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A MODIFIED PRECONDITIONING ALGORITHM FOR SOLVING
MONOTONE INCLUSION PROBLEM AND APPLICATION TO IMAGE
RESTORATION PROBLEM

Ebru Altiparmak!, Ibrahim Karahan?

In this work, we propose a modified preconditioning inertial viscosity forward-
backward algorithm. We also study strong convergence behaviour of our algorithm under
mild assumptions in a real Hilbert space. We use the proposed algorithm to solve the
convexr minimization problem. Finally, we apply our algorithm for solving the image
restoration problems. We can say that the proposed algorithm exhibit to outperform the
already existing algorithms in the literature.
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1. Introduction

Throughout the study, H denotes a real Hilbert space with inner product (.,.) and
the induced norm ||.|| . One of the most significant problems in monotone operator theory is
to identify a zero of the sum of two monotone operators, which is known as the monotone
inclusion problem and which is defined by:

finding x € H such that 0 € (A + B) (x) (1)

where A : H — H is an M-cocoercive operator, where M is a linear bounded operator
on underlying spaces and B : H — 29 is a maximal monotone operator. The monotone
inclusion problem occurs in many areas of applied mathematics including, signal and image
processing, convex optimization, machine learning and statistical regression see e.g. : [1, 6,
7,8, 10, 12, 13, 14, 17, 18, 21, 23, 24, 25, 26, 28).

The following forward-backward splitting algorithm, defined by Lions and Mercier
[16] is the most popular technique for solving the monotone inclusion problem :

Zoy1 = I+ XA (I = A\,B)zy, foralln e N (2)

where A, is a step size parameter and A and B are monotone operators. If B : H — H
is 1/L—cocoercive operator for A, € (0,2/L), then this algorithm converges weakly to a
solution of the monotone inclusion problem.

After that, Moudafi and Oliny [20] presented the following algorithm for solving the
monotone inclusion problem :

Yn = Tn + en (xn - xnfl) (3)
Znir = T+ MA) " (o — MB (z2)), foralln €N
where 6,, is a inertial parameter on [0,1). They studied the weakly convergence of the

algorithm, which satisfies the conditions 07 | 0, [|zn — Tp—1 |* < o0 and A, < 2/L where L
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is the Lipschitz constant of B. The presence of the inertial parameter considerably improves
the performance of algorithm.

Lately, Lorenz and Pock [18] proposed the preconditioning algorithm for solving the
monotone inclusion problem in the following manner :

yn:xn"_en (mn_mnfl) (4)
Tn1 = ([ + XM TA) " (I =\, M'B) (y,), forall n € N,

They proved the weak convergence of the algorithm. It is obvious that the Algorithm (4) is

reduced to the classical forward-backward splitting algorithm (2) for 6,, = 0 and M = I.
Next, in 2021, Dixit et al. [8] introduced the algorithm which is called accelerated

preconditioning forward-backward normal S-iteration by the following way:

Yn = Ty + en (xn - xnfl) 5
Tpy1 = Jﬁﬁ ((1 — Qn) Yn + anJi}\?[ (yn)) Jfor all n € N, (5)

where J&B — (I+AM~1A)" (I = AM~'B), a, € (0,1), A € [0,1) and 6, € [0,1). They
also proved weak convergence of the proposed algorithm under some assumptions in a real
Hilbert space.

Recently, in 2021, Altiparmak and Karahan [3] introduced a new preconditinioning

forward-backward splitting algorithm in the following manner :

Yn = Tn, + en (xn - xn—l)

A, A,
Zn = JA,]\E ((1 - Bn) Yn + BnJ)\J\? (yn)> (6)
A,B

Tn41 = (1 - 771) J)\,}VI (Zn) + ’Y’ﬂf (ZTL)
where {0,,} C [0,0] is a sequence with 6 € [0,1) and {an},{Bn}, {1} € (0,1) and [ is a
k-contraction mapping on H with respect to M-norm. They proved the strong convergence
theorem in a real Hilbert space as well.

In this work, motivated and inspired by all these algorithms, we offer a modified pre-
conditioning forward-backward splitting algorithm which is more effective in image restora-
tion. We also show that the generated sequence by the proposed algorithm converges strongly
to a solution of the monotone inclusion problem in real Hilbert space. On the other hand,

we apply the proposed algorithm for solving the convex minimization problem. Lastly, we
give an application of the proposed algorithm to the image restoration problem.

2. Preliminaries

In this part, we give some crucial definitions and lemmas which play a significant role
in proving our main theorem.

Definition 2.1. [5] Let C' be a nonempty subset of a real Hilbert space H and x € H. For
any z € H, if there exists a unique point y € C such that
ly—zl <z — =
then y is said to be the metric projection of x onto C and is denoted by y = Pox. If Pox
exists and is uniquely determined for all x € H, then Po : H — C is said to be the metric
projection operator.
It is easily known that the operator Pc is nonexpansive and it is characterized by,
(x — Pox,y — Pox) <0 forall y € C.

Definition 2.2. [4] Let A: H — 25 be a set-valued operator. If (u — v,z —1y) > 0 for all
u € Az and v € Ay, then A is said to be a monotone operator. Morever, if the graph of a

monotone operator is not properly contained in the graph of any other monotone operators,
then A is said to be a mazimal monotone operator.
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Let f: H — (—o00,+0] be a function. The subdifferential of a proper function f is
defined as follows :

Of () ={uec H:{y—x,u) < f(y)— f(z) forally € H}.

If 0f (x) # 0, then f is subdifferentiable at € H. The elements of Jf (x) are also called
the subgradients of f at x.

Definition 2.3. [4] Let Ty (H) denotes the class of all proper lower semi-continuous convex
functions defined from H to (—oo,+o0]. Let g € Tg (H) and A > 0. The prozimal operator
of parameter X of g at x can be defined by

. 1 2
provyy (a) = asmip { o () + 55 =}

Let M : H — H be a bounded linear operator. M is called self adjoint if M* = M
where M* is the adjoint of operator M. If (M (z),xz) > 0 for every 0 # = € H, then M is said
to be positive definite [15]. Using the self adjoint, positive and bounded linear operator M,
the M-inner product is defined by (x,y),, = (x, M (y)), for all z,y € H. The corresponding
M-norm induced from the M-inner product is also defined by ||:v||?w = (z, M (x)) for all
r e H.

Definition 2.4. [8] Let C be a nonempty subset of H, T : C — H be an operator and
M : H — H be a positive definite operator. Then T is called:

(i) monexpansive operator with respect to M -norm if
1Tz =Tyl <z —ylly > Yo,y € H,
(ii) M-cocoercive operator if

| Tz —Ty|3, -+ < (& —y,Tx — Ty),Ya,y € H.

T is also called k—contraction mapping with respect to M-norm if there exists k €
[0,1) such that
[Tz =Tyl <klle—ylly, Yo,y € H [3].

Proposition 2.1. [8] Let B : H — 2 be a maximal monotone operator, let A : H — H
be a M -cocoercive operator and M : H — H be a bounded linear self adjoint and positive
definite operator. For X € (0,1] ,the following are satisfied:
(1) I —XM~1A is nonexpansive operator with respect to M-norm,
(2) (I + )\M_lB)_lis nonexpansive operator with respect to M-norm,
(3) Jf,’]ﬁ = (I + )\M_lB)_1 (I — )\M_lA) is nonexpansive operator with respect to M -
norm.

Proposition 2.2. [8] Let B : H — 2% be a mazimal monotone operator, let A: H — H be
a M -cocoercive operator and let M : H — H be a bounded linear self adjoint and positive
definite operator and A € (0,00). Then x € H is a solution of monoton inclusion problem

(1) if and only if (I + AM~'B) ™" (I = AM~'A) (z) = z.
Lemma 2.1. [9] Let C be a nonempty closed and convex subset of a real Hilbert space H
and let T : C — H be a nonexpansive operator with F (T) # 0. Then the mapping I — T

is demiclosed at zero, that is, for any sequence {x,} € H such that x, = = € H and
|zn — Tan]| = 0 asn — oo, x € F(T).

Lemma 2.2. [4] The following properties are satisfied:

. 2 2 2
(i) ||ffﬂty||2 = ||$H2i2<x,y>+ lyll™,
(i) [l +yl” < [lz” + 2y, 2 +v),
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(ifi) (|62 + (1= 8)y|* = &l + (1 = ) lyll* = 6 (L = &) [lx = y|*, for all x,y € H and
§elo,1].

Lemma 2.3. [29] Let {s,} and {e,} be sequences of nonnegative real numbers such that
Snt1 < (1 - Un) St 0nln + En,

where {o,} is a sequence in [0,1] and {\,} is a real sequence. If the following conditions
are satisfied, then limy, ¢, =0 :

(1) (i) > on =00, (ii) Y. e, < 00,(#4) limsup,, . An <0
n=1 n=1
Lemma 2.4. [19] Let {©,} be a sequence of real numbers that does not decrease at infinity
such that there exists a subsequence {©y,} of {©,} which satisfies ©,, < Oy, for alli € N.
Let {T (n)} be a sequence of integers which is defined by:
7(n):=max{l<n:0; <Ou1}.

Then, the following are satisfied:

(i) 7(ng) <7(no+1) <...and 7(n) = oo,

(ii) ©rm) < Ormy41 and O, < Or(ny41 , for all n > ny.

n>ngo

3. Main Results

In this part, we introduce the following modified preconditioning inertial viscosity
forward-backward algorithm and then prove its strong convergence under some suitable
assumptions in a real Hilbert space. We also use the obtained result to solve a convex
minimization problem and so image restoration problem.

Algorithm 1 : Modified preconditining inertial viscosity forward backward algorithm
Initial : 29,21 € H
Iterative Step. Compute wy,, Yn, 2, and z,11 using

Wn =Ty + 60, (T — Tp—1)

Yn = (1 — an)wpn + anJi}\]j (wn)

Zn = J;\L‘,’I\E ((1 - ﬂn) Yn + ﬁnjf,’]\]j (yn)>

Then update n :=n + 1 and go to Iterative Step.
Theorem 3.1. Let M : H — H be a linear bounded self adjoint and positive definite
operator, A : H — H be a M -cocoercive operator and B : H — 25 be a mazimally monotone
operator such that Q = (A + B)f1 (0) is nonempty. Let h be a k-contraction mapping on H
with respect to M-norm and let A € (0,1]. Let {x,} be a sequence generated by Algorithm 1
where {0, } C [0,0] is a sequence with 6 € [0,1) and {an},{Bn}, {7} € (0,1) such that the
following conditions are satisfied:

(i) 0<a<a, <b<1 for somea,beR,
(i) 0 < e < B, <d <1 for some ¢,d € R,
(iil) 07 Oy |2 — zp_1|yy < 00,
(iv) limy—yooyn =0, Y oor | Yo = 00.

Then the sequence {x, }converges strongly to a point x* in Q where 2* = Pof (z*).

Proof. We will analyze the proof in two parts.
Part 1: Let 2* € Q such that x* = Py f (2*). Since Ji}g =+ /\M_lB)_1 (I—AM~14)
is nonexpansive with respect to M-norm, we have the following inequalities :
lwn =23y = lzn+ 00 (20 —20-1) — 2%y,

[0 = ™[ ag + On || 20 = Znallpr (7)

IN
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lyn — 2"l 5

and

llzn — 2"l

= H(l —ap)w, + anJﬁ’ﬁ (wp) — 2™ o
* A,B *
< (1= an) fwn = 2l + || T ) =27
= llwn — 2"y (8)
A, A, %
= |3 (= B+ BuTi ) = |
< H(l_ﬁn)yn'i‘ﬁn*])ﬁ}g (yn) —z* "
* A,B *
< (X =8n)llyn — %[5 + Bn J/\,M(yn)_w o
< lyn — 2%y - (9)

Combining (7), (9) and (8) and since h is k-contractive mapping with respect to M-norm
we also have the following inequality, for all n > 1,

21 — 2%

IN

IN A IA

IN

@ =) T347 ) + b () =27 |
Yo llh (yn) = B (@) Iy + Va1 (27) — 2%y

(1= ) ‘J;‘ﬁ () =

ke g = 2% [+ I (@) = 2%y + (1= 30) 20 — 2"y
ke g = 2% ag + 9 [ (%) = 21| pg + (1= 30) g — 2" [15s
(L= (L= k) [lon — 27|

F0n |20 — Tn-1 ||y +n IR (@7) — 275,

(1 =0 (1= K)) [ln — 2",

977- * *
+%-7llwn*xn—1 Iar +m 1A (2") = 2|5 - (10)

n

Tt follows from the assumptions (i¢) and (¢i¢) that lim, % |zn — 2n—1 ||, = 0. Thus,

there exists a positive constant N7 > 0 such that %

we find

[ent1 = 2%y <

IN

IA

Tn, — Zn—1 ||y < Ni. By using (10)

(1= (L =K)) lzn = 2| py + 70 (N1 + (| (27) = 271 )
N h *\ *
max{”aﬁn—m*HMa 1+|(1($ L) - |M}

o Mt -]
e { s — 2 T = s

for all n > 1. It means that {z,} is bounded so {y,},{zn} and {w,} are also bounded.
Part 2 : We show that z,, — z* = Pof (¢*). By using Lemma 2.2 we observe that,

lwn — %137 < llwn — 237 + 200 |20 — 2%y 120 — 2aillyg + 02 120 — 2nal3y . (11)

2
lyn — 2"l

2 2
MJF(l*an)Hwn*x ”M

= ap Ji’ﬁ (wn) — ™

2

—ay, (1 —ap) ‘Jﬁ’jg (Wn) —wn

IN

%12
llwn =25 (12)
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and

2

2
llzn = 2"l

7858 (1= ) + B3 () — *

M

A,B * 2 * (|2
2
B (1= ) || 3847 (o) = v,
< lyn —I*H?w, for all n > 1. (13)

It follows from (11), (12), (13) and Lemma 2.2 that

2

s =I5, < {0 =) (I8 o) = 2*) 9 (B ) = H )|
+29, (h (") — a*, xpg1 — x7)y,
A,B * 2 %\ (12
< (1-7m) Y, (2n) — 2 o + 9 |7 (yn) = h ()3
+29, (h(2*) — a*, xpq1 — x7)
< Wk llyn — 2" llag + (=) 20 = 2" (3 + 270 (A (2%) = 2%, @ns1 — 2%)
< =7 (Q=k) lyn — 3, + 29 (B (2%) — 2%, 2piy — 2%)
*[12 *
< (1= (1= 82) [lzn = 213 + 200 low = 2oy | @0 = Za1
02 | 2 = 2n 13| + 20 0 (57) = 27 s — 27y
%112 *
< (1 —Tn (1 - kz)) [2n — 2" [[3 + On | Zn — 2n-1llpy (2120 — 27y

0, || T — Tp—1 ) + 29 (B (2F) — 2", Ty — %)y, foralln > 1. (14)

Since limy, oo On ||Tn — Tn-1 lla; = 0, there exists a positive constant Ny > 0 such that
O ||zn — -1 ||y < No2. From the inequality (14) we can observe,

[@n41 — x*”?\/[ < (1 —Tn (1 - kz)) [l — x*H?\/[ + 3Nz || Zn — zp-1ll

P (L k) s (B (@) — s — 2), (15)

1- &%)

where N3 = sup, > {||zn — 2*[|;;, N2} . In inequality (15), if we get o, = v, (1 — k?),
Sn = ||Tn — 33*||?\4, op = ﬁ (h(z*) —a*, xpp1 —a*),, and €, = 3N30, || Tn — Tro1|l
then we have ¢,11 < (1 — 0y,) S + 0pdp, + &5 for all n > 1.

We next show that limsup,, . (h(z*) — 2%, 241 — 2*),, < 0. We observe the fol-
lowing two cases.

In the first case, suppose that there exists ng € N such that {||z, — 2%/}, isa
nonincreasing sequence. The sequence {||x,, — 2*|,,} is convergent since it is bounded from
below by 0. Using the assumption (iv), we have Y~ | o, = oc.
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Assert that limsup,,_,  (h(z*) —2*, 2p41 — 2*),, < 0. Together (11) and (12) with
Lemma 2.2 we can get, for all n > 1,

2

*

2 2 A,B
||$n+1 _z*HM Tn ||h(yn) - 17*”1\/[ + (1 _'Yn ’JA M (Zn) -z

M

—n (L =) ( n) — M (Zn)
e el 2+ G 2
2
<l o) =1y 1= 20 [l =1 = an 1= ) [555 ) = [ |
< Y llh(yn) — z*”?\/[ + (1 =) {Hxn - x*“?\/[ + 205 |20 — 2% 5 (|20 — 15y

2
+972LH mn_"Tnle?\/[ —an (1 —ay) ;\4}\1/13 (wn) — wy, M]
.12 )2
= Y llh(yn) =23 + (0 =) 20 — 2"}y

+2 (1 =) O |20 — x*”M | Zn — xanHM
2

“]:\4,’15 (wn) — wn

(1 =) 03 | zn — xn—l‘ﬁ\/[ —an (I —ay) (1 —7n)

This implies that

an (1= ) (1= 7) i

‘Jﬁ}g (wn) — wn

2 2
<y (10 o) = 213, = llzn = 2*13,)
* 12 * 12
—lTnt1 — 2|5 + lzn — 2%y
+ (1 =) On |l T — Tn-1ll 5,
X (2l@n = 2" I3 + 00 | 20 = 21llar) -

Due to the assunptions (4i7), (iv) and the convergence of the sequence {||z, — z*||;,}, we

can derive that
2

. A,B _ _
Tlim. HJAM (wn) —wa| =0. (16)

On the other hand, the following expressions are obtained
nll—{r;o [wn = @l = nh_)néo On || @n — 2n—1l[py =0 (17)

and

lom = wnllyy = [|(1 = an)wn + @n 5] (wa) = wn

= ij\lj (Wn) — wn

which implies

Jim g = wallyy = Jim |75 @) = wal| =0, (18)
Note that
lon = wallar < ||on = T2 @), + | 75447 @a) |,
< 0= B+ BuTE @) = on| |+ || ) = |
< Ny = wnllag + B [T ) = |
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The inequalities (16) and (18) imply that lim, o ||z, — wn||,, = 0. Using (16), (17), (18)
and the assumption (iv), we consider

||xn+1 - wn”M S ’ xn+1 - J)\,M (wn + HJA M wn) — Wnp

M

—|— HJAB (Wn) — wn

|a %JAM@n)wmn)—JAM(w

M
< B G = I || || ) - J;“Iﬁ o), + |55 wn)
< ) = I )|+ e = wallag + [T @n) — wa

which implies
nh—>Holo [@n+1 = wally, = 0. (19)

Thus, from the inequalities of (17) and (19) we obtain that lim, .« ||Zn4+1 — 2n|| ), = 0. We
next set limsup,,_, . (h(z*) — 2%, 2,41 — 2*),, = u. Since the sequence {x,} is bounded,

there exists a subsequence {x,, } of {x,} such that z,,, — ¢t and lim; , o (h (z*) — 2*, 2,11 — @

u. By using (16) and (17) we can find

4.5
ACOREE

- HJAB ) = o+ wn — wn + T3 ag (Wn) = 5T (wn)

M M

IN

A,B
2l = @allag + | T3247 (@n) —wn

Ny .

Also, this implies that lim,, s HJ;?ZE n) — Tn

= 0. Then, it is easly seen from Lemma
M

2.1thatt e F (Jf_zﬁ) . On the other hand, since ||zp41 — 2y, = 0asn — co and z,,, — ¢

we have z,,,, — t. Furthermore, by combining z* = Pqf (z*) and property of the metric
projection operators we can write

zgrgo (f (&™) —a™, 2,1 —a™)y, = (f (@) — 2"t —27),, <0.
In this case, this implies that

limsup (h (z*) — ", 2p41 — ™), < 0. (20)
n—oo
It follows from (20) that limsup,,_, . 0, < 0. Consequently, we obtain that x,, — z*.

In the second case, suppose that there exists ng € N such that {||z;, —2*[|\/},,5,,

is a monotonically decrasing sequence. Let us denote © = ||z, — *H?M for all n > 1.
For this reason, there exists a subsequence {0,} of {©,} such that 6, < @m . for all
n > ng. Define 7 : {n:n>np} by 7(n) =max{l e N:1 <n,0; < @l+1} It is clear that
the sequence 7 is nondecreasing. By Lemma 2.4 we say that @T(n) < Orny41 foralln > ng,
So, we have [|©t) — @[]y, < [[Ormyr1 =27 -

In the first case, by taking 7 (n) instead of n, we can here obtain similar results.
Namely, we get limsup,,_, ., ||@T(n) — x*”2 < 0. We also have

1070y — = HM%()andH@ M+l — T HMHOasn%oo (21)

Thus, by using (21) and Lemma 2.4, we deduce that ||©,, —z*|,, < H@T(n)H — x*HM =0
as n — oo. In conclusion, we conclude that x,, — z*, and then the proof is finished.

Remark 3.1. In Algorithm 1,

(1) If we take o, = 0, then we derive Algorithm (6),

(2) If we take a, =0, v, = 1 and h = I, then we derive Algorithm (5).

(3) If we take ay, = By, =0, 7, = 1 and h = I, then we derive Algorithm (4).

(4) If we take oy, = B, =0, =0, v, =1 and h = M = I, then we derive Algorithm (2).

— Wnp

v =
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4. Applications to Convex Minimization Problem

Consider the following convex minimization problem :

finding «* € H such that f (z*) + g (z*) = gélg {f@)+g(x)}. (22)

Let g : H — R be a proper convex and lower semi-continuous function and let f: H — R
be convex and differentiable with L ;-Lipschitz gradient which is Lipschitz constant of V f .
Then Baillon-Hadded Theorem states that VF is cocoercive with respect to L;l. Morever,
the subdifferential of g is maximal monotone see, for detail [4]. It is well known that a point
x* is a solution of convex minimization problem (22) if and only if 0 € Vf (*) + dg (x*) .
In Theorem 3.1, set A =V f, B = 0g and M () = Ly (z). So, the next Algorithm 2 and
theorem can be derived.

Algorithm 2
Initial : zg,2; € H
Iterative Step. Compute wy, Yn, 2, and z, 1 using
Wp =Ty + en (xn - xnfl) 5
Yn = (1 —ap)wp + angi} 9 (wn)
V1,0 V1,0
20 = VLY (1= Ba) o + BadN 12 (9)
Tn+1 = (1 - fYn) J,\v’i}ag (Zn) + ’Ynh (Zn)
Then update n :=n + 1 and go to Iterative Step.

Theorem 4.1. Let f : H — R be a differentiable and convex function with L¢-Lipschitz
gradient and g : H — R be a proper convex and lower semi continuous function. Assume
that the solution set of convex minimization problem (22) is nonempty. The parameters
{0} € [0,0] and {a},{Bn}, {1} € (0,1) satisfy the same condition as in Theorem 3.1. Let
{zn} be a sequence generated by Algorithm 2. Then {x,} converges strongly to a x*solution
of convex minimization problem.

5. Applications to Image Restoration Problem

The goal of this part is to demonstrate that Algorithm 2 can be applied to solve the
image restoration problem. We also conduct a comparison of Algorithm 2 with Algorithm
(4), Algorithm (5) and Algorithm (6) in image restoration. All codes are implemented in
MATLAB R2020a running on a Dell with Intel (R) Core (TM) i5 CPU and 8 GB of RAM.
The image restoration problem can be formulated by the inversion of the following manner:

z=Ar+y (23)

where 2 € R is the original image, A : R — R™ is the blur function, z € R™ is the
observed image and y is the additive noise. The aim of the image restoration problem is to
minimize the additive noise y by using the degenerated image z. Thus, the image restoration
problem (23) reduces to l;- regularization problem which can be formulated by

.1 2
i, {3 o — 21 47 el }. 24

where 7 > 0 is a regularization parameter. By taking f (z) = 1 ||Az — 2|, g(x) =7 ]|,
the convex minimization problem reduces to as [;- regularization problem. The gradient
of f is the following form Vf (z) = AT (Ax — 2), where A7 is a transpose of operator.
Image restoration problem (23) is solved by adapting Algorithm 2 and also this algorithm is
compared with Algorithm (4), Algorithm (5) and Algorithm (6). In numerical comparisons,
we consider the blur functions Gaussian and Motion in MATLAB and add random noise.

Cameraman, Goldhill, Mountain and Barbara are used as test images. The signal to noise
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ratio (SNR) is used to determine the quality of the restored images, and it is defined as
follows:

nil2

where x and x,, are the original image and the estimated image at iteration n, respectively.
In all numerical comparisons, we choose parameters as o, = %, 0, = 1—10, Bn = %, Yn = 1(+nv
A=0.99, f(z) =0.992 and 7 = 0.0001.

We compare Algorithm 2 to algorithms (4), (5) and (6), and use cameraman and
barbara images and motion and gaussian blur functions. Numerical results corresponding
to the above selections are given in the following figures.

(a) Original Image  (b) Blurred and Noisy Image  (c) Algorithm (4) (d) Algorithm (5)

(g) Original Image (h) Blufred and Noisy Image (1) Algorithm (4) (3) Algorithm (5)

(k) Algorithm (6) (1) Algorithm 2

FIGURE 1. Comparisons of algorithms for Cameraman and Barbara images.
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(a) SNR values for Cameraman image (b) SNR values for Barbara image

FiGURE 2. Comparisons of SNR values according to the algorithms

Experimental results show that our algorithm has a better image restoration than

other algorithms.

6. Conclusion

We presented a modified preconditioning forward-backward technique to handle the

image restoration problem effectively in this work.We also showed that the Algorithm 1
has strong convergence under certain conditions. Experimental findings demonstrate that
the Algorithm 2 provides superior image restoration with higher SNR than Algorithm (4),
Algorithm (5) and Algorithm (6).
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