
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By comparing these last two equations the proof of the theorem is completed.

Definition 2.1. When the sliding velocity vectors of the fixed points are carried to the initial point
without changing their directions, then the locus of the end points of these vectors specify a curve
called a hodograph.

Now, we investigate any points (X1, X2) of the locus of the hodographs in all the
complex motion BI obtained from the complex motion BII at the position of ∀(λ, µ). For
this let λ̇2 + µ̇2 = 1. By differentiating Eq. (2.3) with respect to λ and µ, we have

Ya = Yf = iθ̇Xeiθ − (Ċ + iθ̇C)eiθ

and
Yf =

(
iθ̇X1e

iθ + Ȧ, iθ̇X2e
iθ + Ḃ

)
.

Then we obtain
Ẏ1 =

(
iθλX1e

iθ +Aλ

)
λ̇+

(
iθµX1e

iθ +Aµ

)
µ̇,

Ẏ2 =
(
iθλX2e

iθ +Bλ

)
λ̇+

(
iθµX2e

iθ +Bµ

)
µ̇.

If the equations are written as follows;

Ẏ1 = m1λ̇+m2µ̇,

Ẏ2 = m3λ̇+m4µ̇

and Cramer’s method is applied to

Γ =

∣∣∣∣m1 m2

m3 m4

∣∣∣∣ = m1m4 −m2m3

at the position of λ = µ =0 and after it is substituted into the equation of λ̇2 + µ̇2 = 1, we
obtain

Γ = iθλX1Bµ + iAλX2θµ − iBλX1θµ − iθλX2Aµ +AλBµ −BλAµ (2.29)
and

λ̇ =

∣∣∣∣Ẏ1 m2

Ẏ2 m4

∣∣∣∣
Γ

, µ̇ =

∣∣∣∣m1 Ẏ1

m3 Ẏ2

∣∣∣∣
Γ

, λ̇2 + µ̇2 = 1.

Then, we get[
(iθµX2 +Bµ) Ẏ1 − (iθµX1 +Aµ) Ẏ2

]2
Γ2

+

[
(iθλX1 +Aλ) Ẏ2 − (iθλX2 +Bλ) Ẏ1

]2
Γ2

= 1.

From this last equation, we obtain

Γ2 =
[
(iθµX2 +Bµ)

2
+ (iθλX2 +Bλ)

2
]
Ẏ 2
1 +

[
(iθµX1 +Aµ)

2
+ (iθλX1 +Aλ)

2
]
Ẏ 2
2

−2 [(iθµX2 +Bµ) (iθµX1 +Aµ) + (iθλX1 +Aλ) (iθλX2 +Bλ)] Ẏ1Ẏ2

(2.30)

and this is the equation of the hodograph at the position of ∀(λ, µ).

Theorem 2.6. The hodograph of any points (X1, X2) in the complex motion BI obtained from the
complex motion BII at the position of λ = µ= 0 is an ellipse.
Proof. Taking the general conic form

KX2 + 2LXY +MY 2 + 2DX + 2EY + F = 0

we obtain

K =
[
(iθµX2 +Bµ)

2
+ (iθλX2 +Bλ)

2
]
,

L = − [(iθµX2 +Bµ) (iθµX1 +Aµ) + (iθλX1 +Aλ) (iθλX2 +Bλ)] ,

M =
[
(iθµX1 +Aµ)

2
+ (iθλX1 +Aλ)

2
]
.
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From here, we have∣∣∣∣K L
L M

∣∣∣∣ = [(iθλX2 +Bλ) (iθµX1 +Aµ)− (iθµX2 +Bµ) (iθλX1 +Aλ)]
2
> 0

and this indicates the equation of an ellipse.

2.2. Accelerations

The relative acceleration vector of the point X (λ, µ) is the acceleration vector of the
point X (λ, µ) with respect to the moving plane. When the vectorial velocity

−→
Xr is derived

with respect to λ and µ, then the relative acceleration vector is obtained. Therefore, from
Eq. (2.4) it is written that

−→
br = Ẋr = Ẍ (λ, µ) = Xλλλ̇

2 +Xλµλ̇µ̇+Xλλ̈+Xµµµ̇
2 +Xµλλ̇µ̇+Xµµ̈. (2.31)

This vector is expressed with respect to the fixed plane as follows;
−→
br

′
=

−→
bre

iθ = Ẍeiθ. (2.32)

The absolute acceleration vector of the point X (λ, µ) is the acceleration vector of the
point X (λ, µ) with respect to the fixed plane. By taking Eq. (2.5) and (2.12) in Eq. (2.10),
we have the absolute velocity as follows

−→
Ya =

−→
Yf +

−→
Yr = iθ̇ (X − P ) eiθ + Ẋeiθ.

When this absolute velocity is derived with respect to λ and µ, then the absolute accelera-
tion vector of the point X (λ, µ) is obtained. Therefore,

−→
ba

′
= (X − P )

(
iθ̈ − θ̇2

)
eiθ − iθ̇Ṗ eiθ + 2iθ̇Ẋeiθ + Ẍeiθ. (2.33)

Here the sliding acceleration vector of the point X (λ, µ) is
−→
bf

′
= (X − P )

(
iθ̈ − θ̇2

)
eiθ − iθ̇Ṗ eiθ (2.34)

and the Coriolis acceleration vector of the point X (λ, µ) is
−→
bc

′
= 2iθ̇Ẋeiθ. (2.35)

Hence, the sliding acceleration vector is the acceleration of the fixed point in the
moving system with respect to the fixed system. Therefore, composition of these accelera-
tions can be given from Eq. (2.31), (2.33), (2.34) and (2.35) with the following theorem.

Theorem 2.7. The following relation holds between the acceleration vectors of any points in com-
position of two complex motions.

−→
ba

′
=

−→
bf

′
+
−→
bc

′
+
−→
br

′
(2.36)

where −→
ba =

−→
ba

′
e−iθ = (X − P )

(
iθ̈ − θ̇2

)
− iθ̇Ṗ + 2iθ̇Ẋ + br

′
, (2.37)

−→
bf =

−→
bf

′
e−iθ = (X − P )

(
iθ̈ − θ̇2

)
− iθ̇Ṗ (2.38)

and −→
bc =

−→
bc

′
e−iθ = 2iθ̇Ẋ (2.39)

are the equations of the absolute, the sliding and the Coriolis acceleration vectors with respect to the
moving system, respectively.
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Corollary 2.4. The Coriolis acceleration vector
−→
bc

′
and the relative velocity vector

−→
Yr are perpen-

dicular.
Proof. Since

−→
Yr = Ẋeiθ and

−→
bc

′
= 2iθ̇Ẋeiθ, if we get the inner product, then⟨−→

Yr,
−→
bc

′
⟩
=

⟨
Ẋeiθ, 2iθ̇Ẋeiθ

⟩
= 2θ̇

(
−Ẋ1Ẋ2 + Ẋ2Ẋ1

)
= 0

(2.40)

and the proof is completed.

If the Coriolis acceleration of the point X (λ, µ) on the moving plane is equal to zero,
then the following relationship holds between accelerations for velocities:

−→
ba

′
=

−→
bf

′
+
−→
br

′
. (2.41)

Corollary 2.5. If the Coriolis acceleration of the point X (λ, µ) on the moving plane is equal to
zero, then the complex motion BI obtained from the complex motion BII is a translation motion
and the opposite explanation is also true.
Proof. If the Coriolis acceleration vector of the point X (λ, µ) is

−→
bc

′
= 2iθ̇Ẋeiθ = 0.

Then, Ẋ (λ, µ) ̸= 0. This is because the point X (λ, µ) is not a fixed point. Therefore, θ̇ (λ, µ) =

θλλ̇+ θµµ̇ = 0 and it shows that the motion is only a translation motion. On the other hand, if the
motion is only a translation motion, then θ (λ, µ) is constant. Here

θ̇ (λ, µ) = θλλ̇+ θµµ̇ = 0

and the following equation is obtained
−→
bc

′
= 2iθ̇Ẋeiθ = 0.

Theorem 2.8. The acceleration pole at the position of ∀(λ, µ), whose angular velocity in the complex
motion BI obtained from the complex motion BII is different from zero, is

X = P +
θ̇θ̈Ṗ

θ̇4 + θ̈2
− i

θ̇3Ṗ

θ̇4 + θ̈2
. (2.42)

Proof. Let us search the points where the sliding accelerations are zero at the position of ∀(λ, µ).
From Eq. (2.34), the sliding acceleration vector of the point X (λ, µ) can be written as follows;

−→
bf

′
= (X − P )

(
iθ̈ − θ̇2

)
eiθ − iθ̇Ṗ eiθ = 0

and from here

X = P +
θ̇θ̈Ṗ

θ̇4 + θ̈2
− i

θ̇3Ṗ

θ̇4 + θ̈2

is obtained.

Theorem 2.9. If λ̇ = µ̇ = 0 , then the acceleration poles of the complex motion BI obtained from
the complex motion BII at the position of λ = µ= 0 lie on the following line

(θλBµ −Bλθµ)Pi1 + (Aλθµ − θλAµ)Pi2 = i (AλBµ −BλAµ) . (2.43)

Proof. From the differentiation of Eq. (2.7), we obtain
−→
bf

′
= −

(
C̈ + iθ̈C + iθ̇Ċ

)
eiθ − iθ̇

(
Ċ + iθ̇C

)
eiθ + iθ̈Xeiθ + iθ̇Ẋeiθ − θ̇2Xeiθ

and if (λ, µ) = (0, 0) and λ̇ = µ̇ = 0 are substituted into the equation and we simplify it, then
−→
bf

′
= −C̈ + iθ̈X



On the Two Parameter Motions in the Complex Plane 193

is obtained. Hence, the acceleration pole is

Pi1 = X1 = i
Aλλ̈+Aµµ̈

θλλ̈+ θµµ̈
, (2.44)

Pi2 = X2 = i
Bλλ̈+Bµµ̈

θλλ̈+ θµµ̈
. (2.45)

Here, if λ̈
θ̈

is taken from the equality of Pi2 and substituted into the equality of Pi1 , then we obtain

iBµ − Pi2θµ
Pi2θλ − iBλ

=
iAµ − Pi1θµ
Pi1θλ − iAλ

and from here we get the following line equation:

(θλBµ −Bλθµ)Pi1 + (Aλθµ − θλAµ)Pi2 = i (AλBµ −BλAµ) .

Corollary 2.6. This acceleration pole and the pole lines of the moving plane given by Eq. (2.16)
and the fixed plane given by Eq. (2.20) are congruent.

3. Conclusion

The results we have presented deal with complex motions in which the position
of the moving object depend on two parameters. Hodograph of two-parameter complex
motions was obtained. The hodograph is the locus of the end points of the velocity of a
particle and it is the solution of the first order equation which is Newton’s Law. The locus
of the hodograph of complex motion was found as an ellipse in this study.
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