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SOME COMPLEMENTARY ¢-BOUNDS VIA DIFFERENT CLASSES OF
CONVEX FUNCTIONS

L. Riahi!, M. U. Awan?, M. A. Noor®

The aim of this paper is to obtain some new bounds via different classes of
convex functions which involve Riemann type quantum integrals. The results obtained
in this paper become natural generalizations of classical results as we obtain classical
results when q — 1 where 0 < q < 1.
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1. Introduction and Preliminaries
A function f: I C R — R is said to be convex, if
fhz+ (A =ty <tf(x)+ Q-0 f(y) Vz,yel,tel0,1].
Breckner [1] defined s-convexity as follows:

Definition 1.1. Let s € (0,1]. A function f :[0,00) — [0,00) is said to be s-convex in the
second sense if
flz+ (1 =t)y) <t°f(x) + (1 —1)°f(y) (1.1)

for all z,y € [0,00) and t € [0,1].

The class of s-convex functions is usually denoted by K2. Note that when s = 1
s-convexity means just convexity.
Toader [19] generalized the class of convex functions by defining the class of m-convex
functions.

Definition 1.2. The function f :[0,b] — R is said to be m-convez, where m € [0, 1], if for
every x,y € [0,0] and t € [0, 1] we have:

Fte +m(1—t)y) < tf(x) +m(1 - )1 (). (1.2)
Denote by K,,(b) the set of the m-convex functions on [0, b].

In [9], V. G. Mihesan introduced the notion of (s, m)-convex functions as:
Definition 1.3. The function f : [0,b] — R is said to be (s,m)-convex, where (s,m) €
(0,13, if for every x,y € [0,b] and t € [0,1], we have

F e+ m(1 — 1)) < F(@) + m(1 - 1) F (). (13)

For more details on different generalizations of classical convexity, see [3, 4].
We now recall some preliminary concepts from quantum calculus on finite intervals. In
[17, 18], J. Tariboon, S.K. Ntouyas, introduced the following concepts:
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Definition 1.4. Let f : [a,b] C R — R be a continuous function and x € [a,b]. Then
q-derivative of f on [a,b] at x is defined as

Dy f(x) = L [1{ (Z”;(I fla_) D) 4 4a. (1.4)

A function f is ¢g-differentiable on [a, b] if ,Dy f(x) exists for all € [a,b]. If a =0 in
(1.4), we have oDy f(x) = Dy f, where D, is the g-derivative of function f.

Definition 1.5. Let f : [a,b] — R be a continuous function. A second- order q-derivative
on [a,b], which is denoted as D2 f, provided ;Do f is q-differentiable on [a,b], is defined as
aD2f = aDg(aDqyf) : [a,b] = R. Similarly higher order q-derivative on |a,b] is defined by
D [a,b] = R

Tariboon et al. [17, 18] defined the ¢-integral as follows:

Definition 1.6. Let f : I C R — R be a continuous function. Then g-integral on I is
defined as

n=0

/ fOd%t = (1- gz —a) Y q"f(g"z + (1 - q")a),z € 1. (1.5)

In this paper, we use the concepts of quantum calculus on finite intervals to derive
some upper bounds for different classes of convex functions. In section 3, we obtain some
g-bounds and these results can be viewed as quantum trapezium type inequalities. In section

b

4, we give some new g-bounds for the approximation of the integral average =— [ f(u)du
a

by the value of f(z) at point z € [a,b] which involves Riemann type quantum integrals.

These results can be treated as quantum Ostrowski type inequalities. For some recent
investigations on quantum integral inequalities, see [10, 11, 12, 15]. The classical version of
trapezium and Ostrowski inequality respectively reads as:

Theorem 1.1. Let f : I C R — R be a convex functions, then, for all a,b € I with a < b,

we have f<a+b)§ 1 /bf@c)dng(a)—l—f(b).

2 b—a 2

Theorem 1.2. Let f: I C [0,00) — R be a differentiable function on I°, the interior of
the interval I, such that f' € Lla,b], where a,b € I with a < b. If |f'(z)| < K, then, the
following inequality,

K [(95—&)2 + (b —z)? (1.6)

f@) - 5 [ Fda] < 2 : ,

a

holds.

For more details on these integral inequalities, see [2, 4, 6, 7, 13, 14].

2. Auxiliary Results
In order to derive our main results, we need following auxiliary results.

Lemma 2.1 ([10]). Let f : I = [a,b] C— R be a g-differentiable on la,b[, with ,D, be
continuous and integrable on I, where 0 < g < 1, then

I , af(@)+ f(b) _qlb—a) [
b_a/af(x)df’x— P /0(1—(1+q)t)aqu((l—t)a+tb)dqt.
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Lemma 2.2 ([13]). Let f : I = [a,b] C R — R be a g-differentiable function on I° (the
interior of I) with ,Dg be continuous and g-integrable on I where 0 < g < 1, then

b
[ i

1 1

z—a)? —x)*

- % /taqu(tx + (1= t)a)dt + % /taqu(tx + (1 = t)b)dgt
0 0

Lemma 2.3 ([5]). Fort € [0,1], we have

(1—t)s <27 — 5 s€[0,1], (1 —t)°*>2'"° —t° s € [1,00).

3. Quantum Hermite-Hadamard type inequalities

In this section, we derive some quantum Hermite-Hadamard type inequalities.

Theorem 3.1. Let f : [a,b] — R be a g-differentiable function on |a,b], such that ,D, €
Lia,b]. If |oDqf] is s-convex function, then

@)+ 1)
IRCL I =

< % (22 *laDqf(a)l + <[8+11]q 4 [Slji) (laDg f ()| —|aqu(a)|)>

b—a

Proof. Since |,Dgf| is s-convex function, so from Lemma 2.1, we have

[ s, 010
_ ‘q(lb;;) /0 (1= (14 q)t) aDy f((1 = t)a + th)dyt
<UD [0 (1 D1 o+ )
< WD [ (0 (- 7D @]+ 1Du 0

Now, using Lemma 2.3, we get

_af(@)+ f(b)
—a/ Ut 1+4+¢
< d= (|aqu<a>| [ s ane= - mag

_|_/O (1+(1+ q)t)ts|aqu(b)|dqt)

=L (20 @+ (o e ) (WD) - LD (@)

This completes the proof. O
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Theorem 3.2. Let f : [a,b] C R — R be a g-differentiable function on |a,b] with ,D, €
Lia,b]. If [oDgf|" is s-convex function where r > 1, then

/f g @)+ f()’

14¢

b—
<1 (ﬁ) <22 D@+ (G

1+4q
[s +2]q

a

1

) (Do = Do @)

Proof. Since |,Dgf|" is s-convex function and by Lemma 2.1, we have

b —a [
s [ e - AT NaO29 [ (1) D1 - it e
< ’Q(lb;q“) /01(1 1+ Q) L+ (L4 @) oDy (1= t)a + th)dyt

Using ¢g-Holder’s inequality and by Lemma 2.3, we have

boa /f e f((i);rqf(b) Sq(1b+_qa) </01(1+(1+q)t)dqt>rrl

X

L4t lDf<<1—t>a+tb>|dt>l<q“’_a)< L)

X

( / (14 (1+ )0
x ( / (L4 (4 00 (L~ DS @ + 1D, 1) dqtf cab-a) (q)
(/ K ) ‘

_|_
L4+ g0 [ = )LDy @+ LDy at) = L= (47

(2D + ([ e ) (2DafOF Do @)

The result is thus proved. (|

Theorem 3.3. Let f : [a,b] = R be a g-differentiable function on |a,b[ with ,Dy € L[a,b].
If |aDg f| is m-convex function, then

~qf(a) + f(b)
/f 1+¢

q(b—a) 1 1+g¢
D2 (2 - Do fla
1+gq (( 1+g¢ 1+q+Q>| /(@)

1 1+g¢ b
Do ().
+m(1+q+ 1+q+q2)| Qf(m)l)

b—a
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Proof. Since |,Dgf| is m-convex function and using Lemma 2.1, we have

1 / ot - HOIO

- ‘q(f;qa)/ola — (14 9)t) oDy f((1 — t)a + th)d, ¢

sf—;q/ (1= (1+ Q) D f (1 t)a + )|dt

caa 0 (L DA (1~ a+ byt

< W0 [ 1 g0 (- 01Dy f(a)] kD (2] )

:q@—@((z_ L 1+q2)|aqu<a>|

1+4+g¢ 1+q 14qg+¢
1 1+g¢ b
+m + oDg f(— .
(1 s ) Do)

The proof is completed. U

Theorem 3.4. Let f : [a,b] — R be a g-differentiable function on |a,b[ with ,D, € L[a,b].
If |aDg f| is (s, m)-convex function, then

_qf(a) + f(b)
—a/f 1+4+¢
q(b_a) 2—s 1 1+¢
= 1+g¢ (2 _[s+1]q_[s+2]q>|“D‘If(a)|

g(b—a) . 1 1+gq b
* 1+q’”(2”2 ‘[s+11q‘[s+z1q>'“qu(m)'

Proof. Since |,Dgyf| is (s, m)-convex function and using Lemma 2.1, we have

_qf(a) + f(b)
RRy e
‘q(1b+;)/() (1—-(1Q+q)t) Dyf ((1t)a+m(1(1t)):l) dyt

- q(lb+—qa>/o 11— (1+q)t| (1—1)*|Dyf(a)|

o (2) o
qgb—a

1+ ) /O (14 1+ @)1 = )°[aDqf(a)ldgt

q(b—a) aqu<:1>

1+g¢

m(l—(1-1)°)

/0 ml(1— (1 +@t)(1 — (1)) d,t.
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By Lemma 2.3, we get

_qf(a) + f(b)
—a/f 1+g¢

Q(b a‘) ! 1—-s _ g4s a
g—<;71j1+a+m>@ £)]uDq  (a)|dyt

1
+ q(lb;;) oD f <:1> ’ /o1 (1427 =+ (14 @t + (1 + )t(2'° — %)) dgt
B M s 1 - 1+g¢ a
S G el e )
(b~ a) e 1 1+a ’
'*:Luzm(2+2 "h+uq_h+2b)“nﬁ(n)‘

This completes the proof.

4. Quantum Ostrowski type inequalities

In this section, we derive some quantum Ostrowski type inequalities.
Theorem 4.1. Let f: 1 =[a,b] CR — R be a g-differentiable function on I° (the interior
of 1) with oDy be continuous and g-integrable on I where 0 < ¢ < 1. If |,Dy| is s-convex
function and | Dy f ()| < K, then, for s € [0,1], we have

b
@2' 7 K|(x —a)® + (b — )2
7b—a/f(u)dq%uS (b—a)l+gq .

Proof. Since it is given that |,D,f] is s-convex function, so from Lemma 2.2 and using the

property of modulus, we have
1

b
(z —a)®
f(u s taDyf(tz + (1 — t)a)dt
aa/ b—a 0/

1
b— 2
z) /ta Jf(tz + (1= t)b)d,t
0

1
B _ 2
< %/tl qu(ta:+(1—t)a)\dqt+%/tlaqu(tx+(1_t)b)ldqt
0 0

< % /t[ts| aqu(x)| + (1 —=1)° aqu(a)l]dqt

[

(=)

n @ /t[t5| Do f(@)| + (1= 1)°| Dy f(b)[]dgt
0

2! K|[(x —a)® + (b— )2
B (b—a)(1+q)

This completes the proof.
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Theorem 4.2. Let f: I =[a,b] CR — R be a g-differentiable function on I° (the interior
of I) with ,Dg be continuous and g-integrable on I where 0 < g < 1. If |(Dqf|" is s-convex
function and |,Dqf(x)| < K, then for s € [0,1], p,r > 1, % + % =1, we have

fx) -

/bf(u)d?u <q21ﬁK[(x—a)2+(b—w)2]( 1=4 )%.

b—a b—a 1—qptl
a

Proof. Using Lemma 2.2, Hélder’s inequality and the given hypothesis that |(Dgf|" is s-
convex function, we have

b
1 Z
-y [ T

_ ‘M/t Dy f(tz + (1 - t)a)dyt + ‘M/taqu(tH(l — £)b)dgt
0

b— b—

1
o(z — a)? % 1
< p —
<A =e /tdt /\qutm—i—(l Da)l"dt)
0

1

b_x /1tpdt ' /Iaqu(t:H(l—t)deqt)
0

1
r

1
q(x_a)2 1_q % s s r %
< e (7=am) (LD @)+ (= 1)1Do (@)1t
0
(b= 1 1
gb—2)” 1-4g . )T
# O ()7 ([WDaf @l + (1 = 071Dy 0T
0
los 2 Ry _ 1
< TR P+ (6aP) 1oq g
- b—a 1—grt!
This completes the proof. O

Theorem 4.3. Let f: I =[a,b] CR — R be a g-differentiable function on I° (the interior
of I) with ,Dqf be continuous and g-integrable on I where 0 < g < 1. If|,Dqf|" is s-convex
function and | Dy f(x)| < K, then, for r > 1, we have

r—a 2 — X 2
$0) = 5 [ gl < EEZ 0= )

where
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Proof. Using Lemma 2.2, power means inequality and hypothesis that |,D,f|" is s-convex
function, we have

b
7 i - /f(u)d‘%u

1
= % /t qu(tl’ + (1 - t)a)odqt + %/%qu(tx + (1 - t)b)dqt

0
x—a
/tdqt

1

0
1
Z:Z (/tdqt ? /| D, f(tz + 1—t))|dt)
0
Y 1
< ()

N (Z:Z) 1+q ( / [£1aD ()" + (1= 1)1 Dy f (D)t

0
L aK2 e+ (- (1 '
b—a (1 + q) '
This completes the proof. O

f(z) =

ﬂ»—A
3=

/ fltz + (1 - ta)|"d, t)

S|

3=

[#*1aDa f(@)]" + (1= 1)*|aDy f(@)]")dyt)

o _

3=

Theorem 4.4. Let f: 1 =[a,b] CR — R be a g-differentiable function on I° (the interior
of I) with (Dyf be continuous and g-integrable on I where 0 < ¢ < 1. If |,Dy| is (s,m)-
conver function, then, we have

f(x) - /f(U)dq%u < min{Aq(a, b;x;5m; s;5q), Aa(a, b; x5m; s5q) 1,

b—a

N2
Aot bimssiq) = D Lo (00) Dy £ 0]+ masia)

2
r—a
As(a,byz;m;s;q) = % {mm(S;q)

Daf ()| + ¢alsi @)l D (@)

— 2 T
+ % {msm(S; q) aqu(E)‘ +2(s39)] aqu(b)|}
pi1(s;q) = [S_&Q]q’ “1)
and
p2(s3q) = 17-1Fq - [s _:Q]q’ “2)

respectively.
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Proof. Since it is given that |,Dgf| is (s, m)-convex function, so from Lemma 2.2 and using
the property of modulus, we have

alb—x)* /taqu(tas +(1—t)b)dgt

b—a
0

1
ab )’ [ thaDastes + (1= byt

1
= /thftos+ (1 —t)a)d,t +

0
1
2
/t| Do f (tz + (1 t)a) [dyt +
0 0

o

+q<b_x)2/t[ts|aqu(a:)|+m(1—ts) .D

b—a
0

q(i_Z)Q{[HQ] oD f (& >|+m(1iq—[s+12]q>
+q<ii§) {[s+2] Dl )I+m<1iq [Hl%)

Similarly

L (& - a)? i
@, | dz—a m b~

bfa/f(u)dqu_ b—a [s+2], aq‘f(m)’—i_(lJrq

- g lDafanh + L b f(2)]+ (1 - g ) lDw O}

This completes the proof. O

xr—a 2
< %/t [#°1aDyf(@)] + m(1 — )] oD
0

o
(2}
(D)}

flz) -

Theorem 4.5. Let f: 1 =[a,b] CR — R be a g-differentiable function on I° (the interior
of I) with oDy f be continuous and g-integrable on I where 0 < g < 1. If |(Dy f|" is (s, m)-
convez function, then for, p,r > 1, % + % =1, we have

b
/f(u)d‘q%u < min{©1(a, b; x;m; s; q), O2(a, b; x;m; s;q) },

a

1
b—a

fz) =

where

1— b
O1(a,b;x;m;s;q) = z (1_7qpq+1>

% |(@ = )? (D1(@)]Do @) +ma(q) [ oD

(b ) ([Mq)aqu(z)r -t
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O2(a, by z3m; s;q) = b (1 qp+1>p

X |: m191

(b —x)? ([mﬁl()

V1(s5q) =

and¥a(s;q) =1 —

[s+ 1] [s+1]y

Proof. Using Lemma 2.2, Hélder’s inequality and the given hypothesis that |, D, f|" is (s, m)-
convex function, we have

. b
ba/f
1

2

1

/taqu(t:c + (1 —t)a)dgt

0

.’17

\

taDgf(tz + (1 — t)b)d,t
—a

1 1
2 1 1
<4 tPd,t) " |aDyf(tz + (1 —t)a)|"d,t) "
0/ ) (0/ T a )

2

) 1
+q(zix) (/tpdqt 5 /Iaqu(tle*t)b)'qut);
0 0

—a

w0
ws(2)[Jos)
)it en{i- i) ko)

1 . 1 v
([s n 1]q> laDg f(x)|" + m(l “HTL 1]q>

1
q
<10 (h) (/thf )"+ m(1 - t7)
0

1
I’
+ 4 — 1 qp+1 (/t|D )"+ m(1—t°)
0

gz — zlv
b— qPJF1

+Q(Z:z)2(11_;pcil)i 8 (

Similarly

ous()[])

() o G+ (- gty o)
(12 ) oo G+ (1= et o]

This completes the proof. O
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Theorem 4.6. Let f: I =[a,b] CR — R be a g-differentiable function on I° (the interior
of I) with oDqf be continuous and g-integrable on I where 0 < g < 1. If |oDq f|" is (s, m)-
convez function, then, for r > 1, we have

b
1 p
fz) - / F(w)d% | < min{9 (a, b; 2;m; 5: 0), a(a, by 23 ms 55 )},

where

1
1+¢

! ()

(o b= )brxlw— a>2<“”1<s;q>|aqu<x>|T+mgoz<s;q> D

+ 0= 2 (0D + mpals )] Dof ()] ) % ]
Qo (a,b;z;m; s;q) = A a , (lj_q)l_i X {(x — a)2<mcp1(s;q)’ qu<£> '

s |

)]

Duf (Z)] + alsi )l Daf ()

+ e2(s @)l Daf (@) + (b= 2)* (mipa(siq)|
and p1(8;q), p2(s;q) are given by (4.1) and (4.2) respectively.

Proof. Using Lemma 2.2, power means inequality and hypothesis that |,Dyf|" is s-convex
function, we have

b
— [t

- (M/t D f(m+(1—t)a)0dqt+M/taqu(tx+(1—t)b)dqt
0

b— b—a

\»-A
3=

1
/ D, f(tz + (1~ t)a)|"d,t)
0

1
b—x tdt % laDg f(t +1—t)b)|rdt%
( q ‘0/ q (tz q)
1 1
< Q(QZ: 3)2 (5 +q / [1aDgf @) +m(1 = ) Do ()| Jagt
0
1
o2y Jermuor o) o)
0

)

3=
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1 1 1 by
+(b—1x)? ———— | |Dof(2)]"+m| —— — ————— || D (—)‘
( ) [s+ 1], loDaf(@)] l+q [s+1]q of m
Similarly
1 / 1 \1-7
_ % a 7) o
f@) - 5= [ fd < (1
‘ 1
1 T\ |" 1 1 "
2 T
: () (g e 1o
o i [s+1lq of m - l+q [s+1], |«Daf(@)]
1
1 TN\|" 1 1 A
+b—2)?m| ——]|.D (—) + | ——— —— || aDgf(b
This completes the proof. O
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