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SOME COMPLEMENTARY q-BOUNDS VIA DIFFERENT CLASSES OF

CONVEX FUNCTIONS
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The aim of this paper is to obtain some new bounds via different classes of
convex functions which involve Riemann type quantum integrals. The results obtained
in this paper become natural generalizations of classical results as we obtain classical
results when q → 1 where 0 < q < 1.
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1. Introduction and Preliminaries

A function f : I ⊂ R → R is said to be convex, if

f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y) ∀x, y ∈ I, t ∈ [0, 1].

Breckner [1] defined s-convexity as follows:

Definition 1.1. Let s ∈ (0, 1]. A function f : [0,∞) → [0,∞) is said to be s-convex in the
second sense if

f(tx+ (1− t)y) ≤ tsf(x) + (1− t)sf(y) (1.1)

for all x, y ∈ [0,∞) and t ∈ [0, 1].

The class of s-convex functions is usually denoted by K2
s . Note that when s = 1

s-convexity means just convexity.
Toader [19] generalized the class of convex functions by defining the class of m-convex
functions.

Definition 1.2. The function f : [0, b] → R is said to be m-convex, where m ∈ [0, 1], if for
every x, y ∈ [0, b] and t ∈ [0, 1] we have:

f(tx+m(1− t)y) ≤ tf(x) +m(1− t)f(y). (1.2)

Denote by Km(b) the set of the m-convex functions on [0, b].

In [9], V. G. Miheşan introduced the notion of (s,m)-convex functions as:

Definition 1.3. The function f : [0, b] → R is said to be (s,m)-convex, where (s,m) ∈
(0, 1]2, if for every x, y ∈ [0, b] and t ∈ [0, 1], we have

f(tx+m(1− t)y) ≤ tsf(x) +m(1− ts)f(y). (1.3)

For more details on different generalizations of classical convexity, see [3, 4].
We now recall some preliminary concepts from quantum calculus on finite intervals. In
[17, 18], J. Tariboon, S.K. Ntouyas, introduced the following concepts:

1Faculty of Science Mathematic, Physic and Naturelle of Tunis
2Department of Mathematics, Government College University, Faisalabad, Pakistan
3Department of Mathematics, COMSATS Institute of Information Technology, Islamabad, Pakistan

171



172 L. Riahi, M. U. Awan, M. A. Noor

Definition 1.4. Let f : [a, b] ⊆ R → R be a continuous function and x ∈ [a, b]. Then
q-derivative of f on [a, b] at x is defined as

aDqf(x) =
f(x)− f(qx+ (1− q)a)

(1− q)(x− a)
, x ̸= a. (1.4)

A function f is q-differentiable on [a, b] if aDqf(x) exists for all x ∈ [a, b]. If a = 0 in
(1.4), we have 0Dqf(x) = Dqf , where Dq is the q-derivative of function f .

Definition 1.5. Let f : [a, b] → R be a continuous function. A second- order q-derivative
on [a, b], which is denoted as aD

2
qf , provided aDqf is q-differentiable on [a, b], is defined as

aD
2
qf = aDq(aDqf) : [a, b] → R. Similarly higher order q-derivative on [a, b] is defined by

aD
n
q f : [a, b] → R.

Tariboon et al. [17, 18] defined the q-integral as follows:

Definition 1.6. Let f : I ⊂ R → R be a continuous function. Then q-integral on I is
defined as

x∫
a

f(t)dR
q t = (1− q)(x− a)

∞∑
n=0

qnf(qnx+ (1− qn)a), x ∈ I. (1.5)

In this paper, we use the concepts of quantum calculus on finite intervals to derive
some upper bounds for different classes of convex functions. In section 3, we obtain some
q-bounds and these results can be viewed as quantum trapezium type inequalities. In section

4, we give some new q-bounds for the approximation of the integral average 1
b−a

b∫
a

f(u)du

by the value of f(x) at point x ∈ [a, b] which involves Riemann type quantum integrals.
These results can be treated as quantum Ostrowski type inequalities. For some recent
investigations on quantum integral inequalities, see [10, 11, 12, 15]. The classical version of
trapezium and Ostrowski inequality respectively reads as:

Theorem 1.1. Let f : I ⊂ R → R be a convex functions, then, for all a, b ∈ I with a < b,
we have

f

(
a+ b

2

)
≤ 1

b− a

b∫
a

f(x)dx ≤ f(a) + f(b)

2
.

Theorem 1.2. Let f : I ⊂ [0,∞) → R be a differentiable function on I◦, the interior of
the interval I, such that f ′ ∈ L[a, b], where a, b ∈ I with a < b. If |f ′(x)| ≤ K, then, the
following inequality,∣∣∣∣∣∣f(x)− 1

b− a

b∫
a

f(u)du

∣∣∣∣∣∣ ≤ K

b− a

[
(x− a)2 + (b− x)2

2

]
, (1.6)

holds.

For more details on these integral inequalities, see [2, 4, 6, 7, 13, 14].

2. Auxiliary Results

In order to derive our main results, we need following auxiliary results.

Lemma 2.1 ([10]). Let f : I = [a, b] ⊂→ R be a q-differentiable on ]a, b[, with aDq be
continuous and integrable on I, where 0 < q < 1, then

1

b− a

∫ b

a

f(x)dR
q x− qf(a) + f(b)

1 + q
=

q(b− a)

1 + q

∫ 1

0

(1− (1 + q)t) aDqf((1− t)a+ tb)dqt.
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Lemma 2.2 ([13]). Let f : I = [a, b] ⊂ R → R be a q-differentiable function on I◦ (the
interior of I) with aDq be continuous and q-integrable on I where 0 < q < 1, then

f(x)− 1

b− a

b∫
a

f(u)dR
q u

=
q(x− a)2

b− a

1∫
0

taDqf(tx+ (1− t)a)dqt+
q(b− x)2

b− a

1∫
0

taDqf(tx+ (1− t)b)dqt

Lemma 2.3 ([5]). For t ∈ [0, 1], we have

(1− t)s ≤ 21−s − ts, s ∈ [0, 1], (1− t)s ≥ 21−s − ts, s ∈ [1,∞).

3. Quantum Hermite-Hadamard type inequalities

In this section, we derive some quantum Hermite-Hadamard type inequalities.

Theorem 3.1. Let f : [a, b] → R be a q-differentiable function on ]a, b[, such that aDq ∈
L[a, b]. If |aDqf | is s-convex function, then∣∣∣∣∣ 1

b− a

∫ b

a

f(x)dR
q x− qf(a) + f(b)

1 + q

∣∣∣∣∣
≤ q(b− a)

1 + q

(
22−s|aDqf(a)|+

(
1

[s+ 1]q
+

1 + q

[s+ 2]q

)
(|aDqf(b)| − |aDqf(a)|)

)
Proof. Since |aDqf | is s-convex function, so from Lemma 2.1, we have∣∣∣∣∣ 1

b− a

∫ b

a

f(x)dR
q x− qf(a) + f(b)

1 + q

∣∣∣∣∣
=

∣∣∣∣q(b− a)

1 + q

∫ 1

0

(1− (1 + q)t) aDqf((1− t)a+ tb)dqt

∣∣∣∣
≤ q(b− a)

1 + q

∫ 1

0

(1 + (1 + q)t)|aDqf((1− t)a+ tb)|dqt

≤ q(b− a)

1 + q

∫ 1

0

(1 + (1 + q)t) ((1− t)s|aDqf(a)|+ ts|aDqf(b)|) dqt.

Now, using Lemma 2.3, we get∣∣∣∣∣ 1

b− a

∫ b

a

f(x)dR
q x− qf(a) + f(b)

1 + q

∣∣∣∣∣
≤ q(b− a)

1 + q

(
|aDqf(a)|

∫ 1

0

(1 + (1 + q)t)(21−s − ts)dqt

+

∫ 1

0

(1 + (1 + q)t)ts|aDqf(b)|dqt
)

=
q(b− a)

1 + q

(
22−s|aDqf(a)|+

(
1

[s+ 1]q
+

1 + q

[s+ 2]q

)
(|aDqf(b)| − |aDqf(a)|)

)
This completes the proof. �
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Theorem 3.2. Let f : [a, b] ⊂ R → R be a q-differentiable function on ]a, b[ with aDq ∈
L[a, b]. If |aDqf |r is s-convex function where r > 1, then

∣∣∣∣ 1

b− a

∫ b

a

f(x)dR
q x− qf(a) + f(b)

1 + q

∣∣∣∣
≤ q(b− a)

1 + q

(
q

1 + q

) r
r−1

(
22−s|aDqf(a)|r +

(
1

[s+ 1]q

+
1 + q

[s+ 2]q

)
(|aDqf(b)|r − |aDqf(a)|r)

) 1
r

.

Proof. Since |aDqf |r is s-convex function and by Lemma 2.1, we have

∣∣∣∣∣ 1

b− a

∫ b

a

f(x)dR
q x− qf(a) + f(b)

1 + q

∣∣∣∣∣ =
∣∣∣∣q(b− a)

1 + q

∫ 1

0

(1− (1 + q)t) aDqf((1− t)a+ tb)dqt

∣∣∣∣
≤
∣∣∣∣q(b− a)

1 + q

∫ 1

0

(1 + (1 + q)t)1−
1
r (1 + (1 + q)t)

1
r aDqf((1− t)a+ tb)dqt

∣∣∣∣
Using q-Hölder’s inequality and by Lemma 2.3, we have

∣∣∣∣∣ 1

b− a

∫ b

a

f(x)dR
q x− qf(a) + f(b)

1 + q

∣∣∣∣∣ ≤ q(b− a)

1 + q

(∫ 1

0

(1 + (1 + q)t)dqt

) r
r−1

×
(∫ 1

0

(1 + (1 + q)t)|aDqf((1− t)a+ tb)|rdqt
) 1

r

≤ q(b− a)

1 + q

(
q

1 + q

) r
r−1

×
(∫ 1

0

(1 + (1 + q)t) [(1− t)s|aDqf(a)|r + ts|aDqf(b)|r] dqt
) 1

r

≤ q(b− a)

1 + q

(
q

1 + q

) r
r−1

×
(∫ 1

0

(1 + (1 + q)t)
[
(21−s − ts)|aDqf(a)|r + ts|aDqf(b)|r

]
dqt

) 1
r

=
q(b− a)

1 + q

(
q

1 + q

) r
r−1

×
(
22−s|aDqf(a)|r +

(
1

[s+ 1]q
+

1 + q

[s+ 2]q

)
(|aDqf(b)|r − |aDqf(a)|r)

) 1
r

.

The result is thus proved. �

Theorem 3.3. Let f : [a, b] → R be a q-differentiable function on ]a, b[ with aDq ∈ L[a, b].
If |aDqf | is m-convex function, then

∣∣∣∣∣ 1

b− a

∫ b

a

f(x)dR
q x− qf(a) + f(b)

1 + q

∣∣∣∣∣
≤ q(b− a)

1 + q

((
2− 1

1 + q
− 1 + q

1 + q + q2

)
|aDqf(a)|

+m

(
1

1 + q
+

1 + q

1 + q + q2

)
|aDqf(

b

m
)|
)
.
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Proof. Since |aDqf | is m-convex function and using Lemma 2.1, we have∣∣∣∣∣ 1

b− a

∫ b

a

f(x)dR
q x− qf(a) + f(b)

1 + q

∣∣∣∣∣
=

∣∣∣∣q(b− a)

1 + q

∫ 1

0

(1− (1 + q)t) aDqf((1− t)a+ tb)dqt

∣∣∣∣
≤ q(b− a)

1 + q

∫ 1

0

|(1− (1 + q)t)||aDqf((1− t)a+ tb)|dqt

≤ q(b− a)

1 + q

∫ 1

0

(1 + (1 + q)t)|aDqf((1− t)a+m
t

m
b)|dqt

≤ q(b− a)

1 + q

∫ 1

0

(1 + (1 + q)t)

(
(1− t)|aDqf(a)|+mt|aDqf(

b

m
)|
)
dqt

=
q(b− a)

1 + q

((
2− 1

1 + q
− 1 + q

1 + q + q2

)
|aDqf(a)|

+m

(
1

1 + q
+

1 + q

1 + q + q2

)
|aDqf(

b

m
)|
)
.

The proof is completed. �

Theorem 3.4. Let f : [a, b] → R be a q-differentiable function on ]a, b[ with aDq ∈ L[a, b].
If |aDqf | is (s,m)-convex function, then∣∣∣∣∣ 1

b− a

∫ b

a

f(x)dR
q x− qf(a) + f(b)

1 + q

∣∣∣∣∣
≤ q(b− a)

1 + q

(
22−s − 1

[s+ 1]q
− 1 + q

[s+ 2]q

)
|aDqf(a)|

+
q(b− a)

1 + q
m

(
2 + 22−s − 1

[s+ 1]q
− 1 + q

[s+ 2]q

)
|aDqf

(
b

m

)
|

Proof. Since |aDqf | is (s,m)-convex function and using Lemma 2.1, we have∣∣∣∣∣ 1

b− a

∫ b

a

f(x)dR
q x− qf(a) + f(b)

1 + q

∣∣∣∣∣
=

∣∣∣∣q(b− a)

1 + q

∫ 1

0

(1− (1 + q)t) aDqf

(
(1− t)a+m(1− (1− t))

b

m

)
dqt

∣∣∣∣
≤ q(b− a)

1 + q

∫ 1

0

|1− (1 + q)t| ((1− t)s|aDqf(a)|

+m(1− (1− t)s)

∣∣∣∣aDqf

(
b

m

)∣∣∣∣)dqt

≤ q(b− a)

1 + q

∫ 1

0

(1 + (1 + q)t)(1− t)s|aDqf(a)|dqt

+
q(b− a)

1 + q

∫ 1

0

m|(1− (1 + q)t)(1− (1− t)s)

∣∣∣∣aDqf

(
b

m

)∣∣∣∣dqt.
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By Lemma 2.3, we get∣∣∣∣∣ 1

b− a

∫ b

a

f(x)dR
q x− qf(a) + f(b)

1 + q

∣∣∣∣∣
≤ q(b− a)

1 + q

∫ 1

0

(1 + (1 + q)t)(21−s − ts)|aDqf(a)|dqt

+
q(b− a)

1 + q
m

∣∣∣∣aDqf

(
b

m

)∣∣∣∣ ∫ 1

0

(
1 + 21−s − ts + (1 + q)t+ (1 + q)t(21−s − ts)

)
dqt

=
q(b− a)

1 + q

(
22−s − 1

[s+ 1]q
− 1 + q

[s+ 2]q

)
|aDqf(a)|

+
q(b− a)

1 + q
m

(
2 + 22−s − 1

[s+ 1]q
− 1 + q

[s+ 2]q

) ∣∣∣∣aDqf

(
b

m

)∣∣∣∣
This completes the proof. �

4. Quantum Ostrowski type inequalities

In this section, we derive some quantum Ostrowski type inequalities.

Theorem 4.1. Let f : I = [a, b] ⊂ R → R be a q-differentiable function on I◦ (the interior
of I) with aDq be continuous and q-integrable on I where 0 < q < 1. If |aDq| is s-convex
function and | aDqf(.)| ≤ K, then, for s ∈ [0, 1], we have∣∣∣∣∣∣f(x)− 1

b− a

b∫
a

f(u)dR
q u

∣∣∣∣∣∣ ≤ q21−sK[(x− a)2 + (b− x)2]

(b− a)1 + q
.

Proof. Since it is given that |aDqf | is s-convex function, so from Lemma 2.2 and using the
property of modulus, we have∣∣∣∣∣∣f(x)− 1

b− a

b∫
a

f(u)dR
q u

∣∣∣∣∣∣ =
∣∣∣∣∣∣q(x− a)2

b− a

1∫
0

taDqf(tx+ (1− t)a)dqt

+
q(b− x)2

b− a

1∫
0

taDqf(tx+ (1− t)b)dqt

∣∣∣∣∣∣
≤ q(x− a)2

b− a

1∫
0

t| aDqf(tx+ (1− t)a)|dqt+
q(b− x)2

b− a

1∫
0

t| aDqf(tx+ (1− t)b)|dqt

≤ q(x− a)2

b− a

1∫
0

t[ts| aDqf(x)|+ (1− t)s| aDqf(a)|]dqt

+
q(b− x)2

b− a

1∫
0

t[ts| aDqf(x)|+ (1− t)s| aDqf(b)|]dqt

≤ q21−sK[(x− a)2 + (b− x)2]

(b− a)(1 + q)
.

This completes the proof. �
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Theorem 4.2. Let f : I = [a, b] ⊂ R → R be a q-differentiable function on I◦ (the interior
of I) with aDq be continuous and q-integrable on I where 0 < q < 1. If |aDqf |r is s-convex
function and |aDqf(x)| ≤ K, then for s ∈ [0, 1], p, r > 1, 1

p + 1
r = 1, we have∣∣∣∣∣∣f(x)− 1

b− a

b∫
a

f(u)dR
q u

∣∣∣∣∣∣ ≤ q2
1−s
r K[(x− a)2 + (b− x)2]

b− a

( 1− q

1− qp+1

) 1
p

.

Proof. Using Lemma 2.2, Hölder’s inequality and the given hypothesis that |aDqf |r is s-
convex function, we have∣∣∣∣∣∣f(x)− 1

b− a

b∫
a

f(u)dR
q u

∣∣∣∣∣∣
=

∣∣∣∣∣∣q(x− a)2

b− a

1∫
0

taDqf(tx+ (1− t)a)dqt+
q(b− x)2

b− a

1∫
0

taDqf(tx+ (1− t)b)dqt

∣∣∣∣∣∣
≤ q(x− a)2

b− a

( 1∫
0

tpdqt
) 1

p
( 1∫

0

|aDqf(tx+ (1− t)a)|rdqt
) 1

r

+
q(b− x)2

b− a

( 1∫
0

tpdqt
) 1

p
( 1∫

0

|aDqf(tx+ (1− t)b)|rdqt
) 1

r

≤ q(x− a)2

b− a

( 1− q

1− qp+1

) 1
p
( 1∫

0

[ts|aDqf(x)|r + (1− t)s|aDqf(a)|r]dqt
) 1

r

+
q(b− x)2

b− a

( 1− q

1− qp+1

) 1
p
( 1∫

0

[ts|aDqf(x)|r + (1− t)s|aDqf(b)|r]dqt
) 1

r

≤ q2
1−s
r K[(x− a)2 + (b− x)2]

b− a

( 1− q

1− qp+1

) 1
p

.

This completes the proof. �

Theorem 4.3. Let f : I = [a, b] ⊂ R → R be a q-differentiable function on I◦ (the interior
of I) with aDqf be continuous and q-integrable on I where 0 < q < 1. If |aDqf |r is s-convex
function and |aDqf(x)| ≤ K, then, for r ≥ 1, we have∣∣∣∣∣∣f(x)− 1

b− a

b∫
a

f(u)dR
q u

∣∣∣∣∣∣ ≤ qK[(x− a)2 + (b− x)2]

b− a
Ξ(s; r; q),

where

Ξ(s; r; q) =
( 1

1 + q

)1− 1
r

2
1−s
r .
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Proof. Using Lemma 2.2, power means inequality and hypothesis that |aDqf |r is s-convex
function, we have∣∣∣∣∣∣f(x)− 1

b− a

b∫
a

f(u)dR
q u

∣∣∣∣∣∣
=

∣∣∣∣∣∣q(x− a)2

b− a

1∫
0

taDqf(tx+ (1− t)a)0dqt+
q(b− x)2

b− a

1∫
0

taDqf(tx+ (1− t)b)dqt

∣∣∣∣∣∣
≤ q(x− a)2

b− a

( 1∫
0

tdqt
)1− 1

r
( 1∫

0

|aDqf(tx+ (1− t)a)|rdqt
) 1

r

+
q(b− x)2

b− a

( 1∫
0

tdqt
)1− 1

r
( 1∫

0

|aDqf(tx+ (1− t)b)|rdqt
) 1

r

≤ q(x− a)2

b− a

( 1

1 + q

)1− 1
r
( 1∫

0

[ts|aDqf(x)|r + (1− t)s|aDqf(a)|r]dqt
) 1

r

+
q(b− x)2

b− a

( 1

1 + q

)1− 1
r
( 1∫

0

[ts|aDqf(x)|r + (1− t)s|aDqf(b)|r]dqt
) 1

r

≤ qK2
1−s
r [(x− a)2 + (b− x)2]

b− a

(
1

1 + q

)1− 1
r

.

This completes the proof. �
Theorem 4.4. Let f : I = [a, b] ⊂ R → R be a q-differentiable function on I◦ (the interior
of I) with aDqf be continuous and q-integrable on I where 0 < q < 1. If |aDq| is (s,m)-
convex function, then, we have∣∣∣∣∣∣f(x)− 1

b− a

b∫
a

f(u)dR
q u

∣∣∣∣∣∣ ≤ min{∆1(a, b;x;m; s; q),∆2(a, b;x;m; s; q)},

where

∆1(a, b;x;m; s; q) =
q(x− a)2

b− a

{
φ1(s; q) |aDqf(x)|+mφ2(s; q)

∣∣∣ aDqf
( a

m

)∣∣∣}
+

q(b− x)2

b− a

{
φ1(s; q) |aDqf(x)|+mφ2(s; q)

∣∣∣∣ aDqf
( b

m

)∣∣∣∣}

∆2(a, b;x;m; s; q) =
q(x− a)2

b− a

{
mφ1(s; q)

∣∣∣aDqf
( x

m

)∣∣∣+ φ2(s; q)| aDqf(a)|
}

+
q(b− x)2

b− a

{
mφ1(s; q)

∣∣∣aDqf
( x

m

)∣∣∣+ φ2(s; q)| aDqf(b)|
}

φ1(s; q) =
1

[s+ 2]q
, (4.1)

and

φ2(s; q) =
1

1 + q
− 1

[s+ 2]q
, (4.2)

respectively.
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Proof. Since it is given that |aDqf | is (s,m)-convex function, so from Lemma 2.2 and using
the property of modulus, we have∣∣∣∣∣∣f(x)− 1

b− a

b∫
a

f(u)dR
q u

∣∣∣∣∣∣
=

∣∣∣∣∣∣q(x− a)2

b− a

1∫
0

taDqf(tx+ (1− t)a)dqt+
q(b− x)2

b− a

1∫
0

taDqf(tx+ (1− t)b)dqt

∣∣∣∣∣∣
≤ q(x− a)2

b− a

1∫
0

t| aDqf (tx+ (1− t)a) |dqt+
q(b− x)2

b− a

1∫
0

t| aDqf(tx+ (1− t)b)|dqt

≤ q(x− a)2

b− a

1∫
0

t
[
ts| aDqf(x)|+m(1− ts)

∣∣∣ aDqf
( a

m

)∣∣∣] dqt
+

q(b− x)2

b− a

1∫
0

t

[
ts| aDqf(x)|+m(1− ts)

∣∣∣∣ aDqf
( b

m

)∣∣∣∣] dqt
=

q(x− a)2

b− a

{
1

[s+ 2]q
|aDqf(x)|+m

(
1

1 + q
− 1

[s+ 2]q

) ∣∣∣ aDqf
( a

m

)∣∣∣}
+

q(b− x)2

b− a

{
1

[s+ 2]q
|aDqf(x)|+m

(
1

1 + q
− 1

[s+ 2]q

) ∣∣∣∣ aDqf
( b

m

)∣∣∣∣} .

Similarly∣∣∣∣∣∣f(x)− 1

b− a

b∫
a

f(u)dR
q u

∣∣∣∣∣∣ ≤ q(x− a)2

b− a

{
m

[s+ 2]q

∣∣∣aDqf
( x

m

)∣∣∣ + ( 1

1 + q

− 1

[s+ 2]q

)
| aDqf(a)|

}
+

q(b− x)2

b− a

{
m

[s+ 2]q

∣∣∣aDqf
( x

m

)∣∣∣+ ( 1

1 + q
− 1

[s+ 2]q

)
| aDqf(b)|

}
.

This completes the proof. �

Theorem 4.5. Let f : I = [a, b] ⊂ R → R be a q-differentiable function on I◦ (the interior
of I) with aDqf be continuous and q-integrable on I where 0 < q < 1. If |aDqf |r is (s,m)-
convex function, then for, p, r > 1, 1

p + 1
r = 1, we have∣∣∣∣∣∣f(x)− 1

b− a

b∫
a

f(u)dR
q u

∣∣∣∣∣∣ ≤ min{Θ1(a, b;x;m; s; q),Θ2(a, b;x;m; s; q)},

where

Θ1(a, b;x;m; s; q) =
q

b− a

( 1− q

1− qp+1

) 1
p

×
[
(x− a)2

(
ϑ1(q)|aDqf(x)|r +mϑ2(q)

∣∣∣aDqf
( a

m

)∣∣∣r) 1
r

+(b− x)2
([

ϑ1(q)|aDqf(x)|r +mϑ2(q)

∣∣∣∣aDqf
( b

m

)∣∣∣∣r])
1
r

]
,
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Θ2(a, b;x;m; s; q) =
q

b− a

( 1− q

1− qp+1

) 1
p

×
[
(x− a)2

(
mϑ1(q)

∣∣∣aDqf
( x

m

)∣∣∣r + ϑ2(q)|aDqf(a)|r
) 1

r

+(b− x)2
([

mϑ1(q)
∣∣∣aDqf

( x

m

)∣∣∣r + ϑ2(q)|aDqf(b)|r
]) 1

r

]
,

ϑ1(s; q) =
1

[s+ 1]q
, andϑ2(s; q) = 1− 1

[s+ 1]q
.

Proof. Using Lemma 2.2, Hölder’s inequality and the given hypothesis that |aDqf |r is (s,m)-
convex function, we have∣∣∣∣∣∣f(x)− 1

b− a

b∫
a

f(u)dR
q u

∣∣∣∣∣∣ =
∣∣∣∣∣∣q(x− a)2

b− a

1∫
0

taDqf(tx+ (1− t)a)dqt

+
q(b− x)2

b− a

1∫
0

taDqf(tx+ (1− t)b)dqt

∣∣∣∣∣∣ ≤ q(x− a)2

b− a

( 1∫
0

tpdqt
) 1

p
( 1∫

0

|aDqf(tx+ (1− t)a)|rdqt
) 1

r

+
q(b− x)2

b− a

( 1∫
0

tpdqt
) 1

p
( 1∫

0

|aDqf(tx+ (1− t)b)|rdqt
) 1

r

≤ q(x− a)2

b− a

( 1− q

1− qp+1

) 1
p

 1∫
0

[
ts|aDqf(x)|r +m(1− ts)

∣∣∣aDqf
( a

m

)∣∣∣r] dqt


1
r

+
q(b− x)2

b− a

( 1− q

1− qp+1

) 1
p

 1∫
0

[
ts|aDqf(x)|r +m(1− ts)

∣∣∣∣aDqf
( b

m

)∣∣∣∣r]dqt


1
r

≤ q(x− a)2

b− a

( 1− q

1− qp+1

) 1
p ×

((
1

[s+ 1]q

)
|aDqf(x)|r +m

(
1− 1

[s+ 1]q

)∣∣∣aDqf
( a

m

)∣∣∣r ) 1
r

+
q(b− x)2

b− a

( 1− q

1− qp+1

) 1
p ×

([(
1

[s+ 1]q

)
|aDqf(x)|r +m

(
1− 1

[s+ 1]q

)∣∣∣∣aDqf
( b

m

)∣∣∣∣r
]) 1

r

.

Similarly∣∣∣∣∣∣f(x)− 1

b− a

b∫
a

f(u)dR
q u

∣∣∣∣∣∣ ≤ q(x− a)2

b− a

( 1− q

1− qp+1

) 1
p

×

((
m

[s+ 1]q

)∣∣∣aDqf
( x

m

)∣∣∣r +(1− 1

[s+ 1]q

)
|aDqf(a)|r

) 1
r

+
q(b− x)2

b− a

( 1− q

1− qp+1

) 1
p ×

([(
m

[s+ 1]q

)∣∣∣aDqf
( x

m

)∣∣∣r +(1− 1

[s+ 1]q

)
|aDqf(b)|r

]) 1
r

.

This completes the proof. �
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Theorem 4.6. Let f : I = [a, b] ⊂ R → R be a q-differentiable function on I◦ (the interior
of I) with aDqf be continuous and q-integrable on I where 0 < q < 1. If |aDqf |r is (s,m)-
convex function, then, for r ≥ 1, we have∣∣∣∣∣∣f(x)− 1

b− a

b∫
a

f(u)dR
q u

∣∣∣∣∣∣ ≤ min{Ω1(a, b;x;m; s; q),Ω2(a, b;x;m; s; q)},

where

Ω1(a, b;x;m; s; q)=
q

b− a

( 1

1 + q

)1− 1
r×

[
(x− a)2

(
φ1(s; q)|aDqf(x)|r+mφ2(s; q)

∣∣∣ aDqf
( a

m

)∣∣∣r) 1
r

+ (b− x)2
(
φ1(s; q)|aDqf(x)|r +mφ2(s; q)

∣∣∣ aDqf
( b

m

)∣∣∣r) 1
r

]
,

Ω2(a, b;x;m; s; q) =
q

b− a

( 1

1 + q

)1− 1
r ×

[
(x− a)2

(
mφ1(s; q)

∣∣∣
a
Dqf

( x

m

)∣∣∣r
+ φ2(s; q)| aDqf(a)|r

) 1
r

+ (b− x)2
(
mφ1(s; q)

∣∣∣
a
Dqf

( x

m

)∣∣∣r + φ2(s; q)| aDqf(b)
∣∣∣r) 1

r
]
,

and φ1(s; q), φ2(s; q) are given by (4.1) and (4.2) respectively.

Proof. Using Lemma 2.2, power means inequality and hypothesis that |aDqf |r is s-convex
function, we have∣∣∣∣∣∣f(x)− 1

b− a

b∫
a

f(u)dR
q u

∣∣∣∣∣∣
=

∣∣∣∣∣∣q(x− a)2

b− a

1∫
0

taDqf(tx+ (1− t)a)0dqt+
q(b− x)2

b− a

1∫
0

taDqf(tx+ (1− t)b)dqt

∣∣∣∣∣∣
≤ q(x− a)2

b− a

( 1∫
0

tdqt
)1− 1

r
( 1∫

0

|aDqf(tx+ (1− t)a)|rdqt
) 1

r

+
q(b− x)2

b− a

( 1∫
0

tdqt
)1− 1

r
( 1∫

0

|aDqf(tx+ (1− t)b)|rdqt
) 1

r

≤ q(x− a)2

b− a

( 1

1 + q

)1− 1
r

 1∫
0

[ts|aDqf(x)|r +m(1− ts)
∣∣∣ aDqf

( a

m

)∣∣∣r]dqt


1
r

+
q(b− x)2

b− a

( 1

1 + q

)1− 1
r

 1∫
0

[ts|aDqf(x)|r + (1− ts)
∣∣∣ aDqf

( b

m

)∣∣∣r]dqt


1
r

≤ q

b− a

( 1

1 + q

)1− 1
r

×

(x− a)2

((
1

[s+ 1]q

)
|aDqf(x)|r +m

(
1

1 + q
− 1

[s+ 1]q

)∣∣∣ aDqf
( a

m

)∣∣∣r) 1
r
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+(b− x)2

((
1

[s+ 1]q

)
|aDqf(x)|r +m

(
1

1 + q
− 1

[s+ 1]q

)∣∣∣ aDqf
( b

m

)∣∣∣r) 1
r

 .

Similarly∣∣∣∣∣∣f(x)− 1

b− a

b∫
a

f(u)dR
q u

∣∣∣∣∣∣ ≤ q

b− a

( 1

1 + q

)1− 1
r

×

(x− a)2

(
m

(
1

[s+ 1]q

)∣∣∣ aDqf
( x

m

)∣∣∣r +( 1

1 + q
− 1

[s+ 1]q

)
| aDqf(a)|r

) 1
r

+(b− x)2

(
m

(
1

[s+ 1]q

)∣∣∣ aDqf
( x

m

)∣∣∣r +( 1

1 + q
− 1

[s+ 1]q

)
| aDqf(b)

∣∣∣r) 1
r

 .

This completes the proof. �
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