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CORRELATION OF FLUCTUATIONS IN THE FREQUENCY 
DISTRIBUTION WINGS OF TIME SERIES. CASE STUDY: 

LEU-USD AND LEU-EUR EXCHANGE RATES 

Eugen I. SCARLAT1, Cristina MARIA CRISTESCU2, Constantin P. 
CRISTESCU3

 

We propose a new method for the study of the correlations of fluctuations in 
time-series, using the multifractal analysis. The investigation is performed on the 
partial data sets obtained from the original series, for positive and negative 
fluctuations. The method offers the possibility of identifying correlations either in 
each sub-series or between them. The application of the method to financial time-
series allows estimation on the predictability of evolution. As case study, the 
exchange rates Leu-USD and Leu-EUR are considered. 
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1. Introduction 

Since the publication of the first book on Econophysics [1], this relatively 
new area of study, established by the cooperation between economists, 
mathematicians and physicists, registered considerable development, manifested 
in a large number of relevant papers [2-5] and recent books [6,7]. It applies ideas, 
methods and models of statistical physics and complexity theory to analyze data 
from economical phenomena. Initially, it was not seen as a tool to predict future 
prices of stocks, exchange rates or commodities. However, recently, the 
preoccupation to extend the methods of Econophysics to predictive estimation 
acquired momentum, particularly stimulated by the observation that financial time 
series can be treated as fractal structures, and the development of multifractal 
analysis of fluctuations [8,9]. The present work is about the correlation of 
fluctuations in the two wings of the frequency distribution (histogram) of financial 
time series and illustrates the analysis with exchange rates of the Romanian 
currency Leu versus US Dollar (USD) and Leu versus Euro (EUR), respectively. 
The fluctuations in the dynamical output may be characterized by two 
components: magnitude (absolute value) and sign (direction) of the competing 
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forces. These two quantities reflect the underlying interactions in a system, and 
the resulting force of these interactions at each moment determines the magnitude 
and direction of the fluctuations [10]. The proposed method is based on 
Multifractal Detrended Fluctuation Analysis (MFDFA) [11,12] and Multifractal 
Fluctuation Cross-Correlation Analysis (MFCCA) [13,14]. It bears some 
similarity to the treatments of [15,16] and can be applied to the analysis of any 
type of time series, particularly to the analysis of financial and economical ones. 

2. Data 

The exchange rates of Leu-EUR and Leu-USD were taken from the site 
Forex Trading and Exchange Rates Services (OANDA) [17] and correspond to 
the interval June 1999-November 2012, i.e. 4910 values. 
 

 
Fig.1 Absolute frequency distribution versus returns  

 
The statistics of the returns of the two series are given in Fig.1. In order to 

emphasize the fat-tailed character of the distribution, the best fitting normal 
distribution is shown with continuous line. 

The overall series is separated into two subsets containing the positive and 
negative wing of the corresponding distribution. As illustration, the new time-
series of negative and positive values of Leu-Euro returns are presented in the left 
side of Fig.2. In the course of analysis an important role is played by the shuffled 
series. The graph on the right side of Fig.2 presents an example of shuffling of the 
corresponding series on the left side of the figure. 
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Fig.2 Time series for positive (black) and negative returns (gray) Leu-EUR (left) and shuffled 

series (right) 
 

3. Method 

The proposed method, based on MFDFA [11,12] and MFCCA [13,14], 
mainly involves the computation of the generalized Hurst exponent for various 
values of the q-order fluctuation functions. 

In our analysis we follow the treatment presented in [14,18]. We denote 
the positive sub-series with x, the negative sub-series with y and the overall series 
with z. Each series can be characterized by a q-order fluctuation function: 
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with x  the mean of the respective series and where ( ) skkX ,,1,ˆ =ν  is the 
best polynomial fit of the signal ( )kXν  on each considered segment ν . Similar 
processing is performed on the y and z series. 

For a statistically self-similar series, the dependence of the fluctuation 
function on the segment (window) s is expected to be power law type [8]:  

( ) ( ), h qF q s s≈ .     (4) 



174                  Eugen I. Scarlat, Cristina Maria Cristescu, Constantin P. Cristescu 

( )h q  is known as generalized Hurst exponent for the respective series and 
is computed from the log-log plot of the fluctuation function versus s as the slope 
in the scaling region. The main Hurst exponent is computed for q=2, h(2). 

Additionally, a multifractal cross-correlation fluctuation function is 
constructed for two nonstationary series. In the case of our x and y sub-series: 
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The average value of this function for each q, is expected to have power law 
dependence on the length of the segments s: 
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where ( )xyh q  is the cross-correlation generalized Hurst exponent. 
We also compute the multifractal (singularity) spectrum ( )αf  [19-22]: 

( ) ( ) ,f q qα α τ= −      (7) 
using the partition function exponent ( )qτ :  

( ) ( ) 1.q qh qτ = −      (8) 
The singularity strength (Hölder exponent) is defined as: 

( ) .d q
dq
τα =       (9) 

 The generalized Hurst exponent represents the measure of correlations 
present in the fluctuations of the series. If ( )2 0.5h >  the correlations in the time 
series are persistent, i. e. an increment has higher probability of being followed by 
another increment. If ( )2 0.5h <  the correlations in the time series are anti-
persistent, i. e. an increment has more chances of being followed by a decrement 
and vice-versa. If ( )2 0.5h =  only short range correlations or no correlations exist, 
as in the case of white Gaussian noise. For each order, the generalized Hurst 
exponent ( )h q  is a measure for the correlation of the fluctuations related to q, i.e. 
small fluctuations for 0q <  and large fluctuations for 0.q >  The meaning of 
( )h q  is the same as that of ( )2 .h  The singularity spectrum (the right side of Figs. 

3-5) gives information on the distribution of the dimension ( )αf  of subsets of the 
series characterized by various values of the singularity strength. 
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4. Results and discussions 

Both Leu-USD and Leu-EUR subseries show multifractality, exhibiting 
monotonously decreasing h(q) with q. Usually, for multifractal series, the 
intervals q>0 are characterized by smaller scaling exponents h(q) than the 
intervals q<0.  

Fig.3 Multifractal analysis for Leu-USD (up) and Leu-EUR (down). Pointing up triangle - positive 
returns, pointing down triangle - negative returns, full circle - entire series, and star - Gaussian 

white noise as reference 
 
While for the sub-series the large fluctuations are significantly correlated 

( (2) 0.5h > ), for the whole series these are weakly correlated (they approach the 
Gaussian reference). The sub-series of negative returns of Leu-USD is close to 
monofractality. The interval of the values of the singularity strength encompassed 
by each singularity spectrum is an important characteristic of the fractality of the 
series (Figs.3-5 right).  

The multifractality present in the time series can originate in either the 
difference of long range correlations for small and large fluctuations or in the 
broad probability mass distribution (p.m.d) for the data in the series. For 
uncorrelated series the multifractal character is of the second type, while for a 
series whose p. m. d. is regular with finite moments, multifractality is mostly first 
type. Discerning between the two types can be obtains by performing a shuffling 
of the series - randomly rearranging of the samples. This procedure clearly 
destroys the correlations while the p.m.d is not affected. If the shuffled series 
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shows multifractality, this can only be an effect of the widths of the distribution. 

 
Fig.4 Multifractal analysis for Leu-USD for positive returns (up) and for negative returns (down). 

Pointing down triangle-original, pointing up triangle-shuffled, and star-Gaussian white noise  
 

 
 
 

Fig.5 Multifractal analysis for LEU-EUR for positive returns (up) and for negative returns (down). 
Pointing down triangle - original, pointing up triangle - shuffled and star - Gaussian white noise  
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The difference between the generalized Hurst exponent of the original 
series and of the shuffled series gives the correct measure of the correlations. 

Figs. 4 and 5 present the results of multifractal analysis performed on the 
subsets of the original. The ( )h q  curves for the shuffled series are obtained as an 
average of 10 successive shufflings of the particular series.  

A general remark is the asymmetry in the shape of h(q) for the two sub-
series also visible in the structure of the singularity spectrum. Also, we observe 
that the multifractality in the Leu-USD series is higher than for the Leu-Euro 
series, demonstrating higher correlations (Fig.3). With reference to Figs.4 and 5, 
we notice that in both sub-series most of the multifractality originates in the 
correlations although the multifractality originating in the spread of the 
distribution is important. 

 

 
Fig.6 Multifractal cross correlation analysis for partial series: Leu-USD (left) and Leu-EUR 

(right); white squares-negative returns, black squares-positive returns; circle-cross correlation 
 

The long-range cross correlation between the sub-series ( (2) 0.5xyh > ) as 
observed from Fig.6 associated to the fact that the latter are auto-correlated series 
( (2) 0.5, (2) 0.5x yh h> > ), imply that while each, separately, has long memory of 
its own previous values, additionally has a long memory of previous values of the 
other series.  

4. Conclusion 

A new method for indentifying the multifractal auto- and cross-
correlations in the fluctuations of the time-series is proposed. The investigation is 
performed on the partial data sets obtained from the original series of returns, for 
positive and negative fluctuations.  

Our results in the identification of correlations in exchange rate time-series 
are in reasonable agreement with the fact that competing economic and financial 
processes are essentially correlated. The application of the method to financial 
time-series allows estimation on the predictability of evolution. As an example, 
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the curves in Fig.3 show that the series Leu-USD is considerable more predictable 
than the Leu-EURO series.  

The multifractal cross-correlation between the wings of the original 
distributions shows that beside the existence in each series of long memory of its 
own previous values, additionally, a long memory of previous values of the other 
series is also observable.  
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