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DECAY OF APOTENTIAL VORTEX IN A TIME
FRACTIONAL SECOND GRADE FLUID

Constantin FETECAU !, Ageel Tahir AHMED 2, Mihaela-Elena STAN 3

Exact solutions for the dimensionless velocity field and the adequate non-
trivial shear stress corresponding to a potential vortex through a time fractional
second grade fluid have been established by means of the integral transform
technique. The known similar solutions for ordinary or fractional Newtonian fluids,
as well as those for ordinary second grade fluids, are easily obtained as limiting
cases of these solutions. The influence of fractional parameter on the fluid motion,
as well as a comparison with Newtonian fluids is graphically depicted and
discussed. In all cases the vortex decreases in time and space and the diagrams
corresponding to fractional fluids tend to superpose over those of ordinary fluids
when the fractional parameter tends to one.
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1. Introduction

Usually, a vortex is associated with the rotating motion of a fluid around a
common centerline. The fluid vorticity, defined as the “curl” of the fluid velocity,
iIs @ measure of the rate of local fluid rotation. Vortices arise in nature and
technology in a large range of sizes [1] like tornadoes, hurricanes or vortices in
superfluids. Atmospheric vortices are generated by temperature gradients, the
Coriolis force due to the Earth's rotation and spatial land scape variations and
instabilities. Temperature differences between poles and Equator and the Earth's
rotation can also lead to vortices such as polar vortex, polar jet stream or
subtropical jet stream. As it results from the work of Gieser [2], C.W. Oseen
(1879-1944) studied the vortices and formulated a mathematical model of vortex
with exponential azimuthally velocity. The frequent occurrence of vortices in
nature and technology determined the researchers in fluid mechanics to study both
their generation and evolution.

The velocity field corresponding to the decay of a potential vortex in a
Newtonian fluid has been determined by Zierep [3] using similarity by
transformation of variables. Since similarity solutions for motions of non-
Newtonian fluids seem to not exist (see Taipel [4] for the motion of a second
grade fluid over an infinite plate), the decay of a potential vortex in second grade
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or Oldroyd-B fluids has been studied using the Hankel transform by Fetecau C.
and Fetecau Corina [5]. Recently, Zierep’s results have been extended to
Newtonian fluids with time fractional derivative [6]. The corresponding non-
trivial shear stress, as well as the circulation on a circle of arbitrary radius, has
been also determined.

It is well known the fact that the fractional models are more flexible in
describing the complex behavior of viscoelastic materials. In the last time, they
gained much importance and popularity due to their vast potential of applications
in various fields including rheology. The first authors who applied fractional
calculus in viscoelasticity have been Bagley and Torvik [7] and a very good
agreement with experimental results using fractional derivatives has been
obtained by Caputo and Mainardy [8, 9]. Moreover, Makris et al. [10] used
experimental data to calibrate a fractional Maxwell model. More precisely, they
determined the value of fractional parameter in order to have an excellent
agreement between experimental and theoretical results. On the other hand, the
behavior of viscoelastic fluids depends on the flow history and the memory
formalism can be represented by means of fractional derivatives. For an
interesting review regarding applications and the importance of fractional calculus
see Sheoran et al. [11].

Bearing in mind the above-mentioned remarks, as well as the increasing
interest of fractional models in different domains of science, the purpose of this
paper is to extend the results from [6] to fractional second grade fluids. More
exactly, it uses the computational advantages of the new fractional derivative with
non-singular kernel defined by Caputo and Fabrizio [12] in order to see how the
fractional parameter affects the fluid motion due to a potential vortex. To do that,
exact solutions are established for dimensionless velocity and shear stress fields.
These solutions, which are presented in integral form in terms of Bessel functions
J1(-) andJ,(-), can be easily reduced to the similar solutions corresponding to
ordinary second grade fluids and ordinary or fractional Newtonian fluids. The

influence of fractional parameter on the fluid motion, as well as a comparison
with the Newtonian fluid is graphically underlined and discussed.

2. Statement of the Problem

In the following it is considered the circular motion of a fractional second
grade fluid whose velocity field, in a cylindrical coordinate system r, 8 and z, is
v =v(r,t) =(0,m(r,t),0) (1)
The initial distribution of velocity is assumed to be that of a potential vortex of
circulation 7, namely [3]
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o(r.0) = 2% @

For such a motion the continuity equation is identically satisfied while the
constitutive relationship of second grade fluids and the motion equations reduce to
the relevant equations

oYo 1 . _Oaw(r,t) or(r,t) 2
T(r,t) —[,LI'FOKJ_EJ(E—FJCO(I’J), P at = or +FT(r,t), (3)
where z(r,t) is the non-trivial shear stress, x and p are the fluid viscosity and
density and ¢ is a material constant. The value of the circulation 7°(r,t) on a
circle of radius r is given by [3]

r'(r,t)=2zrao(r,t). 4)
Eliminating z(r,t) between Egs. (3), it results that
2
8a)(r,t) :(V+aﬁj 5_+12_i a)(r,t); rt>0, (5)
ot ot arz ror r2

where v = u/ p is the kinematic viscosity and =4/ p.
In order to provide solutions that are free of the flow geometry, let us
introduce the next non-dimensional variables, functions or constants
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where tp is a characteristic time. Substituting Egs. (6) in (2), (3)1, (4) and (5) and

dropping out the star notation, it is found that

oa(r,t) :(1+aéj( 0 n 10 1 ja)(r,t); w(r,0) :%, (7
T 7

ot atlor2 ror r2
z(r,t) = [1+ agj(i—ljw(r t); I°(r,t)=2zro(r,t) (8)
’ ot \or r v ' v
Since the flow domain is unbounded, the natural conditions
a(r,t), M—>O; as r—o and t>0, 9)

have to be also satisfied. They assure the fact that the fluid is quiescent at infinity
and there is no shear in the free stream [13, 14].

The dimensionless fractional model corresponding to this problem is based
on the fractional partial differential equation

2
Dl w(r,t) = (1+ an)((f? 12 —riz}o(r,

with the initial condition (7)2. Temporal Caputo-Fabrizio fractional derivative [12]

t):; rt>0, (10)
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t
1 (Oa(r,s) B-s)| ...
D w(r,t) = exp| ———=1ds; 0 1, 11
folry) 1_4 . xp{ 15 |8 0<h< (11)
satisfies the useful properties
. daw(r,t) qo(r,q) —o(r,0)
lim D rt)y=—--"=, LD r,t)}= , 12
m Dfo(r) = =5, KO alr == (12)
where @(r,q) = L{e(r,t)} is the Laplace transform of w(r,t) and q is the
transform parameter.

3. Solution of the problem

In order to solve this problem, the integral transform technique is used.
Denoting by wy (p,t) the Hankel transform of o(r,t) , then [15]

on (p.t) = [ro(r)dy(endr and  o(r,t) = [ poy (0,01 (pr)dp.  (13)
0 0
Applying the Laplace transform to Eq. (10) and bearing in mind Egs. (7)2 and
(12),, it results that

_ I 2 106 1)
r,q———=[(a+1- + 8] —5+-——-—= |@(r,q). 14
qo(r,q)-—— =l(a+1-A)q ﬂ](8r2 o Ir2Ja)( q) (14)
Lengthy but straightforward computations show that [15]
T 2 10 1
ry(pr) — +=———= |o(r,t)dr = —p? 1), 15
g 1(p )[arz - rz]w( )dr = —p2on (p.1) (15)

if the following conditions

im ro(rt) =0, m ro(r,t) <o, fim rOA0Y oo fim p2NY
r—0 r—o r—0 or r—>o0 or

are satisfied. Consequently, it is assumed that all conditions (16) are fulfilled.
Now, multiplying Eq. (14) by rJ;(pr), integrating the result with respect

to r from zero to infinity and using Eq. (15), it results that

Iy 1 1

27p pAla+1-p)a+1 pB

pPa+1-pB)+1

Finally, successively applying the inverse Laplace and Hankel transforms

to the equality (17), one obtains the dimensionless velocity field in the form

a)(r,t):g—;j J1(pr) exp{ P ]dp. (18)
0

<o, (16)

(17)

oy (p,9) =

p2a+1-f)+1 | pAa+l-p)+1
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Introducing Eqg. (18) in (8), the corresponding expressions

_ o[ paer) - i
r(r)= 27z£,02(a+1—ﬁ)+1exp£ Pz(a+1—ﬂ)+1Jdp

; , (19)
Ty of p3a(pr) o
+27ra ‘![pz(a+l—,8)+l]2 o ( p2(a+1—,8)+1]dp’
_ T dlen) P
F(r’t)_rrong(a+1—ﬂ)+1eXp{ pz(a+l—ﬂ)+1jdp’ (20)

of the adequate non-dimensional shear stress and circulation are obtained.

However, a simple analysis shows that the initial condition (7). is not
satisfied. Indeed, making t=0 in Eg. (18) and bearing in mind Eq. (A1) from
Appendix, it results that

o(r0)=—0 10 Ky 4 , (21)
2rr 27t\/a+1—ﬁ \/a+1—ﬁ
where Kj(-) is the modified Bessel function of second kind and order one.

Consequently, the initial condition is not satisfied and the obtained solution seems
to be wrong. In order to remove this doubt, another way will be followed to show
that the last equality is correct.

For this, let us write Eq. (14) in the equivalent form

r?@"(r,q) +ra'(r,q) - [1+a(q)r2Ja(r,q) = rb(q), (22)
_ q __1Ip 1 _, .
where a(q)_(a+1—ﬂ)q+ﬁ and b(q) = 27 (@ 1 B)a+ and @'(r,q) is

the partial derivative of @(r,q) with respecttor.

The general solution of Eq. (22) can be written in the form
_ I
@(r,q) = 27Z'(I)'C| + Clll(r./a(q))+ CZKl(r,/a(q)); r>o0, (23)
where C; and C, are constants and I;(-) is the modified Bessel function of the
first kind and order one. Bearing in mind the conditions (9)1, (16)1 and the

approximate evaluation (Az) from Appendix, it results that C;=0 and

IRELC))

Cy= —W. Consequently, Eqg. (23) can be written in the form
T

_ Iy |1
qa)(r,q)=i{F—a(q)K1(r,/a(q))}; r>0. (24)
Now, taking the limit of Eq. (24) when q—oo and using the property
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(A3), Eqg. (21) is recovered. Consequently, this result is correct and the solution
(18) does not satisfy the initial condition. Similar results have been also obtained
by Bandelli et al. [14] and Bandelli and Rajagopal [16] for two different motions
of the same fluids. Their solutions do not satisfy the initial conditions due to the
incompatibility between the prescribed data. However, as it will be later seen, the
limit of the solution (18) when « — 0 and g — 1 satisfies the initial condition.

Nevertheless, in order to give a more suitable evaluation of the magnitude
of the deviation from the initial value, namely

a)(r 0)— FO - FO exp _;
o 2nr 2 2zr (a+1- g4 Ja+1-p8)
the approximate evaluation (A7) for the function K;(-) has been used. For large

values of r, as expected, this deviation becomes negligible. It tends to zero for
r — oo. Of course, taking the limit of Eq. (25) when « —0 and g —1, as it was

already mentioned before the initial condition (7)2 is recovered.

(25)

4. Limiting Cases. Numerical Results

Case 1. a =0 (time fractional Newtonian fluid)
Making a=01in Eq (18)-(20) the solutions

Ji(pr) pp
= I pHL-p)+1 p( PHA-P)+ Jdp’ @
_ pIa(pr) .
rrt)=- I 21— ﬂ)+1eXp( p2(1—,6’)+1Jdp ' (@7)
Ji(pr) o
r(rit)y=rry J.—Z(l ﬂ)+1exp[ —pz(l—ﬂ)+1]dp1 (28)

corresponding to the decay of potential vortex in a time fractional Newtonian
fluid are obtained. These solutions are in accordance with those obtained in
[6] where the dimensionless entities r, @ and 7~ have been taken in a little

different form.
Case 2. =1 (ordinary second grade fluid)

By now letting g — 1 in Eq. (18)-(20), the solutions corresponding to
the decay of potential vortex in a second grade fluid, namely

o0 2
w(r,) =20 | LD A S P (29)
27 0 ap2+1 2

ap+1
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_ pIa(pr) o p4
rrh= J‘(05,0 +1)2 [ ap2+1Jdp’ (30)
Jen) [ pA
rrty=riy g wp?il exp{ ap2+1jdp’ (31)

are obtained. The solutions (29) and (30) have to be the dimensionless forms of
Eg. (25) and (26) from [5]. Unfortunately, at the denominators of these relations
from [5] the term “1+ a2 has been omitted.

Case 3. =0, g =1 (ordinary Newtonian fluid)

The dimensionless forms of the velocity and shear stress fields and the
circulation corresponding to the decay of a potential vortex in a Newtonian fluid

I r2 I r? r2
o(r,t) = Z—;r{l— exp(— EJ} z(r,t) = ﬂ—rOZHLL E}exp[— Ej —1} (32)
foenl-5)
(r,t)=rpi1-exp it (33)

are immediately obtained making g —1 in Egs. (26)-(28) or « =0 in Eqgs. (29)-
(31) and using Egs. (A4)-(A6) from Appendix (see also [17, Table VII and
Appendix A]). Direct computations clearly show that Eq. (32): is the
dimensionless form of Eq. (2.80) from [3], while Eq. (32). represents the non-
dimensional form of Eq. (34) from [5]. Furthermore, the products ro(r,t),

r2z(r,t) as well as the circulation 7°(r,t) depend of r and t only by means of the

similarity variable r/(2+t).

Finally, it is worth pointing out the fact that the velocity fields (26) and
(29) corresponding to the decay of a potential vortex in a fractional Newtonian
fluid or in an ordinary second grade fluid also do not satisfy the initial condition
(7)2. However, as well as the general solution (18), they satisfy the natural
conditions (9) and the corresponding governing equations and reduce to the
classical solution (32); as limiting cases. Consequently, according to Bandelli and
Rajagopal [16], they do not represent smooth solutions (cf. [14]) but are
physically interesting.

Now, in order to obtain some physical insight of results that have been
here obtained the variations of the velocity and shear stress fields given by Eqgs.
(18), (19), (29), (30) and (32) against r are presented in Figs. 1-6 for different
values of second grade parameter «, fractional parameter S and time t. The

influence of the fractional parameter S on the velocity o(r,t) and the shear
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stress z(r,t) corresponding to the decay of a potential vortex through a time

fractional second grade fluid is brought to light in Figs. 1 and 2 at times t =3 and
t =5. Fluid velocity, as well as the shear stress in absolute value, increases from
the zero value up to a maximum value and then smoothly decreases to the
asymptotic value for increasing values of r. It is a decreasing function with respect
to £ on the entire flow domain. Consequently, intensity of the vortex is stronger
through fractional fluids in comparison to ordinary fluids. Moreover, for each t,
there exists a critical value of r up to which the influence of the fractional
parameter is significant. After this value, its influence is negligible.
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Fig. 1. Profiles of the dimensionless velocity w(r,t) given by
Eqg. (18) for /5 =10, o = 0.2 and different values of S
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Fig. 2. Profiles of the dimensionless shear stress z(r,t) given by
Eqg. (19) for 75 =10, a = 0.2 and different values of 3
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Velocity aXr.t)

Shear stress 7(r,7)

Figs. 3 and 4 present the variations of w(r,t) and z(r,t), given by the

same relations as before, for different sets of values of fractional and second grade
parameters. On the same graphs, for comparison, the profiles of dimensionless
classical solutions have been also included. Actually, the main interest is to show
that the diagrams of present solutions tend to superpose over those of classical
solutions when o — 0 and g — 1. Furthermore, as it results from these figures,

for =0 and g =1 the corresponding profiles are identical to those of classical

solutions (32). Velocity and shear stress profiles have the same form as before and
the vortex intensity is the lowest for Newtonian fluids.
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Fig. 3. Profiles of the dimensionless velocity a(r,t) given by Egs. (18)
and (32): (Newtonian fluid) for 7 =10 and different sets of values for « and g

=035 p=06
——e =03; =07 4
e a=01;p=09
oo oa=0p=10
Newtonian fluid

I I

0 5 10 15

r

Shear stress 7(r,7)

-0.02

-0.04

-0.06

-0.08
0

e aa=05p=06
p=07

——e = 0.3;
—ea=01;p=09"
ooona=0;p=10
—— Newtonian fluid

10 15
r

Fig. 4. Profiles of the dimensionless shear stress z(r,t) given by Egs. (19)
and (32). (Newtonian fluid) for 7 =10 and different sets of values for « and g
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A comparison between the behavior of Newtonian and second grade fluids
in such a potential vortex is presented in Figs. 5 and 6.
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Fig. 5. Profiles of the dimensionless velocity a(r,t) given by Egs. (29)
and (32): (Newtonian fluid) for 7 =10 and different values of &
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Fig. 6. Profiles of the dimensionless shear stress z(r,t) given by Egs. (30)
and (32)2 (Newtonian fluid) for 75 =10 and different values of «

The fluids velocity, as well as the shear stress in absolute value, also
increases up to a maximum value and smoothly decreases to the zero value for
large values of r but it is an increasing function with respect to a only up to a
critical value of r that increases in time. Consequently, unlike the fractional case,
the vortices in Newtonian fluids are stronger than those in second grade fluids for
values of r greater than some time dependent critical values. Furthermore, the
values of t have been diminished in order to show that for small values of t (less
than one) both the velocity o(r,t) and the shear stress z(r,t) cannot be
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determined in r=0. This is due to the fact that o(r,0) is not defined for r=0. In

all cases, the vortex decreases in time and space at once it reached the maximum
intensity.

5. Conclusions

Decay of a potential vortex in a time fractional incompressible second
grade fluid is analytically studied by means of integral transforms. Exact
solutions, under integral form in terms of Bessel functions J;(-) and J,(), are

established for dimensionless velocity and shear stress fields and the circulation
I"(r,t) on a circle of radius r. These solutions, which have been easily reduced as

limiting cases to the classical solutions of Newtonian fluids, satisfy the natural
conditions at infinity and the governing equations. Unfortunately, the velocity
field o(r,t) does not satisfy the initial condition although it was enforced in the

present calculi. However, this is not a singular case in the literature [14, 16]. Other
similar case appears in the problem of a block mass m subjected to a blow P [18].
In our case, this inconvenience is due to the incompatibility between the initial
condition (7)2 and the natural condition (9)z.
The main results of this paper are:
- Exact solutions are established for the decay of a potential vortex in
fractional second grade fluids. They reduce to well-known classical solutions.
- Due to the incompatibility between the imposed conditions (7)2 and (9)1,
the solution (18) for the fluid velocity does not satisfy the initial condition.
- The vortex intensity is lower in ordinary fluids as compared to fractional
fluids. It decreases in time and, after a maximum value, diminishes to zero.

Appendix

TP (e avHrH

Vo7 a2yt " gy -
Kn(z)z(ngl)!(%)_ if z<n and n>0. (A2)
o(r,0)= lim qo(r,q) i @(r,q)=L{o(r,t)}. (A3)

g—

fuonen-roe - o-o -
Ji(pr)exp(—pt)dp==41—exp| —— |;; r=0. (A4)
9 r 4t
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o 2 2
Nexp(—pX)dp=——F| 23— | r=o0, A5
glﬂz(/?) PP do = i (A5)
X2F (2,3—x) = 2f1— (L+ X)exp(-x)};  x #0. (A6)
Kn(z)z\/zze_Z for z>>n and n>0. (A7)
Z
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