U.P.B. Sci. Bull., Series C, Vol. 72, Iss. 3, 2010 ISSN 1454-234x

HIGH-LEVEL METRICS FOR ENERGY EFFICIENCY
EVALUATION

Marius MARCU?, Dacian TUDOR?

In aceastd lucrare incercim si surprindem aspectele ce sunt importante
pentru implementarea sau evaluarea tehnicilor de eficientizare a consumului de
energie de catre dispozitivele de calcul mobile. Scopul principal al lucrarii este
acela de a propune, implementa si valida un set de metrici de nivel inalt pentru
evaluarea eficientei energetice a sistemelor de calcul si a aplicatiilor framework de
management al consumului. Prin utilizarea acestor metrici incercam sa identificam
sistemele hardware i software care sunt cele mai eficiente pentru a executa o
anumitd aplicatie. Aspectele originale vizate in cadrul lucrarii sunt framework-ul de
evaluare a eficientei, introducerea si clasificarea metricilor de consum, definirea
cazurilor de test pentru evaluare §i analiza rezultatelor experimentale obtinute.

This paper tries to gather together all the aspects that are important to
implement or evaluate energy efficiency techniques in mobile computing devices.
The main goal of our work presented in this paper is to propose, implement and
validate a set of high-level metrics for energy efficiency evaluation of computing
systems or Dynamic Power Management (DPM) software frameworks. Using these
efficiency metrics we intend to evaluate and identify the hardware system and DPM
software which are the most efficient in terms of energy to run certain application.
The original aspects of the current work are the proposed evaluation framework for
energy efficiency, power consumption metrics definition and classification, new
evaluation test cases for energy efficiency and analysis of experimental results.

Keywords: power consumption, energy efficiency, high-level metrics
1. Introduction

Recent developments in areas like mobile systems and wireless
communications as well as the trend to incorporate a lot of new functionalities
(such as WLAN, Bluetooth, GPS, multimedia, VoIP) have lead to their
acceptance in almost all domains of activity. The element that has underlined the
development of this domain was the reduction of the commercialization price of
intelligent mobile systems (pocket PC, smartphone, PDA) together with their
increase in performance [1]. The foresight of the immediate following years are
propitious for the mentioned domain also, for example Portio Research group

! Assoc.Prof., Dept. of Computer Science, “Politehnica” University of Timisoara, Romania,
mmarcu@cs.upt.ro
2 Eng., Dept.of Computer Science, “Politehnica” University of Timisoara, Romania

132 Marius Marcu, Dacian Tudor

estimates in its market study forecast for 2009-2013 [2] that the number of mobile
subscribers will double in this period of time. Therefore we can say that we shall
attend a pronounced development of the number of applications that run on
mobile devices and this will lead to a growth of the request on the market of
mobile application developers.

One of the most important evolution direction of mobile as well as
traditional computing systems during the last years are oriented towards energy
efficiency because of limited battery capacity of these devices. Different studies
and high level discussions [3, 4] address actual power consumption problems of
electronic and computing devices. The power consumption issue of computing
systems is in general a very complex one [5] because every physical component in
the system has its own power consumption profile depending especially on its
execution workload, so that together with the physical components, the software
applications has a big influence on the energy consumption [6, 7].

Power management and energy efficiency is a multidisciplinary field that
involves many aspects (i.e., energy, temperature, reliability), each of which is
complex enough to merit a survey of its own [8]. Unfortunately, despite
considerable effort to prolong the battery lifetimes of mobile devices, there is no
standard efficient solution established for all the mobile applications and their
hosting devices [9]. Therefore in our work we addressed energy and power
aspects in order to facilitate energy efficient mobile applications evaluation. Some
of the current power management aspects are presented in the rest of this chapter.

Dynamic power management (DPM) strategies have been proposed and
implemented in order to reduce the power consumption of the computing systems.
This is a very large research domain, where significant work has been presented in
[8-10]. The DPM algorithms minimize the energy consumption by selectively
placing the system’s unused components in their specific low-power consuming
states. Dynamic Voltage and Frequency Scaling (DVFS) is another well known
power management mechanism which relies on dynamically reducing or
increasing the processor voltage and frequency in order to control performance
and power consumption [11]. DVFS techniques provide a way to reduce power
consumption of microprocessors and other system components by altering the
system or component performance.

Understanding applications characteristics is important for designing
efficient power management (PM) systems [10] therefore the hardware level PM
and operating systems and drivers level PM are not sufficient to obtain the
maximum efficiency for a certain system. Different authors [10, 12, 13, 14]
consider that a dynamic, adaptive PM infrastructure is needed to improve actual
PM strategies. This infrastructure is to be implemented as a middleware or
framework [13, 14] that continuously monitor workload characteristics and adapt
the system or applications accordingly in order to obtain the best efficiency in

High-level metrics for energy efficiency evaluation 133

respect to a set of requested constraints. In order to evaluate and implements such
a energy efficiency framework for a mobile device a number of well defined
metrics and test cases is needed.

An important aspect discussed also in [17] is the energy efficiency of
different systems, processes and applications. Running the same application on
different hardware or implementing the same functionality in an application with
different algorithms may achieve distinct energy levels for the same functionality.
The energy efficiency of computing systems or software applications is a complex
concept [17] which has to be correctly defined in order to be used in such PM
frameworks.

The main goal of our work presented in this paper is to propose,
implement and validate a set of high-level metrics for energy efficiency evaluation
of computing systems or DPM software frameworks. Using the efficiency metrics
we intend to evaluate and identify the hardware system and DPM software which
are the most efficient in terms of energy to run certain application. Next section
describes the power profiling concepts used to extract energy efficiency metrics.
Section 3 introduces and defines the energy efficiency metrics and Section 4
specifies the proposed test cases which can be used to compute the metrics. In
section 5 we provide some energy efficiency results for some of the proposed tests
and we conclude in Section 6.

2. Power consumption profiles

We consider that dynamic power management (DPM) mechanisms, when
promoted at the higher layers (e.g. applications) can have an important impact on
energy consumption reduction. The vast majority of existing literature deals with the
physical and operating system’s level, but in the last years a movement to higher
levels DPM has been observed. We have considered this point of view for the
obvious reason that applications may have knowledge or may estimate in a more
accurate manner the necessary operations, their duration and importance. In addition,
we see this focus change as a promising gap in power efficiency research.

We define a computing system as a number of physical components
together with the running software applications using these components. Every
application uses some components in order to finish its tasks and to provide the
services it is executed for. The system components are considered as distinct
power sources in the system which consume various power values function of
their usage model. For each power consumption source in the system we can
establish different power profiles (or power fingerprints) which denotes the power
consumption of the component for a given utilization profile (e.g. applied stimuli
or workload). Every power profile is identified by a set of power consumption
levels corresponding to the different component usage models. A system

134 Marius Marcu, Dacian Tudor

component usage model assumes a certain workload level of the running
applications using the component.

We understand by power profiles the variation in time of power
consumption measurements related to the workload applied to the component. We
define one profile per component and workload type in order to see how
component power consumption changes with component’s parameters when the
workload is applied.

In order to run different evaluation test we designed and implemented a
software framework for energy efficiency evaluation and energy usage
optimization. This framework is not the subject of this paper but its design can be
found in [15]. The energy efficiency evaluation framework presented in Fig. 1
continuously monitors the components and systems’ parameters and computes
energy efficiency metrics which are provided to the profiler components. Every
power source in the system has a power profiler in order to estimate and predict
its power consumption variation during its usage. We consider in our experiments
only one component, the system CPU.

/ CPU energy efficiency evaluation framework \

Workload | | @R L N/ CPUenergy

generator [1 ’e)?oef'i%; [/| profile logger

l:

Energy efficiency evaluation framework

r ¥ x &

Battery Power CPU Task
monitor monitor monitor monitor

¥r ¥ € T

OS and device drivers

S
\ CPU Memory J

Fig. 1. Evaluation framework software architecture

In order to use power profiles we need to introduce a standard way to
generate the profiles and in order to identify correctly power variation of the
components. This standard method to generate power efficiency profiles we called
power efficiency benchmarks that are described in detail in our previous work
[16]. The power benchmark is defined as a software program that characterizes
the power consumption of a system, component or application with respect to

High-level metrics for energy efficiency evaluation 135

certain stimulus (workload). A power benchmark must by able to distinguish the
way power consumption is increasing with workload related to idle state
consumption and the type of workload. Therefore, we define a power benchmark
to be composed by three intervals (Fig. 2): [0-t;) idle mode power consumption,
[t:-t) the workload phase, when a certain stimulus is executed and [tp-t3)
represents the releasing phase intended for the component to reach again the idle
state power consumption.

Component measurements are the primary metrics the evaluation
framework will use in order to characterize the current power consumption of the
system. These measures could be obtained from different sources: battery driver,
operating system, and other internal or external device drivers. Hardware
component’s power consumption depends on runtime usage profile which is
dependent on the applications running on the device.

Component
usage
Idle . Workload . Idle
(a)
Consumed Time
energy —_— ;
(b)
Remaining Time

energy

Dissipated Time

Energy

(d)

0 t 2 3 Time
Fig. 2. Theoretical power consumption and system usage profiles

Conceptually, these profiles can be grouped in power consumption classes
based on two kinds of parameters: system (usage) parameters and battery
(consumption) parameters. Fig. 2 describes three types of power consumption
profiles for the consumption parameters: consumed energy, remaining energy and
dissipated energy. Each of these profiles is dependent on the applied workload.
The workload profile determines the power states the device can switch while

136 Marius Marcu, Dacian Tudor

running (Fig. 2.a). Power consumption is shown in Fig. 2.b where there are
different power consumption values for a component at different usage levels.
Power consumption profiles are usually described as power consumption levels.
Remaining energy, which is shown in Fig. 3.c, is the energy available in the
device energy supply (usually the battery) that can be further used by the device.
The remaining energy is decreasing with time and function of usage profile. The
available energy is decreasing faster when higher usage levels are applied on the
component. Dissipated energy is the fraction of the consumed energy loosed by
the system as heat (Fig. 3.d).

To conclude, the power efficiency framework is based on following
concepts:

- Workload components — are considered the system’s physical or virtual
modules that consume power and contribute to the overall power consumption of
the system. For a mobile device we identified the following components: CPU
and memory, WLAN, Flash file system, Audio chipset, Display, Video chipset,
Bluetooth, GPS receiver, GSM chipset, etc. In this paper we address the first two
components: the CPU and memory as a single component because for the higher
levels they are tight related.

- Component measurements — define the measured parameters available for
every addressed component. For every component in system there are a set of
measurable parameters which describes how it is used and its power consumption
state. Every component parameter is included in one of the four classes presented
in Fig.2.

- Power efficiency metrics — are defined as high-level metrics computed
from the measurements. High-level metrics are domain specific values computed
for every component. These values are domain specific in terms of power
consumption for component or application workload operations.

- Power profiles — specify how power efficiency metrics varies in time. We
define one profile per component in order to see how component power
consumption changes with component’s parameters and workload type.

3. CPU energy efficiency metrics

CPU is the most important component in the system and it has a
substantial contribution to the overall systems’ power consumption. CPU
parameters could be measured globally for all applications running in the system
or specifically for every application registered and monitored by the framework.
There are two types of CPU parameters: static and dynamic. Static CPU
parameters are known a priori for a certain system and could be configured or
achieved from OS. Dynamic CPU parameters could be measured in real time
(online) for the running applications and they are variable with the CPU

High-level metrics for energy efficiency evaluation 137

utilization by these applications. Dynamic parameters could be achieved for the
whole system or per application, but static CPU parameters are usually global
parameters. Dynamic parameters are computed as an average on a fixed amount of
time which is a settable parameter for the framework, and we call it framework
sample time period (FSTP).

We consider in our model that one application is composed, in terms of
CPU, from one or more threads. The application threads could be started when the
application is launched (as a pool of threads) and they are alive during the whole
application lifetime or the application could start dynamically a number of
threads, when they are needed. Every application thread has a unique ID, the
processor core it is allocated to, the priority and CPU and memory usage by the
thread during the current time period. The CPU power consumption due to a
certain application is to be computed from CPU parameters computed for every
thread in the observed application.

CPU core parameters are used to characterize statically and dynamically
the CPU configuration of the system:

— CPU cores number (Cpuno) - specify the number of cores available in the
system. This parameter is static and is well defined globally for a certain system.
[cpu_core_number]

— CPU core available power states (Cpups) - every CPU core has a well
defined number of power states: active, low power, sleep, inactive. For every
power state the power consumption level has to be known and statically
configured. A CPU power state is defined by its name, power consumption and
the activation time needed by the CPU core to enter this power state.
[cpu_power_states_number, cpu_power_state_name, cpu_power_state_value,
Cpu_power_state_uptime]

— CPU core runtime power states - specify in every period in time the
current power states the CPU cores are used in. For every core, the runtime power
state is one of the available power states for the CPU presented before.
[cpu_runtime_power_state]

CPU usage parameters specify how the CPU is used by all running
applications:

- Global CPU time (cpug,) - specify the time the CPU or its cores are used
by the running programs’ threads in the current evaluation time period. CPU time
is expressed in clock tick counts and defined as the amount of time the CPU is
actually executing instructions of the running applications. Global CPU time is the
difference between the total amount of time the CPU executes instructions
counted from the system begin time to the FSTP end time and the amount of CPU
time from the system begin time and the start time of the FSTP
[global_cpu_time].

138 Marius Marcu, Dacian Tudor

Thread usage parameters specify how the CPU cores are shared by the
running threads:

- Thread CPU time (Cpuy) - specify the amount of time a thread has actively
used the CPU core during the framework sample time period. This parameter is
computed for every combination of thread and CPU core in order to show how a
thread was executed and migrated on different cores. The same with global CPU
time, it is expressed in clock tick counts and can be computed by difference
between the total amount of time the thread used the CPU from it’s begin to the
stop time of the current FSTP and the amount of CPU time from the thread begin
and the start time of the FSTP [thread_cpu_time].

The evaluation framework is responsible to provide to the higher layers
energy efficiency metrics such as information on power consumption (average,
instantaneous), application or component power efficiency. Energy efficiency
metrics specify how much energy is needed to complete an application specific
job.

Global metrics are the parameters that characterize the power consumption
and energy efficiency of the whole system:

— Global power consumption (Ps) is the average power consumption of the
system during the FSTPs (framework sample time period). This metric is the
absolute power consumption expressed in Watts and is obtained from the battery
measurements. In case the battery driver does not provide any information which
could be used to estimate absolute system power consumption, relative values for
this metric are accepted. [global_power_consumption]

— Global energy efficiency (Es) specifies which the costs in terms of energy
are in order the system finishes its work. The efficiency is measured in operations
per consumed energy and is computed as the useful work executed by the system
per quantity of energy consumed to finish the work. The system’s operations
could be defined in terms of users’ operations, component operations or
applications operations. [global_energy_efficiency]

— Total available energy (E;) is the energy that the system’s power sources
can supply within specific parameters in order the system works properly. The
energy is expressed in joules or in terms of battery capacity (Wh). This metric is
available from battery measurements. [total_available_energy]

CPU metrics are the framework computed values that characterize the
power consumption and its efficiency of a hardware component:

— CPU power consumption (Pcy) is the average power consumption of the
CPU during every FSTP. This metric specifies the part in the global power
consumption due to the CPU. This power consumption is a component specific
metric which is computed based on the low level measurements for the
component. The metric is expressed either in absolute values (recommended) or in

High-level metrics for energy efficiency evaluation 139

relative values (when poor measurements are available).
[component_power_consumption (CPU)].

— CPU energy efficiency (Ecp) specifies which the costs in terms of energy
are in order the CPU execute a specific amount of work. CPU energy efficiency is
the report between CPU times and energy consumed by the component for the
time period the CPU time is computed. [component_energy_efficiency]

Application metrics are the framework provided parameters that
characterize the power consumption and power efficiency of a software
application:

- Application global power consumption (Papp) Specifies how much of the
system power consumption is due to the specific application. This metric provided
by the framework core is computed based on the application’s threads
measurements and the used components’ parameters. The metric is expressed
either in absolute values (recommended) or in relative values (when poor
measurements are available). [application_power_consumption (application)]

— Application energy efficiency (Eapp) Specifies which the costs in terms of
energy are in order the specific application executes its work. The efficiency is
measured in operations per consumed energy and is computed as the useful work
executed by the application per quantity of energy consumed to finish the work.
[application_energy_efficiency]

- Application CPU power consumption (Papp-cpu) 1S the power consumption
of a hardware component induced by a specific application. This metric is
computed by the framework function of the application’s threads measurements
and specific component parameters. The metric is expressed either in absolute
values (recommended) or in relative values (when poor measurements are
available). [application_power_consumption (application,CPU)]

— Application CPU energy efficiency (Eapp-cou) Specifies which the costs in
terms of energy are in order the CPU execute a specific amount of work for a
certain application. CPU energy efficiency is the report between CPU times and
energy consumed by the component for an application for the time period the
CPU time is computed. [application_energy_efficiency]

4. CPU energy efficiency test cases

The process of extracting power profiles for a computing system is called
system power profiling or characterization. We selected some tests in order to
extract power profiles of system’s CPU and its cores. Once the test are
established, we run these test many times on the same machine with different
environment conditions, we test different types of workloads and we try to
emphasis the influence of different components or applications on the overall
power consumption of the system.

140 Marius Marcu, Dacian Tudor

CPU power profiles present a description of the CPU power consumption
variation over the time when it executes different workloads with well known
parameters. CPU power profiles are considered as a characteristic feature of the
CPU because when it executes a specific workload a number of times with the
same parameters, the same power consumption profiles are obtained. In order to
produce the CPU power profiles a number of tests are further introduced. CPU
power profiling test are based in the power benchmarks introduced before. During
the profiling phase the tests are running for a certain amount of time when the
measurements and efficiency metrics are collected and recording by the
framework.

- CPU idle power consumption - The CPU idle state power profile is the
power consumption variation over the time when the CPU is idle and do not
execute any application, except the default operating system services. When the
idle test is executed the CPU configuration parameters are set to default values, no
workload is applied and no other user application or interaction is allowed. CPU
default parameters mean that only one core is active and this core is set in the
active power state, not in any of the available low power states.

- CPU instruction set power consumption - The CPU consumes distinct
power values for any instruction it executes. Some complex instructions consume
more power to complete than the simple CPU instructions. However, at the higher
levels the system cannot seize the differences between the power consumption
levels of two instructions, but we need in the framework an idea of power
consumption of different instruction classes: integer, memory, floating point, etc.
In case we know what kind of operations an application thread uses we can
estimate its power consumption for a specific workload.

— CPU usage power consumption - The same workload the CPU can execute
at different usage levels which may imply different power consumption levels for
the same type of workload. Using this profiling test we want to emphasize the
relation between power consumption and CPU usage for certain workloads. Inside
this test the same workload is repeatedly executed with different sleeping times in
order to achieve different values for CPU usage.

— Multithreading power consumption - Another proposed CPU profile test is
to launch the same algorithm workload on different thread counts using one single
core. Using this test the OS task scheduling and switching operations along with
workload operations are observed in order to get their power consumption. In a
multithreading test case it creates a number of threads running the same workload
in order to see how thread count influence the overall power consumption, and
further to understand how much power consumes the OS task scheduling and
switching mechanisms.

— Multicore power consumption - For multi-core processors two new tests
are needed to establish the relation between the number of active cores and their

High-level metrics for energy efficiency evaluation 141

individual and cumulated power consumption. First, the test is used to activate
every core one at the time to run the same workload, in order to see how much
power consume every active core. Next, the test activates successively step by
step one more core while cheeping the previous active and run the same workload
on every active core, in order to emphasis the increasing power consumption for
every new active core.

— Multhithreading and multicore power efficiency - A much more general
power profiling test is to launch an arbitrary number of distinct workload threads
on an arbitrary number of active cores. Using this test we can obtain the efficiency
of multi-core CPU for certain types of workloads in order to obtain the optimum
number of threads and activated cores.

— Synchronization power consumption - Synchronization mechanisms are an
important aspect in multithreading and multi-core programming. In order to
observe the power consumption of synchronization we propose another test. The
test creates a number of threads running on the specified cores and the threads use
a number of synchronization objects to access shared data.

— CPU states power consumption - CPU cores recently implement more than
the active/inactive power states. Also modern technologies like DFVS (Dynamic
Frequency and/or Voltage Scaling) are also implemented. In order to detect power
consumption of CPU core’s states we introduce another power profile. With this
profile the same workload is executed on the same CPU core selecting in each test
step the next available power state or DFVS step.

5. CPU energy efficiency results

In this section we show some of the results we obtained after execution of
the proposed CPU energy efficiency test cases. The test we executed on three
hardware systems: Fujitsu Siemens laptop E series with Intel Core Duo CPU at 2
GHz and 1.5 GB memory; Dell Inspiron laptop with Intel CPU at 1.8 GHz and
512 GB memory; Dell Optiplex desktop with Intel Core Duo at 2.4 GHz and 2Gb
memory.

We run the same tests on every system a number of three times and we
logged all measurements and computed metrics for further analysis. One test last
15 minutes: 5 minutes idle, 5 minutes workload and 5 minutes again idle. The
measurements are sampled every one second and based on them the efficiency
metrics are computed.

After we execute a CPU energy profiling test with integer workload we
obtained the drawing in Fig. 3. The power consumed by the system we measured
with an external device we build which measures the AC power socket where the
system was plugged in. CPU temperature was measured for every core in the

142 Marius Marcu, Dacian Tudor

processor through the build in temperature sensors. The CPU usage was computed
using the operating system API.

100

90
80 (——'—l
70
N M
60 —— Power cons. [W]
50 —— CPU usage [%]
40 CPU temp. [oC]
30 =
20
10
0"l.1|.|l+|.| bbb | ‘ ‘ ‘ ﬂJ.fl\n‘Lanum,HnM
0 100 200 300 400 500 600 700 800 900

Time [s]

Fig. 3. CPU measurements

Battery power consumption

40000

35000 -

30000
25000 -
20000 o f

ST i

10000

Power consumption [mW]

5000

Time [s]

Fig. 4. Heat dissipation and power consumption

Part of the battery energy of a mobile device is transformed into heat. The
increase in temperature enforces more energy to be consumed. In Fig. 4, power
consumption profile for the previous memory workload is presented. During the
second phase of the benchmark, when the workload is applied, the temperature of
the processor and also the temperature of the entire mobile device increase (in our
example the temperature increases from 60 to 90°C). This increase in temperature
of has an effect on power consumption, and a smooth increase (from 30W to
34W) during phase 2 of the benchmark can be observed in the current profile.
This increase of approx. 4W during the workload execution is due to the heating
of the device.

Various computing and mobile systems consume different power values
depending on a lot of factors like: enabled components, component parameters,

High-level metrics for energy efficiency evaluation 143

usage pattern, running applications, etc. Using the proposed high level metrics we
can estimate which are the most efficient systems in terms of energy for certain
workload execution. For example we run the same workload (a CPU integer
benchmark) on three systems and we obtained different performance and power
consumption values (Fig. 5). The energy efficiency is shown in Fig. 6 where it can
be observed that not the most performing system is the most energy efficient one.

200000

180000
= w

. 160000
5
3 140000 i
2
§ 120000 « FSC laptop
©
@ 100000 m Dell desktop
o
; 80000 Dell laptop
S
= 60000
o
3 40000

20000

o | I e ee : : — —
0 20 40 60 80 100

CPU usage [%]

Fig. 5. Integer workload performance and energy results

10000

9000

8000

7000

6000

——FSC laptop
5000 —— Dell desktop
Dell laptop

4000

3000

Energy efficiency [workload/W]

2000

1000

i i e L A— i i
100 200 300 400 500 600 700 800 900

Time [s]

Fig. 6. Energy efficiency of workload execution

The same workload can be executed on the same system within different
system parameters or DPM parameters. For example if we run the same integer
benchmark with various CPU usage values we obtain different energy efficiency
values (Fig. 7). In this test, run on the FSC laptop, the energy efficiency of the
workload has better values for high CPU usage levels, but there are some
experiments where better efficiency is achieved for lower CPU usage levels
because at the higher levels the cooling energy increase when the CPU
temperature increases.

144 Marius Marcu, Dacian Tudor

10000

9000 -

8000 -

7000

6000

—— CPU usage: 100%

5000 | W —CPU usage: 90%
CPU usage: 70%

4000 -

3000

2000

Energy efficiency [workload/W]

1000

04 { { — 0 i
0 100 200 300 400 500 600 700 800 900
Time [s]

Fig. 7. Energy efficiency of CPU usage levels

In the test shown in Fig. 8 and 9 we run the same integer workload on the
same system but we used different CPU cores and one or two workload threads.
We run one thread scheduled by the operating system on two CPU cores and the
same thread we run on one single core by setting the thread CPU affinity to core
0. We also run two threads on one core by setting the affinity of both threads to
the core 0. These three tests show similar energy efficiency values (Fig. 8) but if
we take a closer look at the obtained values (Fig. 9) we observe some differences.
Scheduling one workload thread on two cores has higher efficiency because of
reduced temperature, switching the thread execution from one core to another
allows unused cores to cool. When executing one thread by one single core, the
efficiency is the same in the beginning but decreases in time while core
temperature increases. The lower efficiency has the execution of two threads on
one core because of both increased temperature and thread context switching. In
case we run two threads on both CPU cores an increase of energy efficiency is
observed (Fig. 8) but with a multiplied factor of 1.7.

7000

6000 -
5000

—— One thread, two cores
4000
& —— One thread, one core

| l ‘ | Two threads, two cores
3000

Two threads, one core

2000 -

Energy efficiency [workload/W]

1000

0 i i —_— i i
0 100 200 300 400 500 600 700 800 900

Time [s]

Fig. 8. Energy efficiency of CPU cores and running threads

High-level metrics for energy efficiency evaluation 145

—— One thread, two cores

—— One thread, one core

‘7 " .“M ‘M [Wm M Two threads, two cores
‘ A i)

| l ‘ Two threads, one core

3460 L I‘

0 100 200 300 400 500 600 700 800 900

Time [s]

Fig. 9. Energy efficiency of CPU cores and running threads (zoom in)
6. Conclusions

In this paper we presented the aspects that are important to implement or
evaluate energy efficiency techniques in mobile computing devices. The main
contribution of the work presented in this paper is the definition, implementation
and validation the set of high-level metrics for energy efficiency evaluation of
DPM mechanisms. We proposed also a set of test cases which can be used to
profile CPU efficiency. Using these efficiency metrics we intend to evaluate and
identify the hardware system and DPM software which are the most efficient in
terms of energy to run certain application. The original aspects of the current work
are the proposed evaluation framework for energy efficiency, power consumption
metrics definition and classification, new evaluation test cases for energy
efficiency and analysis of experimental results.

The proposed metrics are implemented and further used in an energy
efficiency software framework for energy efficient mobile applications
development. The main goals of the energy efficiency framework is to provide
energy efficiency monitoring services and a high level feedback loop to
applications and the operating system or drivers in order to improve the both
applications’ and system’s power efficiency. In our system, we define a series of
power components which are specialized components that are accountable for
power consumption (e.g. CPU). The proposed metrics are used in the framework
to estimate the energy efficiency of an application when executed with certain
parameters.

ACKNOWLEDGMENT

This work was supported by Romanian Ministry of Education CNCSIS grant
680/19.01.2009 and the eMuCo FP7 project (www.emuco.eu).

146 Marius Marcu, Dacian Tudor

REFERENCES

[1] David Haskin, Top Mobile and Wireless Trends for 2007, PCWorld, Dec. 2006

[2] Portio Research, “Worldwide Mobile Market Forecasts 2009-2013”, Market Research,
http://www.portioresearch.com/WMMF09-13_brochure.pdf , 2009

[3] Gartner Inc, Top 10 Strategic Technologies for 2008, http://www.gartner.com/, 2008

[4] European Parliament, Action Plan for Energy Efficiency: Realising the Potential,
INI/2007/2106, lan. 2008

[5] J. Sorber, N. Banerjee, M. Corner, S. Rollins, Turduken: Hierarchical Power Management for
Mobile Devices, The Third International Conference on Mobile Systems, Applications and
Services, Mobisys2005, Jun. 6-8, 2005, USA

[6] L. Zhong, N. Jha, Energy Efficiency of Handheld Computer Interfaces: Limits,
Characterization and Practice, The Third International Conference on Mobile Systems,
Applications and Services, Mobisys2005, Jun. 6-8, 2005, USA

[7]1 M. Marcu, D. Tudor, H. Moldovan, M. Micea, Power Profile Evaluation of Battery-Powered
Mobile Applications, 14th IEEE International Conference on Electronics, Circuits and
Systems, ICECS 2007, Dec. 11-14, 2007 Marrakech, Morocco, pp. 1015-1018, ISBN 1-
4244-1378-8

[8] V. Venkatachalam, M. Franz, Power Reduction Techniques For Microprocessor Systems,
ACM Computing Surveys, Vol. 37, No. 3, Sep. 2005, pp. 195-237

[9] J. Flinn, M. Satyanarayanan, Managing battery lifetimewith energy-aware adaptation. ACM
Transactions on Compute Systems (TOCS) 22, 2 (May 2004)

[10] K. Rajamani, H. Hanson, J. Rubio, S. Ghiasi, F. Rawson, Application-Aware Power
Management, IEEE International Symposium on Workload Characterization, IISWC, San
Jose, (2006)

[11] Venkatesh Pallipadi, Enhanced Intel SpeedStep Technology and Demand-Based Switching on
Linux, Intel Software Network (2008)

[12] Shivajit Mohapatra and Nalini Venkatasubramanian, A Game Theoretic Approach for Power
Aware Middleware, Proceedings of the 5th ACM/IFIP/USENIX international conference
on Middleware, Toronto, Canada, 2004

[13] Bo Chen, William Pak Tu Ma, Yan Tan, Alexandra Fedorova, Greg Mori, GreenRT: A
Framework for the Design of Power-Aware Soft Real-Time Applications, Workshop on the
Interaction between Operating Systems and Computer Architecture, WIOSCA 2008,
Beijing, China (2008)

[14] Ashwin Iyenggar, Ambudhar Tripathi, Ajit Basarur and Indranil Roy, Unified Power
Management Framework for Portable Media Devices, IEEE International Conference on
Portable Information Devices, PORTABLEQ7, (2007)

[15] Dacian Tudor and Marius Marcu, Designing a Power Efficiency Framework for Battery
Powered Systems, ACM Proceedings of SYSTOR 2009: The Israeli Experimental Systems
Conference, Israel, 2009

[16] Marcu Marius, Viadutiu Mircea, Moldovan Horatiu, and Popa Mircea, Thermal Benchmark
and Power Benchmark Software, Proceedings of the 12th IEEE International Workshops on
THERMal Investigations of ICs and Systems, THERMINIC 2006, France, Sep. 2006.

[17] Michel Feidt, Energy efficiency and environment, U.P.B. Scientific Bulletin, Series C, Vol.
72, Issue 1, 2010.

