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SOLVING THE FLEXIBLE JOB SHOP SCHEDULING USING
A NEW MACHINE NEIGHBORHOOD STRUCTURE

Guohui ZHANG ™, Jinghe SUN!

As an important part of the actual production, transportation time directly
affects the product quality and production efficiency. In this paper, a flexible job
shop problem with transportation time is studied. And an improved genetic
algorithm with a new machine neighborhood structure is proposed to balance
exploration and exploitation. The machine neighborhood structure is designed
according to the characteristic of flexible job shop scheduling problem, which is one
operation could be processed on multiple machines. And the neighborhood solutions
can be searched by changing the processing machine of the operations on the
critical path. By testing the benchmark and comparing with the other three
algorithms, the experimental results show that the proposed algorithm is effective in
solving this problem.
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1. Introduction

Flexible job shop scheduling problem (FJSP) is an extension of job shop
scheduling problem (JSP), which is a well-known NP-hard combinatorial
optimization problem [1]. The transportation time of semi-finished products
accounts for a large part of the production cycle of the discrete manufacturing
shop. The reasonable arrangement of transportation time will make the production
planning more practical, then make the production and operation more effective
and stable. Therefore, the FIJSP with transportation time is studied in this paper.

FJSP was first proposed in 1990 and solved by a polynomial graphical
algorithm [2]. After that, many scholars participated in the study of this problem,
and FJSP also has a lot of development, such as the FISP problem considering the
setup time and transportation time constraints or the actual scheduling problem [3-
6]. However, exact mathematical method are not effective for solving FISP with
large instances [7], intelligent optimization algorithms are more effective for this
kind of NP-hard problem and gradually widely used [8]. Intelligent optimization
algorithms for solving FJSP are mainly divided into two categories: bio-inspired
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swarm algorithm and local search algorithm. The former is to search the optimal
solution in the global solution space, such as genetic algorithm (GA) [9], particle
swarm optimization algorithm (PSO) [10], ant colony optimization algorithm
[11], etc. Local search algorithm is a neighborhood search for a feasible solution,
such as variable neighborhood search [12], tabu search algorithm [13]. A large
number of experimental studies show that these algorithms have some
disadvantages, where some hybrid algorithms are proposed to amend them [14-
15].

The FJSP with transportation time is more in line with the actual discrete
manufacturing systems, which is more complex and flexible, and it is difficult to
find a high-quality solution. Therefore, designing an efficient algorithm is very
important. In this paper, an improved GA with a new machine neighborhood
structure (GAMNYS) is proposed to improve the quality of solutions of the FISP
with transportation time. The machine neighborhood structure (MNS) is designed
according to the characteristic of the problem.

The remainder of this paper is organized as follows: problem description is
given in Section 2. Section 3 describes the GAMNS algorithm. The experimental
results and discussion is shown in Section 4. Finally, Section 5 refers to
conclusions and future research directions.

2. Problem description

The description of FJSP with transportation time and symbol definition are
as follows: n jobs {J1, J2, Js, ..., Ji, ..., Jn} are processed in m machines {M1, My,
Ms, ..., My, ..., Mn}. Each job has h processing operations, the operations of the
same job are processed in sequence. Define that Oin is the h-th operation of job J;,
Oi -1 is the pre-operation of Oip in the job Ji, Op - is the pre-operation of Oin on
the same machine. Each operation processing machine Mx may not be unique, and
the processing time pink on each machine may be different. Each operation has its
own start time Sink and finish time Fink, the processing periods of these
operations affects each other. When multiple operations of a job are processed on
different machines, the job need to be the transported and takes corresponding
transportation time: when operation O -1) of a job Ji is completed, it is necessary
to determine whether the job needs to be transferred to another machine. If
necessary, the transportation time t;x between the two machines M; and Mk should
be considered, otherwise the transportation time is neglected. Notice that the
transportation time t;x and processing time pink of the job Jj are in series, and the
starting time of the operation Oin is the larger of the arrival time of the Ji (Fi -
nkttik) and the allowable starting time (Finwk) of the machine M. The
optimization objective is to minimize the makespan when the processing time and
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transportation time of each operation are considered simultaneously. In the FISP
with transportation time, several constraints and assumptions are made as follows:
e Jobs and machines are independent and available at time zero.

e Operation preemption of the same job is not allowed, and each machine can
handle only one operation at a time. Different operations of one job cannot be
processed simultaneously.

e Processing time of each operation corresponds to its processing machine, and
the processing time of all operations is known.

e Once the operation is completed, the job will immediately be transported to the
processing machine of the next operation and take corresponding transportation
time.

e Transportation time is only related to the selected processing machine and
direction, and the transportation time between different machines is constant and
known.

e Setup time of each operation is included in the processing time.

In order to describe the problem more easily, we give an illustrative
instance of the FJSP with transportation time. In Table 1, there are 2 jobs and 5
machines. "-" indicates that the operation cannot be processed on the
corresponding machine. When an operation is completed on the machine, the job
Is immediately sent to perform the next operation, and the transportation time
varies according to the transportation route. The transportation time of the
instance is shown in Table 2, which shows the time taken to transport from the
corresponding machine on the left to the corresponding machine on the upper side.

Table 1
The processing time of the instance
Job Processing Time (min)
Operation [ Mi [ M2 [ M3 | Ma | Ms
1, O11 - 6 4 5
O12 3 5 6 4 7
O21 3 - 6 - 5
J2 022 4 6 5 - 7
Oa3 8 7 9 5 8
Table 2
The transportation time of the instance
. Transportation Time (min)
Machine
My M; M3 My Ms
M 0.0 2.2 4.4 2.5 3.0
M: 2.8 0.0 7.3 3.4 2.0
M3 3.9 2.1 0.0 1.3 2.8
Mg 3.7 1.6 2.4 0.0 1.3
Ms 1.8 2.9 1.9 4.0 0.0
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3. The GAMNS algorithm

The advantage of GA with respect to other algorithms is due to the fact
that more strategies could be adopted together to find good individuals to keep the
balance between the diversification and the intensification during the search
process.

In this paper, the proposed GAMNS adopts general GA framework and is
mainly divided into three parts: initial population, genetic evolution, local search
based on the MNS. The GAMNS framework is shown in the Fig.1. The initial
population, genetic evolution and the MNS are discussed in the following sub-
sections.
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Fig. 1. The framework of GAMNS
3.1 Coding and decoding

Coding and decoding is the method of transforming the feasible solutions
of a given problem from the solution space to a search space that the algorithm
can handle. The problem in this paper includes two sub-problems: machine
selection and operation sequencing. Therefore, the two-stage integer coding and
insertion decoding based on the characteristics of the problem are adopted. The
detailed description can be seen in the literature [5].

3.2 Initial population

Initial population could be obtained by various methods, however, initial
population method has different effects on the quality of the final solution under
different iterations. A good initialization method can improve the quality of the
final solution in a finite number of iterations. Therefore, we use a combined
initialization method to obtain the initial population, which covers the whole
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solution space and increases the initial search direction. The detailed steps could
see the [9].

3.3 Genetic evolution strategy

Selection: selection operation is to make excellent individuals survive with
greater probability, avoid damaging good genes through cross and mutation
operations, and combine good genes to produce better individuals. Tournament
selection method is adopted as the selection method for the GAMNS. The
makespan of the individual is smaller, then the probability for selecting the
individual is higher. Meanwhile, in order to avoid the damage of good genes by
genetic operation, the next generation is selected from the combined parent and
offspring population.

Crossover: excellent crossover operation can preserve the good genes in
the paternal generation by exchanging information among the paternal individuals,
so as to produce good new individuals. It can also reduce blind search and achieve
simple and efficient search. We use the multi-points crossover for machine
selection part, and the jobs integral crossover for the operation sequencing part.
The detailed steps can be seen in the literature [12].

Mutation: mutation can increase population diversity and avoid premature
convergence. The popular mutation methods are all very common. In this paper,
the method of replacing the processing machine with probability is adopted for the
machine selection part. The probability is generated by the processing time, that is,
the shorter the processing time, the greater the probability. In the operation
sequencing part, the method of random operation forward insertion is adopted.

3.4 The machine neighborhood structure

Local search is to find the local optimal solution by searching
neighborhood solutions of one feasible solution. Local search can effectively
improve the quality of global optimal solution, because exploitation of local
search is deeper. Neighborhood structure is the key to local search, which directly
affects the performance of local search.

In this paper, a new MNS is proposed to improve the quality of solutions.
The MNS is designed according to the characteristic of the FIJSP, which one
operation can be processed on several machines. First of all, we define one
operation sequence as the same niche. No matter how to change the processing
machine, the solution belongs to the niche. Then we only need to search the
selection method of the processing machine under the condition that the operation
sequence remains unchanged. Therefore, we change the processing machine of the
operation on the critical path, and the operation is selected from back to front.
Search speed can be adjusted by the maximum number of iterations. If the
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makespan cannot be reduced by replacing the machines of all operations on the
critical path, the solution is considered as the neighborhood optimal solution. The
pseudocode is shown in Algorithm 1.

Algorithm 1 Search the neighborhood solution by MNS

Input: a feasible solution S and maximum number of iterations k
Output: the neighborhood optimal solution S

llter=0

2 while Iter <k

3 Find out the critical path and get its length L

4 g=0

5 fori=1:L

6 Select the last i operation on the critical path
7 Replace the machine with one that makes the operation to be completed earliest, get solution s’
8 if f(s) > f(s”)

9 break

10 else

11 g=g+1

12 end

13 end

14 Sopt =8’

14 ifg==

15 break

16 end

17 Iter = lter + 1

18 end

Taking the instance in Table 1 and Table 2 as an example, the updating
process of a feasible solution using MNS is shown in Fig. 2. These colored
rectangles are the processing time of the operations, and these beige rectangles at
the bottom right of processing time rectangles represent the transportation time of
the jobs. In Fig. 2(a), the operation Oy is the last operation on the critical path,
it's processed on the machine M, which the makespan of this operation can be
minimized, as shown in Fig. 2(b). The same, in Fig. 2(b), the operation O3 can be
processed on the machine Ms, according the alternative machines set. The final
result is shown in Fig. 2(c).
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Fig. 2. Updating process of a feasible solution using MNS

4. Experimental results and comparison

All algorithms are performed in MATLAB R2017a on a PC with Inter(R)
Core(TM) i7-4785T CPU @ 2.2GHz and 8Gb of RAM. The experimental content
is to test the performance of the proposed GAMNS. The experimental data sets
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were in two groups, one from Kacem etc. [16] (Kdata), which includes 4 test
instances, and the other from Brandimarte’s data sets [17] (Bdata). The
transportation time between machines are generated randomly, as shown in Table
3. Through the analysis of main effect, the parameters of GAMNS are determined
to minimize the mean value of makespan, as shown in Table 4. The termination
condition is that the number of iterations is equal to the maximum number of
iterations or the optimal solution is not updated for 30 generations.

Table 3
The transportation time between the different machines
. Transportation Time (min)
Machine
Mi | M2 [ Mz | Mg | Ms | Mg | M7 | Mg | Mg | M1o | Mu1 | M1z | Miz | Myg | Mss
M 0022|4425 |30|19(41(22(39|19 05|07 |25|39]|05
M; 2800|1334 |20[42|29|16(49|34 (29|27 |24|46 |21
Ms 39(21(00(13|28|26(19(22(16|17 (49|41 |41 |14 |16
Ms 37116(24(00(13|10(33(32(19|15|04 |40 |17 |15]|50
Ms 18(29(19|40|00|15(40|34|17|37 |37 |45 |40 |49 |28
Me 22112(22(29|25|00(18(39(20 (3531|2913 |46 | 44
My 4813337 |22(21|30|00(|41(21|21|32|32|49| 28|33
Ms 18|18(14|11|24|24]12|00|36|38|37|15|18 33|13
Mo 2317|3432 |39|15({13[30(00|13 (19|47 |23 |46 |06
Mao 241121514 |34|47|15|36(22|00|50|36|13 |43 |13
Mi1 19|147]06|44|20|24]49|20|36|49|00|22 |28 ]| 43|48
Mz 2245|1942 |17|35|17(28(17|51|24|00|19 |48 49
Mis 2647|2134 |42(16|02|27(37]32|03|28|00|22]|35
M4 30(47|08|34|07[18|40|15(42| 16|33 |21]|16 |00/ 49
Mis 0229|4618 |26|49(43[23(09|28 47|12 |49 39|00
Table 4
Parameters settings of the GAMNS
Parameters Value
population size 100
maximum iterations of global search 200
crossover probability 0.8
mutation probability 0.2
maximum iterations of local search 10

The proposed GAMNS is compared with three algorithms reported in

literature which are as follows: PSO [10], IGA [5], MOHPIOSA [19]. In order to
evaluate the effectiveness, all algorithms were run 10 times consecutively, and get
the optimal value of each experimental data sets. The results of the two groups are
shown in Table 5 and Table 6.
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Table 5
Experimental results 1
Problem nxm PSO IGA MOHPIOSA GAMNS
4x5 12.3 12.3 12.3 12.3*
8x8 27.5 24.4 23.2 19.3*
10x10 25.4 20.6 15.6 15.2*
15x10 38.8 35.9 32.8 26.9%
Table 6
Experimental results 2
Problem PSO IGA MOHPIOSA GAMNS
MkO1 54.9 53.3 48.4 43.9*
Mk02 52.2 49.4 425 35.9*
Mk03 249.9 237.9 221.2* 222.0
Mk04 91.8 85.1 77.3 77.0%
MKk05 207.0 199.1 188.9 186.4*
MKk06 142.7 136.5 1275 106.7*
Mk07 2117 194.7 186.4 165.0*
Mko8 547.9 530.4 528.6 523.0*
Mk09 4155 4103 376.1 366.0*
Mk10 373.0 354.4 3243 307.0*

As shown in the Table 5, “Problem nxm” denotes that there are n jobs and
m machines about the each instance. The computational results of the GAMNS
are better than the other algorithm. The 4 instances of the Kdata are characterized
by the fact that each procedure can be processed on all machines, so the flexibility
of jobs is very high. It can be seen that the search effect of the GAMNS is
significantly better than other algorithms, which indicates that it is feasible and
effective to search the neighborhood solution by changing the machine of the
operations on the critical path. Taking the solutions of the same process sequence
as one same niche, and then only changing the processing machine can avoid
repeated search, and the search effect is better.

From table 6, it can be seen that GAMNS has better results than other
algorithms in 9 out of 10 instances. Moreover, the larger the problem scale and the
higher the flexibility, the more obvious the advantages of GAMNS are. Therefore,
the MNS is more suitable for solving FJISP with greater flexibility in limited
iterations. Take the instance MkO1 for example, the convergence curve of MkO1 is
shown in Fig. 3. The Gantt chart of MkO1 by GAMNS is shown in Fig. 4. As
shown in Fig. 3, the convergence of PSO, IGA and MOHPIOSA are earlier than
that of GAMNS, and the quality of solutions are worse. Because these four
algorithms set the same termination criteria, it shows that GAMNS has better
ability to jump out of the local optimal solution and exploitation. As shown in
Fig.4, there are two critical paths. The operations on the first critical path are Og -
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02,4-055-05 4-07,3-07,2-09 2-06 2-06,1-O10,1. The operations on the second critical
path are 035-034-033-032-063-010,4-0103-0102-0O10,1. Without changing the
processing sequence, it is impossible to reduce the makespan simply by changing
the processing machines of these operations. Therefore, this solution is the
neighborhood optimal solution defined in this paper.
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Fig. 4. The Gantt chart of the solution of Mk01

6. Conclusions

There are many studies on FJSP, but the studies on transportation time
constraints are far from enough, and there is no good way to find the optimal
solution for the single objective of minimizing the makespan. In this paper, an
improved genetic algorithm with the machine neighborhood structure is proposed
to solve FJSP with transportation time. Through the comparison of the results by
the four algorithms, it can be shown that the GAMNS can effectively improve the
quality of the final solution by local search using the MNS. Therefore, the
GAMNS is effective in solving this problem.
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In the future, as the production planning becomes more accurate, it is very
important to further study the FISP with transportation time and other extension
problems. The research on the algorithm structure designed according to the
characteristics of problems is more practical than the general algorithm research.
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