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n−WEAK AMENABILITY FOR LAU PRODUCT OF
BANACH ALGEBRAS

H. R. Ebrahimi Vishki1 and A. R. Khoddami 2

Given Banach algebras A and B, let θ be a character on B. We ex-
plain explicitly the derivations from θ−Lau product A×θB into its nth−dual
(A ×θ B)(n) from which we obtain necessary and sufficient conditions for
A×θ B to be n−weakly amenable.
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1. INTRODUCTION AND PRELIMINARIES

Let A and B be Banach algebras with ∅ 6= σ(B) (:=the set of all nonzero
multiplicative functionals of B) and let θ ∈ σ(B). Then the `1−direct product
A×B equipped with the multiplication

(a, b) · (c, d) = (ac+ 〈θ, d〉a+ 〈θ, b〉c, bd), ((a, b), (c, d) ∈ A×B)

is a Banach algebra which is called the θ−Lau product of A and B and will
be denoted by A ×θ B. This product was introduced by Lau [5] for certain
class of Banach algebras and followed by Sangani Monfared [6] for the general
case. These products not only induce new examples of Banach algebras which
are interesting in its own right but also they are known as a fertile source of
(counter)examples in functional analysis and abstract harmonic analysis. A
very familiar example, which is of special interest, is the case that B = C with
θ as the identity character i that we get the unitization A] = A×i C of A. If
we include the possibility that θ = 0 then we obtain the usual direct product
of Banach algebras.
From the homological algebra point of view A×θ B is a strongly splitting Ba-
nach algebra extension of B by A, which means that, the quotient (A×θB)/A is
isometrically isomorphic to B. This extension enjoys some properties that are
not shared in general by arbitrary strongly splitting extensions. For instance,
commutativity does not preserve by a general strongly splitting extension,
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however, A×θ B is commutative in the case where A and B are commutative.
Some of the basic properties such as characterizations of bounded approximate
identity, topological center and weak amenability for this product are investi-
gated in [6]. Character (inner) amenability of A ×θ B is also investigated in
[7] and [2].
In this paper, we are mainly concerned with the investigation of n−weak
amenability of A×θ B (the case n = 1 has already investigated in [6]). In this
respect we give some necessary and sufficient conditions for n−weak amenabil-
ity of A×θB. The most interesting case occurs when A is unital. In this flexible
case we mainly show that, A ×θ B is n−weakly amenable if and only if both
A and B are n−weakly amenable.
Before we proceed for the main results we need some preliminaries about
n−weak amenability. A derivation from a Banach algebra A into a Ba-
nach A−module X is a bounded linear mapping D : A → X such that
D(ab) = D(a) · b + a ·D(b) (a, b ∈ A). The set of all derivations from A into
X is denoted by Z1(A,X). For each x ∈ X the derivation δx : a 7→ a · x− x · a
(a ∈ A) is called an inner derivation. The set of all inner derivations from
A to X is denoted by N1(A,X). The quotient Z1(A,X)/N1(A,X) is called
the first cohomology group of A with coefficients in X and will be denoted by
H1(A,X). Throughout the paper n is assumed to be a non-negative integer.
The nth− dual A(n) of a Banach algebra A is a Banach A−module under the
module operations defined inductively by
〈m · a, u〉 = 〈m, a · u〉, 〈a ·m,u〉 = 〈m,u · a〉, (m ∈ A(n), u ∈ A(n−1), a ∈ A =
A(0)).
Of course, A is a Banach A−module under its multiplication.
A Banach algebra A is said to be n−weakly amenable if H1(A,A(n)) = {0}.
This notion was initiated and intensively studied in [1]. Trivially, 1−weak
amenability is nothing else than the so-called weak amenability. The basic
properties of these notions are extensively discussed in [4].
For brevity of notation we usually identify an element of A with its canonical
image in A(2n), as well as an element of A∗ with its image in A(2n+1). We usu-
ally use 〈·, ·〉 for the duality between a Banach space and its dual and we also
use the symbol “ · ” for the various module operations linking various Banach
algebras.

2. Main Results

To clarify the relation between n−weak amenability of A×θB and that of
A and B we need to characterize the derivations from A×θB into (A×θB)(n).
One can simply identify the underlying space of (A×θ B)(n) with the Banach
space A(n) × B(n) equipped with the `1−norm when n is even and `∞−norm
when n is odd.
A direct verification reveals that (A×θ B)−module operations of (A×θ B)(n)

are as follows. For a ∈ A, b ∈ B, f ∈ A(2n+1), g ∈ B(2n+1), F ∈ A(2n) and G ∈



n−weak amenability for Lau product of Banach algebras 179

B(2n) :

(a, b) · (f, g) = (a · f + 〈θ, b〉f, 〈f, a〉θ + b · g)

(f, g) · (a, b) = (f · a+ 〈θ, b〉f, 〈f, a〉θ + g · b)
(a, b) · (F,G) = (a · F + 〈θ,G〉a+ 〈θ, b〉F, b ·G)

(F,G) · (a, b) = (F · a+ 〈θ,G〉a+ 〈θ, b〉F,G · b).

In the following we characterize the derivations from A×θ B into (A×θ B)(n).
The next result is devoted to the odd case.

Proposition 2.1. A bounded linear map D : A ×θ B → (A ×θ B)(2n+1) is a
derivation if and only if there exist derivations dA : A → A(2n+1), dB : B →
B(2n+1) and bounded linear maps S : A→ B(2n+1), T : B → A(2n+1) such that
for each a, c ∈ A, b, d ∈ B,

(i) D((a, b)) = (dA(a) + T (b), S(a) + dB(b)),
(ii) a · T (b) = T (b) · a = 0,
(iii) 〈T (b), a〉θ + S(a) · b = 〈θ, b〉S(a),
(iv) S(a) · b = b · S(a),
(v) S(ac) = (〈dA(a), c〉+ 〈dA(c), a〉)θ, and
(vi) T (bd) = 〈θ, b〉T (d) + 〈θ, d〉T (b).

In particular, D is inner if and only if T = 0, S = 0 and dA, dB are inner.

Proof. Let D : A ×θ B → (A ×θ B)(2n+1) be a bounded linear mapping. As
(A ×θ B)(2n+1) can be identified with A(2n+1) × B(2n+1), there exist bounded
linear mappings d1 : A ×θ B → A(2n+1) and d2 : A ×θ B → B(2n+1) such that
D = (d1, d2). Let dA(a) = d1((a, 0)), dB(b) = d2((0, b)), T (b) = d1((0, b)) and
S(a) = d2((a, 0)), (a ∈ A, b ∈ B).
Then trivially dA, dB, T and S are linear mappings satisfying (i). Moreover
for every a, c ∈ A and b, d ∈ B,

D((a, b) · (c, d))

= D
(
(ac+ 〈θ, d〉a+ 〈θ, b〉c, bd)

)
=

(
dA

(
ac+ 〈θ, d〉a+ 〈θ, b〉c

)
+ T (bd), S

(
ac+ 〈θ, d〉a+ 〈θ, b〉c

)
+ dB(bd)

)
.

(1)

And

D
(
(a, b)

)
· (c, d) + (a, b) ·D

(
(c, d)

)
=

(
dA(a) + T (b), S(a) + dB(b)

)
· (c, d)

+(a, b) ·
(
dA(c) + T (d), S(c) + dB(d)

)
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=
(

(dA(a) + T (b)) · c+ 〈θ, d〉(dA(a) + T (b)),

〈dA(a) + T (b), c〉θ + (S(a) + dB(b)) · d)
)

+
(
a · (dA(c) + T (d)) + 〈θ, b〉(dA(c) + T (d)),

〈dA(c) + T (d), a〉θ + b · (S(c) + dB(d))
)

=
(

(dA(a) + T (b)) · c+ 〈θ, d〉(dA(a) + T (b)) + a · (dA(c) + T (d))

+〈θ, b〉(dA(c) + T (d)), 〈dA(a) + T (b), c〉θ + (S(a) + dB(b)) · d

+〈dA(c) + T (d), a〉θ + b · (S(c) + dB(d))
)
.

(2)

Thus D is a derivation if and only if (1) and (2) coincide, from which we get,

dA(ac) + 〈θ, d〉dA(a) + 〈θ, b〉dA(c) + T (bd) (3)

= (dA(a) + T (b)) · c+ 〈θ, d〉(dA(a) + T (b)) + a · (dA(c) + T (d))

+〈θ, b〉(dA(c) + T (d));

and

S(ac) + 〈θ, d〉S(a) + 〈θ, b〉S(c) + dB(bd) (4)

= 〈dA(a) + T (b), c〉θ + (S(a) + dB(b)) · d+ 〈dA(c) + T (d), a〉θ
+b · (S(c) + dB(d)).

Therefore D is a derivation if and only if the equations (3) and (4) are satisfied.
Now a straightforward verification shows that if dA and dB are derivations and
the equalities (ii), (iii), (iv), (v) are satisfied then (3) and (4) hold. Applying
(3) and (4) for suitable values of a, b, c, d shows that dA and dB are derivations
and the equalities (ii), (iii), (iv), (v) are also satisfied, as claimed.

For the last part, first note that if f ∈ A(2n+1) and g ∈ B(2n+1) then for
each a ∈ A, b ∈ B, δ(f,g)(a, b) = (δf (a), δg(b)). Now if D = δ(f,g) for some f ∈
A(2n+1), g ∈ B(2n+1), then (dA(a), S(a)) = D((a, 0)) = δ(f,g)(a, 0) = (δf (a), 0)
for each a ∈ A. It follows that dA = δf and S = 0. Similarly dB = δg and
T = 0. Moreover if S = 0, T = 0, dA = δf and dB = δg then D = δ(f,g); and
this completes the proof. �

The next result, which is devoted to the even case, needs a similar proof
as Proposition 2.1.

Proposition 2.2. A bounded linear map D : A ×θ B → (A ×θ B)(2n) is a
derivation if and only if there exist a derivation dB : B → B(2n) and bounded
linear maps S : A → B(2n), T : B → A(2n) and R : A → A(2n) such that for
each a, c ∈ A, b, d ∈ B,

(i) D((a, b)) = (R(a) + T (b), S(a) + dB(b)),
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(ii) S(ac) = 0,
(iii) R(ac) = a ·R(c) +R(a) · c+ 〈θ, S(c)〉a+ 〈θ, S(a)〉c,
(iv) b · S(a) = S(a) · b = 〈θ, b〉S(a),
(v) T (b) · a = a · T (b) = −〈θ, dB(b)〉a, and
(vi) T (bd) = 〈θ, b〉T (d) + 〈θ, d〉T (b).

In particular, D is inner if and only if S = 0, T = 0 and R, dB are inner
derivations.

To study (2n + 1)−weak amenability of A ×θ B we need the next con-
venience. A derivation d : A → A(2n+1) is said to be (2n + 1)−cyclic if
〈d(a), c〉+ 〈d(c), a〉 = 0, (a, c ∈ A). We say that A is (2n+ 1)−cyclicly weakly
amenable if every (2n+ 1)−cyclic derivation from A into A(2n+1) is inner.

Proposition 2.3. If A×θ B is (2n+ 1)−weakly amenable then B is
(2n+ 1)−weakly amenable and A is (2n+ 1)−cyclicly weakly amenable.

Proof. Let dA : A→ A(2n+1) be a (2n+ 1)−cyclic derivation and let dB : B →
B(2n+1) be a derivation. Define D : A×θB → (A×θB)(2n+1) by D = (dA, dB).
That D = (dA, dB) is a derivation follows trivially from Proposition 2.1 with
the hypotheses that dB is a derivation and dA is a (2n+ 1)−cyclic derivation.
Now (2n + 1)−weak amenability of A ×θ B implies that D = δ(f,g) for some

f ∈ A(2n+1) and g ∈ B(2n+1). It follows that dA = δf and dB = δg. �

Applying the latter proposition for the case n = 0 we obtain the next
result.

Corollary 2.1 ([6, Theorem 2.11]). Let A×θ B be weakly amenable then B is
weakly amenable and A is cyclicly weakly amenable.

In the next result we provide some conditions under which (2n+1)−weakly
amenablility of A and B implies that of A ×θ B. It is worthwhile mentioning
that a more general result has been proved in [3, Theorem 4.1], by an approach
slightly different from ours . The proof, however, contains a gap and, to our
knowledge, we have not able to fix it.

Proposition 2.4. Let A and B be (2n + 1)−weakly amenable. If either

A · A(2n) = A(2n) or A(2n) · A = A(2n) then A×θB is (2n+1)−weakly amenable.

Proof. Let D : A ×θ B → (A ×θ B)(2n+1) be a derivation. By Proposition 2.1
there exist derivations dA : A → A(2n+1), dB : B → B(2n+1) and bounded
linear maps S : A→ B(2n+1), T : B → A(2n+1) such that
D((a, b)) = (dA(a) + T (b), S(a) + dB(b)), (a ∈ A, b ∈ B). Since A and B are
(2n + 1)−weakly amenable, dA = δf and dB = δg for some f ∈ A(2n+1), g ∈
B(2n+1), and so by Proposition 2.1 (v),

S(ac) = (〈dA(a), c〉+ 〈dA(c), a〉)θ = (〈δf (a), c〉+ 〈δf (c), a〉)θ = 0 (a, c ∈ A).

It follows that S vanishes on A2. Furthermore, (2n + 1)−weakly amenability

of A implies the weak amenability of A and so A2 = A, (see [1, Propositions
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1.2, 1.3]). We thus have S = 0. By Proposition 2.1 (ii), for every a ∈ A, b ∈ B
we have a · T (b) = T (b) · a = 0. This yields that

〈T (b), a·F 〉 = 〈T (b)·a, F 〉 = 0 and 〈T (b), F ·a〉 = 〈a·T (b), F 〉 = 0 (F ∈ A(2n)).

That is, T (b) vanishes on both A(2n) · A and A · A(2n). These together with

either of the identities A · A(2n) = A(2n) or A(2n) · A = A(2n) imply that T = 0.
Therefore D = δ(f,g), as required. �

As a rapid consequence of Proposition 2.4 we get:

Corollary 2.2. If A and B are weakly amenable then A ×θ B is weakly
amenable.

Let θ ∈ σ(B). A derivation d : B → B(2n) is said to be θ(2n)−null if
〈θ, d(b)〉 = 0, (b ∈ B); (for the case n = 0 this means that d(B) ⊆ kerθ). A
Banach algebra B is said to be θ(2n)−null weakly amenable if every θ(2n)−null
derivation is inner. As an analogous to Proposition 2.3 for the even case we
present the next result.

Proposition 2.5. If A×θ B is (2n)−weakly amenable then A is (2n)−weakly
amenable and B is θ(2n)−null weakly amenable.

Proof. Let dA : A → A(2n) be a derivation and let dB : B → B(2n) be a
θ(2n)−null derivation. Define D : A ×θ B → (A ×θ B)(2n) by D((a, b)) =
(dA(a), dB(b)). Applying Proposition 2.2 to D shows that D is a derivation
(note that, the hypotheses that dA is a derivation and dB is θ(2n)−null is
necessary for (iii) and (v) of Proposition 2.2 to hold). So there exists (F,G) ∈
(A ×θ B)(2n) such that D = δ(F,G) = (δF , δG). It follows that dA = δF and
dB = δG. �

In this stage we would like to state that unfortunately we do not know
an analogous to Proposition 2.4 for the even case, in general. However, we
establish such a result in Theorem 3.1, which is heavily based on the hypothesis
that A is unital.

3. The case that A is unital

Here we turn our attention to the case where A has an identity. In this
case the characterizations of derivations D : A×θ B → (A×θ B)(n) presented
in Propositions 2.1 and 2.2 can be considerably simplified. Indeed, a direct
verification summarizes the Propositions 2.1 and 2.2 in the line of the following
result.

Proposition 3.1. Let A be unital with the identity 1A. Then
(i) every derivation D : A ×θ B → (A ×θ B)(2n+1) is in the form of

D = (dA, S + dB), where dA : A → A(2n+1), dB : B → B(2n+1) are derivations
and S(a) = 〈dA(a), 1A〉θ (a ∈ A).
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(ii) Every derivation D : A ×θ B → (A ×θ B)(2n) is in the form of
D = (dA + T, dB) where dA : A → A(2n), dB : B → B(2n) are derivations and
T (b) = −〈θ, dB(b)〉1A (b ∈ B).

As a consequence of the latter characterizations of derivations we give
the next result concerning to the n−weak amenability of A×θB which actually
provides a unified approach for improving the Propositions 2.3, 2.4 and 3.1 in
the case where A is unital.

Theorem 3.1. If A is unital then A ×θ B is n−weakly amenable if and only
if both A and B are n−weakly amenable.

Proof. We only prove the odd case, the even case needs a similar argument.
By Proposition 3.1 every derivation D : A ×θ B → (A ×θ B)(2n+1) is in the
form of

D((a, b)) = (dA(a), S(a) + dB(b)) (a ∈ A, b ∈ B),

where dA : A → A(2n+1) and dB : B → B(2n+1) are derivations and S : A →
B(2n+1) satisfies S(a) = 〈dA(a), 1A〉θ. It is easy to check that if dA is inner
then S = 0; indeed, if dA = δf for some f ∈ A(2n+1) then 〈dA(a), 1A〉 =
〈f, a1A − 1Aa〉 = 0. Therefore D = δ(f,g) = (δf , δg), for some f ∈ A(2n+1) and

g ∈ B(2n+1) if and only if dA = δf and dB = δg. In other words, A ×θ B is
(2n + 1)−weakly amenable if and only if both A and B are (2n + 1)−weakly
amenable. �

In the case when A is unital we can say more about A×θB. Indeed, there
is a close relation between the first cohomology groups H1(A×θB, (A×θB)(n)),
H1(A,A(n)) and H1(B,B(n)). More precisely, a standard argument based on
the characterizations of derivations in Proposition 3.1 implies that:

H1(A×θ B, (A×θ B)(n)) ∼= H1(A,A(n))⊕H1(B,B(n)).

One now can also derive Theorem 3.1 as an immediate consequence of this
identification.

Remark 3.1. The results in the last section, especially Theorem 3.1, are based
on the case that A is unital. What happens if the requirement that A be unital
is replaced by “A possessing a bounded approximate identity”? To the best of
our knowledge, however, no example was yet known whether this fails if one
considers the case “A has a bounded approximate identity” instead.
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