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LABEL-BASED FIREWALLING ON WINDOWS

David Gherghiti!, Radu Mantu?, Mihai Chiroiu?’, Nicolae Tapus®

In this paper we present a network traffic labeling and filter-
ing system. This system is based primarily on the Windows Filter Engine
and can provide proof of origin and payload integrity to all TCP traffic.
We accomplish this by annotating traffic using TCP options, a widely ac-
cepted framework for providing protocol extensions, that is also commonly
routable in the Internet, and guarantees compatibility with network stacks
that do not implem4nt support for our annotation scheme. Furthermore, we
supply a companion Xtables module and iptables plugin for Linux-based
distributions that can perform matches on correctly labeled traffic. Finally,
we explore the alternative of filtering traffic on egress based solely on the
identity of the originating Windows application.
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1. Introduction

Application fingerprinting based on network traffic is a crucial require-
ment for correctly managing computer networks and enforcing security policies
within them. In the early days of the internet, the Layer 4 ports were gener-
ally indicative of the application that was bound to them. However, the rapid
maturation of these technologies has created uncertainty and lead to new,
telemetry-based solutions [3] to emerge. Being a long-term goal of companies
such as Cisco that have had a vested interested for well over a decade [16],
machine learning techniques have recently become more prevalent in the iden-
tification of endpoint applications [5,15]. Nonetheless, these technologies are
yet to see large scale adoption in firewalling solutions due to inherent limita-
tions, stemming in large part from the constantly accelerating diversification
of web applications.

In this paper we propose a different approach to ensuring network se-
curity: the distribution of responsibility [7] to multiple hosts in the network.

IMSc., Faculty of Automatic Control and Computers, University “Politehnica” of
Bucharest, Romania, e-mail: david.gherghita@upb.ro

2Research Assistant, Faculty of Automatic Control and Computers, University “Po-
litehnica” of Bucharest, Romania, e-mail: radu.mantu@upb.ro

3 Assistant Professor, Faculty of Automatic Control and Computers, University “Po-
litehnica” of Bucharest, Romania, email: mihai.chiroiu@upb.ro

4Professor, Faculty of Automatic Control and Computers, University “Politehnica” of
Bucharest, Romania, email: nicolae.tapus@upb.ro

15



16 David Gherghita, Radu Mantu, Mihai Chiroiu, Nicolae Tapus

Instead of centralizing the firewalling mechanism and compensating with in-
creasingly costly and potentially inaccurate fingerprinting techniques, we rely
on the operating system of each host to capitalize on its extensive control over
the endpoint processes in order to correctly identify the afferent application.
Additionally, we attach a proof of compliance to each emitted packet for other
devices to verify.

This proof would demonstrate to other networked entities that each
packet that originated from a certain host had been analyzed by an instance
of our firewall. Moreover, we do not make the assumption that all potential
endhosts and middlebox devices are aware of our annotation scheme. While
some prior solutions [10,17] have appended their own version of a proof of
compliance to the payload, we argue that this would most assuredly break
the application-level communication between incompatible devices. We em-
phasize this problem due to recent developments in corporate network infras-
tructure [9,14] where devices tend to seamlessly transition between networks.
Without a guarantee that all guest devices would at least have knowledge of
our annotation scheme, we decided to ere on the side of caution and only
use the formal protocol extension mechanisms that were already in place (i.e.,
protocol options). This approach would allow unknown protocol options to be
quietly ignored by the network stacks, so long as they correctly implement the
afferent standards.

In turn, this raises the question of what protocol to integrate our an-
notation with. We have identified three choices. Under ideal circumstances,
the IP protocol [1] would be the most beneficial since acting at Layer 3 would
abstract the complexities that are inherent to higher layer protocols. Nonethe-
less, it has been previously proven that IP options cannot be reliably routed
through the Internet [4]. Since this fact has remained unchanged for the past
20 years, even more recent architectures [20] strip these options before routing
traffic towards external networks. Taking this information into account, the
only viable remaining options are UDP and TCP. We decided to forego imple-
menting support for UDP options [13] due to the fact that they are a recent
proposition that is still pending standardisation by the IETF and that there
are known inconsistent behaviours in checksum calculation [19] when this ex-
tension is encountered. TCP options on the other hand have been known to
function reliably [6] for the past decade, mostly due to their necessity in en-
suring adequate performance in Wide Area Networks. The downside of using
TCP options is that the size of our annotation is effectively limited to 36 bytes
due to design considerations dating back to 1981 [2].

We claim the following contributions and make the relevant source code
publicly available! for any interested party.

e The design and implementation of a network traffic labeling system
as a Windows 10 Filter Engine kernel module.

Thttps://github.com/david-gherghita/label-based-firewall-for-windows
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e The implementation of a companion Xtables module and iptables
plugin to bridge the gap in compatibility between Windows and Linux-
based distributions.

e The assessment of the viability of using the originating process iden-
tity as a criteria for packet labeling and filtration.

The reminder of this paper is structured as follows. Section 2 describes
the implementation details of each component comprising the Windows kernel
module. In Section 3 we present our testing methodology, functional evaluation
and performance considerations. Section 4 presents a comparison between our
solution and existing works. Section 5 concludes this paper.

2. Implementation
2.1. Interaction with the Windows Filter Engine

One of the core elements that comprise our solution revolves around cor-
rectly identifying the process that generated an outgoing packet. Since this
information is usually associated to the socket that performed the send() op-
eration, it follows that it would be readily available at the Application Layer
Enforcement (ALE) stage of the WFP Filtering Engine (see Figure 1). More
specifically, a callout from the FWPM_LAYER _ALE_AUTH_CONNECT_V4 layer is ca-
pable of blocking both outgoing TCP connections, and non-TCP traffic based
on the first emitted packet.
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WFP Kernel Client
FIGURE 1. Kernel module integration with the Windows Filter-
ing Platform.

Nonetheless, at this layer it is impossible to accomplish the other desired
function of our firewall, namely packet annotation. The reason for this is that
at the moment when the ALE hook is reached, the packet had only traversed
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the Stream Layer Shim of the TCP/IP network stack. If our goal was to mod-
ify the application data, doing so at the Stream / Datagram Data Layer would
have been sufficient. However, our annotation scheme is reliant on the exis-
tence of network and transport layer protocol headers. Since these headers are
constructed after the ALE connection management stage, we considered the
FWPM_LAYER_OUTBOUND_IPPACKET_V4 and FWPM_LAYER_OUTBOUND_TRANSPORT_V4
layers for manipulating the IP and TCP options sections, respectively. Al-
though these layers offer the possibility of affecting the construction of proto-
col headers, we note that the information relating to the originating process is
no longer available at this stage.

In order to address this issue, we decided to register our Kernel Client
both with the ALE layer and with the IP or Transport layers, as dictated by
the user. The former callout would collect the relevant process information
and attach it to the data flow as a context, thus making it available to future
callouts. The latter callout would access said process information via the
associated context, compute the hash-based message authentication code and
attach it as an experimental option.

2.2. Identification of the originating process

One similarity of particular note that we identified between the Windows
and Linux networks stacks consists of how network traffic is attributed to a
certain process. In both cases, the most accurate association can be made
during the execution of the send () system call (or any equivalent) by assess-
ing the PID of the calling process. However, the data that is transferred from
user space during this operation can not be equated to the payload of a single
packet, mainly due to mechanisms such as the Generic Segmentation Offload
(i.e.: software enabled packet fragmentation). Once this data enters the net-
work stack, its processing may be deferred to a kernel thread. Consequently,
the relation of a given packet to a userspace process can be ascertained only
via its backing socket structure.

Herein lies the problem. Both the Winsock and sk buff structures only
identify one owning process: that which first instantiated the resource. How-
ever, access to said resource is granted to userspace application through file
handles / descriptors, which by default are inherited by children on exec().
We note that aside from this, there are also other methods of sharing file
descriptors between processes (e.g.: ancillary sockets that transfer file descrip-
tors, etc.)

Our solution takes advantage of the fact that part of the processing done
by the TCP/IP stack is performed by the same thread that originally invoked
the send () operation. As a result, we are able to extract the real PID of the
originating process anywhere in Stream Layer Shim or the ALE, as well as
their associated Filter Engine hooks and callouts.
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2.3. Packet annotation

Following the identification of the originating process, our system was
intended to generate proof of authenticity and integrity of the payload. To
this end, we utilized the BCrypt family of cryptographic primitives to calcu-
late a SHA256 HMAC for each packet. We selected this variant instead of
NCrypt due to the fact that the HMAC shared secret could be considered to
have already been loaded in memory as a parameter to the kernel module.
Nonetheless, we regard NCrypt as a viable alternative if the requirement of
integrating a Key Storage Provider ever arises. Regardless, the digest of the
Message Authentication code was calculated based on the TCP payload as
well as the Sequence Number, so as to prevent replay attacks.

Base TCP header - 20 Bytes TCP options - 40 bytes (max)
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Data Type Length | Experiment ID Vele Payload
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FIGURE 2. Experimental TCP option format used in annotation.

To conclude the annotation process, we would attach the 32-byte di-
gest to the TCP header, as a TCP option (see structure in Figure 2). Each
TCP option is a Type-Length-Value (TLV) tuple that is appended to the base
header and any other pre-existing options. Due to it being an experimen-
tal option (i.e., not previously registered with the Internet Assigned Numbers
Association), we assigned ours the RFC3692-style [8] codepoint 0xFD. At the
same time, we set the length field to the maximum value of 40 bytes. This
decision was motivated by the severe space requirements of the digest, com-
bined with additional protocol-enforced fields, and relative to the potentially
variable length of other common options such as Window Scaling or Selective
Acknowledgement. Because we could not guarantee that our option would
be able to coexist with all the other (e.g., the aforementioned) we deemed it
necessary to erase all other options present in the initial handshake for both
incoming and outgoing connections. This would prevent the successful negoti-
ation of employing any protocol extensions (aside from ours) by the operating
system from that point onwards. In compliance with the Shared Use of Ex-
periemntal TCP Options RFC [12], we assigned our experiment the ID 0x4677.
Aside from the 32-byte HMAC digest value, the Value element also consists
of a 4-byte field reserved for future use. We opted for this approach instead
of padding the options section with NOPs because middleboxes may remove
them if encountered in groups of more than three. This truncation of the op-
tions section usually occurs since NOPs are usually employed to offset options
that must be 32-bit aligned, and having a 32-bit padding sequence is not only
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redundant but can also be considered a type of Denial Of Service attack meant
to waste system resources with TCP option decoding. Ensuring that the TCP
header length is consistently 60 bytes guarantees that no other TCP options
are injected on the path and simplifies the payload offset calculation process.

3. Evaluation
3.1. Experimental setup

Our solution was developed on a bare-metal Windows 11 Pro 22H2 and
cross compiled with MSVC v143, to be tested on a Virtual Machine running
Windows 10 Enterprise LTSC Build 17763, with a 1Gbps emulated network
controller. The decoupling of development and testing environments was nec-
essary for allowing the insertion of self-signed kernel modules and to minimize
the risk of development setbacks.

A second Virtual Machine running Ubuntu Bionic was used to test the
compliance of our annotation scheme with Linux-based distributions (see Sub-
section 3.2).

3.2. Label verification and filtration

In order to demonstrate the efficacy of our annotation scheme, we imple-
mented an Xtables module for the Netfilter system in Linux. This system com-
prises a set of hooks placed within the network stack of the Linux kernel, and
can be used to attach traffic filters and mutators. In other words, the Netfilter
system represents the basis on which iptables was built. Correspondingly,
Xtables is an aggregate name for the callback subsystem that unifies the IPv4,
IPv6, ARP and Ethernet Bridge toolset backends, collectively now known as
nftables.

Our extension also consists of a user space component (i.e., an iptables
plugin library) that expands the parsing capabilities of the base binary to in-
clude custom match criteria and auxiliary information, such as the pre-shared
secret used in the HMAC operation. This plugin marshalls the aforementioned
parameters and sends them to our Xtables module, thus creating a new evalua-
tion context, specific to a singular rule. When the match() callback is invoked
within a certain context, our module re-calculates the SHA256-HMAC of the
TCP payload and Sequence Number, compares it to that which is stored in the
experimental TCP option, and finally reports the result to the caller. Since
our Xtables module only implements the match() callback, it can be paired
with any other match criteria and jump targets available to iptables, be they
related to filtering, logging, address translation, etc.

For the purpose of testing our Linux-based filtration mechanism, we
have implemented two HTTP and SSH Python servers based on flask and
paramiko respectively. While the former exposed multiple routes, each provid-
ing an arbitrary implementation for different HTTP request types (e.g.: GET,
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POST, DELETE, etc.) the latter acted as an echo serer over a secure com-
munication channel. We concluded that neither type of traffic was impeded
by the addition of the HMAC annotation. Additionally, we also assessed the
viability of Windows-side filtration of these protocols, as well as ICMP Echo
Requests / Replies and raw data over UDP but without annotating outgoing
traffic.

3.3. Performance considerations

Despite the security assurances that our system provides, a decline in
throughput is to be expected. This can be observed in Figure 3, by comparing
the average data throughput of ten second iperf3 TCP transmissions, with
and without annotations. These measurements have further been averaged
across five different rounds of testing. Although the process identification
feature is not particularly costly from a computational standpoint, calculating
the SHA256 digest and replacing the contents of the send buffer by injecting the
experimental TCP option can be detrimental. Based on our experiments we
estimate that our kernel module imposes an upper bound of approx. 400Mbps
on outgoing network transmissions. Note however that this limit may vary
depending on the characteristics of the underlying testing environment (e.g.,
hardware implementation of cryptographic primitives, CPU frequency, etc. )
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FIGURE 3. iperf3 data throughput with packet annotation.
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4. Related Work

VMwall [11] is a Xen-based application-level firewall proposed by Srivas-
tava et al. in 2008. Their implementation performs application identification
during the connection setup phase by performing Virtual Machine Introspec-
tion, thus associating the socket used for network communication with the
name of the initiating process. Our solution differs in that we dynamically
identify the originating process, thus accounting for situations where socket
handles are shared by the connection initiator with other entities. Similarly to
VMwall, we leverage protection domains to isolate our module from potentially
malicious applications. However, our solution operates at ring 0, while theirs
runs in hypervisor space.

Assayer [10] is a solution dating from 2012 by Parno et al. that imple-
mented packet annotation with application-specific counters. These counters
range from the average size of mails sent by an application, to the number of
host said application connects to, etc. These metrics are gathered by privi-
leged (i.e., hypervisor space) modules to a minimal hypervisor that provides
hardware attestation, and attached to outgoing packets by appending them
to the end of the payload. While our solution is more specialized, aiming to
provide a set of security guarantees, the annotation scheme that we utilize is
more flexible. While Assayer requires all endpoints to be aware of the anno-
tation scheme, our implementation is more flexible and does not obstruct the
communication if one party lacks support for our system.

In 2012, Zhao et al. [18] noticed a lack of labeled network traffic captures
and devised an annotation scheme for constructing such a dataset. Their solu-
tion intercepted outgoing traffic via the Network Driver Interface Specification
(NDIS) hooking mechanism and attached an arbitrarily defined single-byte ap-
plication identifier in the Differentiated Services (DS) field of the IP header
that would be recorded at the destination gateway. The difference of our choice
of filtering framework (i.e. WFP) is motivated by the fact that our annota-
tor operates at Layer 4 while theirs requires access to the Layer 3 header.
Moreover, while this Layer 3 annotation scheme encompasses a larger cate-
gory of traffic and not just TCP, redefining of the DS field can interfere with
classification conventions within DS domains.

BorderPatrol [20] is another instance of traffic labeling system based on
application identity. Aimed specifically at Android devices, this solution lever-
ages the Dalvik virtual machine and the Xposed Framework to dynamically
instrument method and constructor calls. All instances of socket creation are
monitored by a Context Manager process that either blocks the attempt based
on classpath information or attaches a known identifier of the calling method,
together with the MD5 digest of the APK to each packet as an IP option.
Similarly to our solution, BorderPatrol is able to obstruct data transmission
based on application information. Although able to apply finer grained (i.e.,
method-level) match criteria, BorderPatrol is designed to operate in a mostly
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trusted local network, where the traffic filtration is almost guaranteed to oc-
cur on the user device and no bad actors are liable to modify the annotated
data in transit. Additionally, their architecture requires that all IP options
are dropped when exiting the local network. Meanwhile, all TCP traffic that
is labeled by our solution is almost guaranteed to be successfully routed in the
Internet.

5. Conclusion

In this paper we assessed the viability of leveraging the kernel-level knowl-
edge of endpoint hosts to aid in classifying network traffic based on its orig-
inating application. To this end, we implemented a Windows Filter Engine
kernel module capable of identifying all processes that accessed the Winsock
object, and not just its creator.

Furthermore, we devised an annotation scheme that ensures payload in-
tegrity and authentication for TCP traffic. Our design takes into consideration
backwards compatibility with kernel stacks that are unaware of our labeling
mechanism, preventing our protocol extension from disrupting application-
level communication while still allowing middleboxes to perform their own
verification.

Finally, we implement an Xtables module that permits verifying the at-
tached proof of compliance. This module serves as a singular, independent
component in the packet matching logic employed by userspace tools such as
iptables or nftables.
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