

n -WEAK AMENABILITY FOR LAU PRODUCT OF BANACH ALGEBRAS

H. R. EBRAHIMI VISHKI¹ AND A. R. KHODDAMI²

Given Banach algebras A and B , let θ be a character on B . We explain explicitly the derivations from θ -Lau product $A \times_\theta B$ into its n^{th} -dual $(A \times_\theta B)^{(n)}$ from which we obtain necessary and sufficient conditions for $A \times_\theta B$ to be n -weakly amenable.

Keywords: n -weak amenability, derivation, module action, Lau product.

MSC2010: 46H25, 47B47

1. INTRODUCTION AND PRELIMINARIES

Let A and B be Banach algebras with $\emptyset \neq \sigma(B)$ ($\sigma(B)$:= the set of all nonzero multiplicative functionals of B) and let $\theta \in \sigma(B)$. Then the ℓ_1 -direct product $A \times B$ equipped with the multiplication

$$(a, b) \cdot (c, d) = (ac + \langle \theta, d \rangle a + \langle \theta, b \rangle c, bd), \quad ((a, b), (c, d) \in A \times B)$$

is a Banach algebra which is called the θ -Lau product of A and B and will be denoted by $A \times_\theta B$. This product was introduced by Lau [5] for certain class of Banach algebras and followed by Sangani Monfared [6] for the general case. These products not only induce new examples of Banach algebras which are interesting in its own right but also they are known as a fertile source of (counter)examples in functional analysis and abstract harmonic analysis. A very familiar example, which is of special interest, is the case that $B = \mathbb{C}$ with θ as the identity character i that we get the unitization $A^\sharp = A \times_i \mathbb{C}$ of A . If we include the possibility that $\theta = 0$ then we obtain the usual direct product of Banach algebras.

From the homological algebra point of view $A \times_\theta B$ is a strongly splitting Banach algebra extension of B by A , which means that, the quotient $(A \times_\theta B)/A$ is isometrically isomorphic to B . This extension enjoys some properties that are not shared in general by arbitrary strongly splitting extensions. For instance, commutativity does not preserve by a general strongly splitting extension,

¹, Department of Pure Mathematics and Centre of Excellence in Analysis on Algebraic Structures (CEAAS), Ferdowsi University of Mashhad, P.O. Box 1159, Mashhad 91775, Iran
e-mail vishki@um.ac.ir

², Department of Pure Mathematics, Shahrood University of Technology, P.O. Box 3619995161-316, Shahrood, Iran e-mail khoddami.alireza@shahroodut.ac.ir

however, $A \times_{\theta} B$ is commutative in the case where A and B are commutative. Some of the basic properties such as characterizations of bounded approximate identity, topological center and weak amenability for this product are investigated in [6]. Character (inner) amenability of $A \times_{\theta} B$ is also investigated in [7] and [2].

In this paper, we are mainly concerned with the investigation of n –weak amenability of $A \times_{\theta} B$ (the case $n = 1$ has already investigated in [6]). In this respect we give some necessary and sufficient conditions for n –weak amenability of $A \times_{\theta} B$. The most interesting case occurs when A is unital. In this flexible case we mainly show that, $A \times_{\theta} B$ is n –weakly amenable if and only if both A and B are n –weakly amenable.

Before we proceed for the main results we need some preliminaries about n –weak amenability. A derivation from a Banach algebra A into a Banach A –module X is a bounded linear mapping $D : A \rightarrow X$ such that $D(ab) = D(a) \cdot b + a \cdot D(b)$ ($a, b \in A$). The set of all derivations from A into X is denoted by $Z^1(A, X)$. For each $x \in X$ the derivation $\delta_x : a \mapsto a \cdot x - x \cdot a$ ($a \in A$) is called an inner derivation. The set of all inner derivations from A to X is denoted by $N^1(A, X)$. The quotient $Z^1(A, X)/N^1(A, X)$ is called the first cohomology group of A with coefficients in X and will be denoted by $H^1(A, X)$. Throughout the paper n is assumed to be a non-negative integer. The n^{th} –dual $A^{(n)}$ of a Banach algebra A is a Banach A –module under the module operations defined inductively by

$$\langle m \cdot a, u \rangle = \langle m, a \cdot u \rangle, \quad \langle a \cdot m, u \rangle = \langle m, u \cdot a \rangle, \quad (m \in A^{(n)}, u \in A^{(n-1)}, a \in A = A^{(0)}).$$

Of course, A is a Banach A –module under its multiplication.

A Banach algebra A is said to be n –weakly amenable if $H^1(A, A^{(n)}) = \{0\}$. This notion was initiated and intensively studied in [1]. Trivially, 1 –weak amenability is nothing else than the so-called weak amenability. The basic properties of these notions are extensively discussed in [4].

For brevity of notation we usually identify an element of A with its canonical image in $A^{(2n)}$, as well as an element of A^* with its image in $A^{(2n+1)}$. We usually use $\langle \cdot, \cdot \rangle$ for the duality between a Banach space and its dual and we also use the symbol “ \cdot ” for the various module operations linking various Banach algebras.

2. Main Results

To clarify the relation between n –weak amenability of $A \times_{\theta} B$ and that of A and B we need to characterize the derivations from $A \times_{\theta} B$ into $(A \times_{\theta} B)^{(n)}$. One can simply identify the underlying space of $(A \times_{\theta} B)^{(n)}$ with the Banach space $A^{(n)} \times B^{(n)}$ equipped with the ℓ_1 –norm when n is even and ℓ_{∞} –norm when n is odd.

A direct verification reveals that $(A \times_{\theta} B)$ –module operations of $(A \times_{\theta} B)^{(n)}$ are as follows. For $a \in A$, $b \in B$, $f \in A^{(2n+1)}$, $g \in B^{(2n+1)}$, $F \in A^{(2n)}$ and $G \in$

$B^{(2n)}$:

$$\begin{aligned} (a, b) \cdot (f, g) &= (a \cdot f + \langle \theta, b \rangle f, \langle f, a \rangle \theta + b \cdot g) \\ (f, g) \cdot (a, b) &= (f \cdot a + \langle \theta, b \rangle f, \langle f, a \rangle \theta + g \cdot b) \\ (a, b) \cdot (F, G) &= (a \cdot F + \langle \theta, G \rangle a + \langle \theta, b \rangle F, b \cdot G) \\ (F, G) \cdot (a, b) &= (F \cdot a + \langle \theta, G \rangle a + \langle \theta, b \rangle F, G \cdot b). \end{aligned}$$

In the following we characterize the derivations from $A \times_{\theta} B$ into $(A \times_{\theta} B)^{(n)}$. The next result is devoted to the odd case.

Proposition 2.1. *A bounded linear map $D : A \times_{\theta} B \rightarrow (A \times_{\theta} B)^{(2n+1)}$ is a derivation if and only if there exist derivations $d_A : A \rightarrow A^{(2n+1)}$, $d_B : B \rightarrow B^{(2n+1)}$ and bounded linear maps $S : A \rightarrow B^{(2n+1)}$, $T : B \rightarrow A^{(2n+1)}$ such that for each $a, c \in A$, $b, d \in B$,*

- (i) $D((a, b)) = (d_A(a) + T(b), S(a) + d_B(b))$,
- (ii) $a \cdot T(b) = T(b) \cdot a = 0$,
- (iii) $\langle T(b), a \rangle \theta + S(a) \cdot b = \langle \theta, b \rangle S(a)$,
- (iv) $S(a) \cdot b = b \cdot S(a)$,
- (v) $S(ac) = (\langle d_A(a), c \rangle + \langle d_A(c), a \rangle) \theta$, and
- (vi) $T(bd) = \langle \theta, b \rangle T(d) + \langle \theta, d \rangle T(b)$.

In particular, D is inner if and only if $T = 0$, $S = 0$ and d_A , d_B are inner.

Proof. Let $D : A \times_{\theta} B \rightarrow (A \times_{\theta} B)^{(2n+1)}$ be a bounded linear mapping. As $(A \times_{\theta} B)^{(2n+1)}$ can be identified with $A^{(2n+1)} \times B^{(2n+1)}$, there exist bounded linear mappings $d_1 : A \times_{\theta} B \rightarrow A^{(2n+1)}$ and $d_2 : A \times_{\theta} B \rightarrow B^{(2n+1)}$ such that $D = (d_1, d_2)$. Let $d_A(a) = d_1((a, 0))$, $d_B(b) = d_2((0, b))$, $T(b) = d_1((0, b))$ and $S(a) = d_2((a, 0))$, $(a \in A, b \in B)$.

Then trivially d_A , d_B , T and S are linear mappings satisfying (i). Moreover for every $a, c \in A$ and $b, d \in B$,

$$\begin{aligned} &D((a, b) \cdot (c, d)) \\ &= D((ac + \langle \theta, d \rangle a + \langle \theta, b \rangle c, bd)) \\ &= \left(d_A(ac + \langle \theta, d \rangle a + \langle \theta, b \rangle c) + T(bd), S(ac + \langle \theta, d \rangle a + \langle \theta, b \rangle c) + d_B(bd) \right). \end{aligned} \tag{1}$$

And

$$\begin{aligned} &D((a, b)) \cdot (c, d) + (a, b) \cdot D((c, d)) \\ &= \left(d_A(a) + T(b), S(a) + d_B(b) \right) \cdot (c, d) \\ &\quad + (a, b) \cdot \left(d_A(c) + T(d), S(c) + d_B(d) \right) \end{aligned}$$

$$\begin{aligned}
&= \left((d_A(a) + T(b)) \cdot c + \langle \theta, d \rangle (d_A(a) + T(b)), \right. \\
&\quad \left. \langle d_A(a) + T(b), c \rangle \theta + (S(a) + d_B(b)) \cdot d \right) \\
&\quad + \left(a \cdot (d_A(c) + T(d)) + \langle \theta, b \rangle (d_A(c) + T(d)), \right. \\
&\quad \left. \langle d_A(c) + T(d), a \rangle \theta + b \cdot (S(c) + d_B(d)) \right) \\
&= \left((d_A(a) + T(b)) \cdot c + \langle \theta, d \rangle (d_A(a) + T(b)) + a \cdot (d_A(c) + T(d)) \right. \\
&\quad + \langle \theta, b \rangle (d_A(c) + T(d)), \langle d_A(a) + T(b), c \rangle \theta + (S(a) + d_B(b)) \cdot d \\
&\quad \left. + \langle d_A(c) + T(d), a \rangle \theta + b \cdot (S(c) + d_B(d)) \right). \tag{2}
\end{aligned}$$

Thus D is a derivation if and only if (1) and (2) coincide, from which we get,

$$\begin{aligned}
&d_A(ac) + \langle \theta, d \rangle d_A(a) + \langle \theta, b \rangle d_A(c) + T(bd) \tag{3} \\
&= (d_A(a) + T(b)) \cdot c + \langle \theta, d \rangle (d_A(a) + T(b)) + a \cdot (d_A(c) + T(d)) \\
&\quad + \langle \theta, b \rangle (d_A(c) + T(d));
\end{aligned}$$

and

$$\begin{aligned}
&S(ac) + \langle \theta, d \rangle S(a) + \langle \theta, b \rangle S(c) + d_B(bd) \tag{4} \\
&= \langle d_A(a) + T(b), c \rangle \theta + (S(a) + d_B(b)) \cdot d + \langle d_A(c) + T(d), a \rangle \theta \\
&\quad + b \cdot (S(c) + d_B(d)).
\end{aligned}$$

Therefore D is a derivation if and only if the equations (3) and (4) are satisfied. Now a straightforward verification shows that if d_A and d_B are derivations and the equalities (ii), (iii), (iv), (v) are satisfied then (3) and (4) hold. Applying (3) and (4) for suitable values of a, b, c, d shows that d_A and d_B are derivations and the equalities (ii), (iii), (iv), (v) are also satisfied, as claimed.

For the last part, first note that if $f \in A^{(2n+1)}$ and $g \in B^{(2n+1)}$ then for each $a \in A, b \in B$, $\delta_{(f,g)}(a, b) = (\delta_f(a), \delta_g(b))$. Now if $D = \delta_{(f,g)}$ for some $f \in A^{(2n+1)}, g \in B^{(2n+1)}$, then $(d_A(a), S(a)) = D((a, 0)) = \delta_{(f,g)}(a, 0) = (\delta_f(a), 0)$ for each $a \in A$. It follows that $d_A = \delta_f$ and $S = 0$. Similarly $d_B = \delta_g$ and $T = 0$. Moreover if $S = 0, T = 0, d_A = \delta_f$ and $d_B = \delta_g$ then $D = \delta_{(f,g)}$; and this completes the proof. \square

The next result, which is devoted to the even case, needs a similar proof as Proposition 2.1.

Proposition 2.2. *A bounded linear map $D : A \times_\theta B \rightarrow (A \times_\theta B)^{(2n)}$ is a derivation if and only if there exist a derivation $d_B : B \rightarrow B^{(2n)}$ and bounded linear maps $S : A \rightarrow B^{(2n)}$, $T : B \rightarrow A^{(2n)}$ and $R : A \rightarrow A^{(2n)}$ such that for each $a, c \in A$, $b, d \in B$,*

$$(i) \quad D((a, b)) = (R(a) + T(b), S(a) + d_B(b)),$$

- (ii) $S(ac) = 0$,
- (iii) $R(ac) = a \cdot R(c) + R(a) \cdot c + \langle \theta, S(c) \rangle a + \langle \theta, S(a) \rangle c$,
- (iv) $b \cdot S(a) = S(a) \cdot b = \langle \theta, b \rangle S(a)$,
- (v) $T(b) \cdot a = a \cdot T(b) = -\langle \theta, d_B(b) \rangle a$, and
- (vi) $T(bd) = \langle \theta, b \rangle T(d) + \langle \theta, d \rangle T(b)$.

In particular, D is inner if and only if $S = 0$, $T = 0$ and R , d_B are inner derivations.

To study $(2n+1)$ -weak amenability of $A \times_\theta B$ we need the next convenience. A derivation $d : A \rightarrow A^{(2n+1)}$ is said to be $(2n+1)$ -cyclic if $\langle d(a), c \rangle + \langle d(c), a \rangle = 0$, $(a, c \in A)$. We say that A is $(2n+1)$ -cyclically weakly amenable if every $(2n+1)$ -cyclic derivation from A into $A^{(2n+1)}$ is inner.

Proposition 2.3. *If $A \times_\theta B$ is $(2n+1)$ -weakly amenable then B is $(2n+1)$ -weakly amenable and A is $(2n+1)$ -cyclically weakly amenable.*

Proof. Let $d_A : A \rightarrow A^{(2n+1)}$ be a $(2n+1)$ -cyclic derivation and let $d_B : B \rightarrow B^{(2n+1)}$ be a derivation. Define $D : A \times_\theta B \rightarrow (A \times_\theta B)^{(2n+1)}$ by $D = (d_A, d_B)$. That $D = (d_A, d_B)$ is a derivation follows trivially from Proposition 2.1 with the hypotheses that d_B is a derivation and d_A is a $(2n+1)$ -cyclic derivation. Now $(2n+1)$ -weak amenability of $A \times_\theta B$ implies that $D = \delta_{(f,g)}$ for some $f \in A^{(2n+1)}$ and $g \in B^{(2n+1)}$. It follows that $d_A = \delta_f$ and $d_B = \delta_g$. \square

Applying the latter proposition for the case $n = 0$ we obtain the next result.

Corollary 2.1 ([6, Theorem 2.11]). *Let $A \times_\theta B$ be weakly amenable then B is weakly amenable and A is cyclically weakly amenable.*

In the next result we provide some conditions under which $(2n+1)$ -weak amenability of A and B implies that of $A \times_\theta B$. It is worthwhile mentioning that a more general result has been proved in [3, Theorem 4.1], by an approach slightly different from ours. The proof, however, contains a gap and, to our knowledge, we have not been able to fix it.

Proposition 2.4. *Let A and B be $(2n+1)$ -weakly amenable. If either $\overline{A \cdot A^{(2n)}} = A^{(2n)}$ or $\overline{A^{(2n)} \cdot A} = A^{(2n)}$ then $A \times_\theta B$ is $(2n+1)$ -weakly amenable.*

Proof. Let $D : A \times_\theta B \rightarrow (A \times_\theta B)^{(2n+1)}$ be a derivation. By Proposition 2.1 there exist derivations $d_A : A \rightarrow A^{(2n+1)}$, $d_B : B \rightarrow B^{(2n+1)}$ and bounded linear maps $S : A \rightarrow B^{(2n+1)}$, $T : B \rightarrow A^{(2n+1)}$ such that

$D((a, b)) = (d_A(a) + T(b), S(a) + d_B(b))$, $(a \in A, b \in B)$. Since A and B are $(2n+1)$ -weakly amenable, $d_A = \delta_f$ and $d_B = \delta_g$ for some $f \in A^{(2n+1)}$, $g \in B^{(2n+1)}$, and so by Proposition 2.1 (v),

$$S(ac) = (\langle d_A(a), c \rangle + \langle d_A(c), a \rangle) \theta = (\langle \delta_f(a), c \rangle + \langle \delta_f(c), a \rangle) \theta = 0 \quad (a, c \in A).$$

It follows that S vanishes on A^2 . Furthermore, $(2n+1)$ -weakly amenability of A implies the weak amenability of A and so $\overline{A^2} = A$, (see [1, Propositions

1.2, 1.3]). We thus have $S = 0$. By Proposition 2.1 (ii), for every $a \in A, b \in B$ we have $a \cdot T(b) = T(b) \cdot a = 0$. This yields that

$$\langle T(b), a \cdot F \rangle = \langle T(b) \cdot a, F \rangle = 0 \text{ and } \langle T(b), F \cdot a \rangle = \langle a \cdot T(b), F \rangle = 0 \quad (F \in A^{(2n)}).$$

That is, $T(b)$ vanishes on both $A^{(2n)} \cdot A$ and $A \cdot A^{(2n)}$. These together with either of the identities $\overline{A \cdot A^{(2n)}} = A^{(2n)}$ or $\overline{A^{(2n)} \cdot A} = A^{(2n)}$ imply that $T = 0$. Therefore $D = \delta_{(f,g)}$, as required. \square

As a rapid consequence of Proposition 2.4 we get:

Corollary 2.2. *If A and B are weakly amenable then $A \times_{\theta} B$ is weakly amenable.*

Let $\theta \in \sigma(B)$. A derivation $d : B \rightarrow B^{(2n)}$ is said to be $\theta_{(2n)}$ -null if $\langle \theta, d(b) \rangle = 0$, $(b \in B)$; (for the case $n = 0$ this means that $d(B) \subseteq \ker \theta$). A Banach algebra B is said to be $\theta_{(2n)}$ -null weakly amenable if every $\theta_{(2n)}$ -null derivation is inner. As an analogous to Proposition 2.3 for the even case we present the next result.

Proposition 2.5. *If $A \times_{\theta} B$ is $(2n)$ -weakly amenable then A is $(2n)$ -weakly amenable and B is $\theta_{(2n)}$ -null weakly amenable.*

Proof. Let $d_A : A \rightarrow A^{(2n)}$ be a derivation and let $d_B : B \rightarrow B^{(2n)}$ be a $\theta_{(2n)}$ -null derivation. Define $D : A \times_{\theta} B \rightarrow (A \times_{\theta} B)^{(2n)}$ by $D((a, b)) = (d_A(a), d_B(b))$. Applying Proposition 2.2 to D shows that D is a derivation (note that, the hypotheses that d_A is a derivation and d_B is $\theta_{(2n)}$ -null is necessary for (iii) and (v) of Proposition 2.2 to hold). So there exists $(F, G) \in (A \times_{\theta} B)^{(2n)}$ such that $D = \delta_{(F,G)} = (\delta_F, \delta_G)$. It follows that $d_A = \delta_F$ and $d_B = \delta_G$. \square

In this stage we would like to state that unfortunately we do not know an analogous to Proposition 2.4 for the even case, in general. However, we establish such a result in Theorem 3.1, which is heavily based on the hypothesis that A is unital.

3. The case that A is unital

Here we turn our attention to the case where A has an identity. In this case the characterizations of derivations $D : A \times_{\theta} B \rightarrow (A \times_{\theta} B)^{(n)}$ presented in Propositions 2.1 and 2.2 can be considerably simplified. Indeed, a direct verification summarizes the Propositions 2.1 and 2.2 in the line of the following result.

Proposition 3.1. *Let A be unital with the identity 1_A . Then*

(i) *every derivation $D : A \times_{\theta} B \rightarrow (A \times_{\theta} B)^{(2n+1)}$ is in the form of $D = (d_A, S + d_B)$, where $d_A : A \rightarrow A^{(2n+1)}$, $d_B : B \rightarrow B^{(2n+1)}$ are derivations and $S(a) = \langle d_A(a), 1_A \rangle \theta$ ($a \in A$).*

(ii) Every derivation $D : A \times_{\theta} B \rightarrow (A \times_{\theta} B)^{(2n)}$ is in the form of $D = (d_A + T, d_B)$ where $d_A : A \rightarrow A^{(2n)}$, $d_B : B \rightarrow B^{(2n)}$ are derivations and $T(b) = -\langle \theta, d_B(b) \rangle 1_A$ ($b \in B$).

As a consequence of the latter characterizations of derivations we give the next result concerning to the n -weak amenability of $A \times_{\theta} B$ which actually provides a unified approach for improving the Propositions 2.3, 2.4 and 3.1 in the case where A is unital.

Theorem 3.1. *If A is unital then $A \times_{\theta} B$ is n -weakly amenable if and only if both A and B are n -weakly amenable.*

Proof. We only prove the odd case, the even case needs a similar argument. By Proposition 3.1 every derivation $D : A \times_{\theta} B \rightarrow (A \times_{\theta} B)^{(2n+1)}$ is in the form of

$$D((a, b)) = (d_A(a), S(a) + d_B(b)) \quad (a \in A, b \in B),$$

where $d_A : A \rightarrow A^{(2n+1)}$ and $d_B : B \rightarrow B^{(2n+1)}$ are derivations and $S : A \rightarrow B^{(2n+1)}$ satisfies $S(a) = \langle d_A(a), 1_A \rangle \theta$. It is easy to check that if d_A is inner then $S = 0$; indeed, if $d_A = \delta_f$ for some $f \in A^{(2n+1)}$ then $\langle d_A(a), 1_A \rangle = \langle f, a1_A - 1_A a \rangle = 0$. Therefore $D = \delta_{(f,g)} = (\delta_f, \delta_g)$, for some $f \in A^{(2n+1)}$ and $g \in B^{(2n+1)}$ if and only if $d_A = \delta_f$ and $d_B = \delta_g$. In other words, $A \times_{\theta} B$ is $(2n+1)$ -weakly amenable if and only if both A and B are $(2n+1)$ -weakly amenable. \square

In the case when A is unital we can say more about $A \times_{\theta} B$. Indeed, there is a close relation between the first cohomology groups $H^1(A \times_{\theta} B, (A \times_{\theta} B)^{(n)})$, $H^1(A, A^{(n)})$ and $H^1(B, B^{(n)})$. More precisely, a standard argument based on the characterizations of derivations in Proposition 3.1 implies that:

$$H^1(A \times_{\theta} B, (A \times_{\theta} B)^{(n)}) \cong H^1(A, A^{(n)}) \oplus H^1(B, B^{(n)}).$$

One now can also derive Theorem 3.1 as an immediate consequence of this identification.

Remark 3.1. *The results in the last section, especially Theorem 3.1, are based on the case that A is unital. What happens if the requirement that A be unital is replaced by “ A possessing a bounded approximate identity”? To the best of our knowledge, however, no example was yet known whether this fails if one considers the case “ A has a bounded approximate identity” instead.*

Acknowledgment

The authors would like to thank the anonymous referee for his/her helpful comments. This research was supported by a grant from Ferdowsi University of Mashhad (No. MP90217VIS).

REFERENCES

- [1] *H. G. Dales, F. Ghahramani, and N. Grønbæk*, Derivations into iterated duals of Banach algebras, *Studia Math.*, **128**, (1) (1998), 19-54.
- [2] *H. R. Ebrahimi Vishki and A. R. Khoddami*, Character inner amenability of certain Banach algebras, *Colloq. Math.*, **122**, (2011), 225-232.
- [3] *E. Ghaderi, R. Nasr-Isfahani and M. Nemati*, Some notions of amenability for certain products of Banach algebras, *Colloq. Math.*, **130**, (2013), 147-157.
- [4] *V. Runde*, Lectures on amenability, *Lecture Notes in Math.*, **1774**, Springer, Berlin (2002).
- [5] *A. T. -M. Lau*, Analysis on a class of Banach algebras with applications to harmonic analysis on locally compact groups and semigroups, *Fund. Math.*, **118**, (1983), 161-175.
- [6] *M. Sangani Monfared*, On certain products of Banach algebras with applications to harmonic analysis, *Studia Math.*, **178**, (3) (2007), 277-294.
- [7] *M. Sangani Monfared*, Character amenability of Banach algebras, *Math. Proc. Camb. Phil. Soc.*, **144** (2008), 697-706.