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UML DIAGRAMS CLASSIFICATION WITH MIMO AND SISO 

NEURAL NETWORKS  
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The benefits of artificial intelligence techniques have begun to be 

investigated for software modeling, as for other fields, but there is still a lot to 

explore. The standard Unified Modeling Language has been used for a long time, so 

that representative data sets have been produced to allow neural network training. 

The goal of this paper is to provide a multi-label classification with two neural 

network techniques, aiming to identify if an image contains a UML diagram or not, 

and to determine its type. The evaluated architectures are Multi Input Multi Output 

(MIMO) and Single Input Single Output (SISO). The paper also presents their 

evaluation, performance metrics results, and several examples. 
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1. Introduction 

The application of machine learning to modeling has the potential to drive 

increased adoption of model-based software engineering. Artificial intelligence 

techniques and image classification have benefited during recent years from many 

improvements in regard to the aspects, or the specific criteria that needed to be 

considered prior to classifying. For problems solved using machine learning or 

deep learning, the data feeding the training algorithms is more important than the 

algorithm itself.  

In terms of combining the field of software modeling with artificial 

intelligence techniques, there are many aspects to be explored. Based on Unified 

Modeling Language (UML), many examples of diagrams might be similar, as 

some application domains follow a standard set of elements that are found in each 

project. Thus, an area of research may be software maintenance, as explored in 

[12]. Additionally, an application may be useful in the educational field, to 

automate certain processes. For example, the software can check whether a certain 
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diagram has similarities with others, meaning the diagram could have been 

initially conceived by some other student. An easy way to trick a visual system 

concerning the UML diagrams is to arrange the components differently, so the 

diagram would look different even if the logic is the same. Based on this example, 

the feature extraction algorithms can be used so they can identify common 

elements and tell the similarity between two diagrams even if they are not 

arranged in the same manner in the image [13]. However, some applications based 

on machine learning might face challenges to provide a dataset with enough data. 

Throughout time, many techniques have been proposed to deal with small 

datasets, such as under-sampling, over-sampling, or augmentation [6].  

The purpose of this paper is to determine if an image contains a UML 

diagram or not, then, if the image is marked as a UML diagram, to determine what 

kind of diagram it is. Nonetheless, our research evaluates the performance of a 

model trained with a small dataset, and specific tools considered in the 

architecture of the model to make it perform well. The research objectives are 

summarized in Fig.  1. Section 2 presents related work and what use cases have 

been identified based on it. Section 3 follows by describing the used dataset and 

processing of the data. It includes the processing of the labels as well. Next, the 

paper describes the applied architectures, how they were built and a comparison 

between them (Section 4). Section 5 presents testing results and examples. The 

paper concludes with achievements and next steps. 
 

Fig. 1. Research objectives 

2. Related Work 

A challenge of many research projects is to find techniques that help 

obtaining models that perform well even for training with small datasets. In 

computer vision, using artificial intelligence approaches, convolutional neural 

networks (CNNs) are still the ones being the most used and providing the best 

results. On the other hand, a new architecture has recently been proposed, Vision 

Transformer (ViT) [3], which has many differences in comparison with CNNs. It 
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offers a very good performance in computer vision; it is robust and has a 

simplified design [4]. Considering the research paper using ViT [3], they used this 

architecture given a large-scale dataset and part of pre-training. 

The usage of machine learning in combination with UML faces challenges 

even from the dataset creation. There are not may datasets publicly available and 

many projects still need to go through the step of creating their own dataset given 

the limited options currently offered. Examples of datasets concerning the UML 

area are ModelSet [8] and a UML dataset publicly available in GitHub [10]. As 

there are currently multiple opportunities to research the benefits of artificial 

techniques into UML, expanding the variety of datasets are important as this is 

one of the most time-consuming processes that takes place in projects concerning 

machine learning techniques. The process of building a dataset is also complex in 

terms of validating that the data is correct for the labels applied, which is still 

done manually by a human operator in most of the cases. 

Another subject of interest is exploring the benefits of artificial 

intelligence techniques into UML diagrams. As class diagrams are the most well-

known according to [7], most of the articles combine the two topics, such as using 

machine learning or deep learning to determine if an image is a class diagram or 

not. An example used a dataset that was manually built and validated by 

professionals, which does not consider the textual content of the diagram to 

classify [4]. Additionally, other UML diagrams have been used to determine if the 

image contains a diagram or not. Other research focus on semantic elements of the 

diagrams. The extraction of semantic elements helps to better understand how a 

diagram is realized and what it takes to build a new one that is useful for the end 

user [1]. 

3. Dataset with UML Diagrams Images Used for Machine Learning 

The most analyzed UML model kinds are class diagrams [7], as they are 

often considered the most popular ones [10]. For the scope of our research, we 

selected class, sequence, and state machine diagrams to be used for diagram type 

classification. Section 3.1. describes gathering the data and deciding on the 

amount in consideration with imbalanced classes problems. Section 3.2 provides 

information about the dataset processing, to be ready for the training process. 

3.1. Building the Dataset 

To build the dataset for this research, the main source was a public 

database in GitHub provided by [10]. The database was built especially because 

previously there was no source with a wide range of image diagrams that can be 

used for future research problems with UML. This repository contains UML 

diagrams in various formats, collected from other related research projects, web 

crawling and diagram extraction, based on the type or donations from the 
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community to help future development in the domain. An important requirement 

of this database was that during its construction, duplicates were removed. This 

detail is already a significant win for the training model, as it will not face 

performance issues due to actual lack of data caused by identical samples. 

After filtering the initial results, the dataset contains 57,822 UML images / 

models. As previously mentioned, we extracted 3 of the most used UML diagrams 

separately, labeled a category for other kinds of UML diagrams and added a 

category for non-UML images. Table 1 contains details about images count per 

class from the source dataset. 
Table 1 

Data obtained for this project per diagram category 

Category Number of images 

Class Diagram 7123 

Sequence Diagram 540 

State Diagram 173 

Other UML Diagrams 1882 

Non-UML Images 225 [downloaded outside the main dataset] 

 

To increase the number for the small samples and to get the non-UML 

images, we used a Google images downloader python script, which extracts 

images from Google Images, given certain keywords, such as “Sequence 

Diagram” or “Sequence UML”. Additionally, the initial dataset described above 

provides the image using a URL, so we built a custom script to download the 

images provided in the URLs. As a result, the state diagram, which has the 

smallest number or samples as stated in Table 2, was increased to 227 images. 

3.2. Processing the Dataset 

The most used approach for dataset expansion in computer vision is 

augmentation. However, for UML diagrams as samples, they are always straight 

in the picture and most of the times only black and white. Thus, rotating the image 

or adjusting the colors do not apply to extend the dataset. An important aspect is 

that each dataset class is very specific in their content, so the features might be 

easily extracted and learned. Thus, each class was reduced to 225 images, 

meaning the down-sampling process was applied to fix the class imbalance 

problems.  

After setting the amount of data per class, the images were processed to a 

matrix of numbers. To validate that data quality is not impacted in the image, the 

number matrix was also processed backwards, to an image (see Fig.  2). Standard 

deviation and mean were the metrics used to confirm data was not lost, given they 

were under zero respectively 0.5 which were the set thresholds. 
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Fig.  2. Image to matrix and backwards processing 

 

In terms of labels processing, the model has 2 tasks: to say if the image 

contains a UML diagram or not, and to determine what kind of diagram it is). 

Thus, the model needs to provide two outputs. Each set of labels was processed 

with the binarization technique that is highlighted in Fig. 3. 
 

 
Fig.  3. Label binarization process 

4. Architectures’ performance comparison 

For this research paper, we analyzed two neural network architectures. 

One approach was to design the architecture as multiple inputs and outputs and 

the other approach was to explore single input and output classification and 

investigate the performance if each approach. The following chapters cover the 

architecture proposed for each one and an overall analysis on the results. 

Each model was trained using Google Colab resources in Jupyter 

notebooks, so we could run the code in steps and investigate or fix separate parts 

of the whole project. It is important to note that if the notebook disconnects each 

step needs to run again. As a workaround, wherever possible, we saved the results 

offline so we could load them later and advance faster with the project.  

For example, after processing the images as 3-rank tensor, which means a 

matrix of numbers representing RGB code, we saved the results in a serialized 

object that got deserialized before any new notebook run. A similar technique was 

applied for labels binarization. Such an approach saved approximately 30 minutes 

for each run.  

For better comparison, wherever possible, we tried to use the exact 

techniques or hyper-parameters so we could conclude which approach has a better 

performance for our problem. Thus, each neural network used the ADAM 

(Adaptive Moment Estimation) optimization algorithm [2] with the hyper-
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parameters learning rate 10-3 and decay rate beta1 0.9, decay rate beta2 0.999 and 

epsilon 10-8. For multi-class classification, we applied the Visual Geometry 

Group VGG neural network architecture [11]. 

4.1. Multi input multi output (MIMO) neural network 

As stated previously, the output expected from the model is to say whether 

the image contains a UML diagram and which type of diagram. Because of this, 

the model is a multi-output one. Additionally, each output falls into a different 

type of classification, one is binary classification while the other one is multi-

class. For each type, the input is specific, so the neural network will get separate 

inputs to learn from the data differently. Thus, the model is a multi-input one as 

well. These kinds of architectures are called multi-input multi-output (MIMO) 

neural networks, one example being [9]. 

Such tasks need to be designed and monitored carefully during the 

training. The model performs complex processes in parallel and there is a high 

risk the processing is not properly prepared, and performing the training process 

will not lead to a model able to offer the expected results. In current research there 

are not many MIMO architectures proposed for neural networks and none of them 

has been widely used to get a better overview on the performance of such an 

architecture. 

As a general presentation, the whole process will be split into 4 main 

steps. First, we apply feed forward for loss calculation. Then, the optimizer is 

initialized, for this project, the optimizer used is ADAM (Adaptive Moment 

Estimation) with the learning rate 10-3. Then, the training process starts which 

calculates the loss using feed forward, used backpropagation to calculate the 

gradients and updates the weights and biases using the ADAM optimizer. Last, 

through a feed forward the validation process takes place by checking if the loss 

was reduced and how well the model predicts the correct values. 

The input was loaded all together, and it was split using the labels added in 

the naming of the images or directories. The project required 2 inputs, a subset of 

classified types of UML diagrams and a subset of UML and non-UML diagrams. 

To distinguish which set of data belongs to each neural net problem we used 

directory and file naming conventions and identified the right output by 

processing it through the code. Then each input will go through a sub-network 

during training. Each sub-network has a different purpose that can also be 

modelled differently from one to another. 

For binary-class classification the project also used a CNN and a VGG as 

well. We defined the loss as binary cross entropy, and the number of layers was 

smaller than the one needed for multi class 

For the multi-class classification problem, the architecture or the sub-

network followed the structure of a VGG, a convolutional neural network  that is 
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based on AlexNet with the specification that it contains smaller receptive fields, 

and the number of parameters is significantly smaller in comparison with 

AlexNet.  

After each sub-network trains for the specific problem that needs to be 

solved, the architecture contains a concatenation layer that unites the two resulting 

outputs so new data can be classified with multiple labels at once.  

4.2. Single input single output (SISO) neural network 

In comparison with the MIMO architecture, we start with one single input 

which is formed by the following categories class diagram, sequence diagram, 

state diagram, other UML diagrams and non-UML diagram images. Similarly, to 

the MIMO architecture, we loaded the directories and images, then split it based 

on the naming to fit the categories listed above. 

Such an input applies to multi-class classification and here we also use the 

exact same VGG architecture we applied for the sub-network of MIMO neural 

network. As mentioned in the beginning of the chapter we kept as many 

similarities as we could between the two investigated neural network designs so 

we could compare which approach provides better performance. To accommodate 

the multi-labeling of new data sets, meaning, whether the image contains a UML 

diagram or not and what kind of diagram it is, after the model predicted to which 

category the model belongs to, if the image was classified as class diagram, 

sequence diagram, state diagram or other UML diagrams we processed the result 

to display that the image represents a UML diagram or not and what kind it is 

through the code using the neural network’s result. 

5. Comparison Results 

5.1. Accuracy and Loss Evaluation 

For each project we used the same platform and the same configuration to 

compare the results. The MIMO neural network was trained for 20 hours, while 

the SISO neural work trained for 14 hours. During training we monitored the 

accuracy and loss of the trained model to identify possible issues when the model 

was built. No issue was faced in any of the two cases, even if one epoch showed 

values that were not going as expected the neural network calibrated with the next 

epoch runs. The data was saved to be displayed as a plot for evaluation. 

Fig. 4 a) displays the accuracy collected from the MIMO architecture 

during training. By looking at the accuracy plot, we understand the training went 

as desired, with one spike between epochs 50 and 60. The spike indicates that the 

model is not well structured at that step, and this could have caused an issue if the 

training was stopped at that epoch. However, in our case, the model recovered fast 

to a good structure until the end of the training.  
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a)        b) 

Fig.  4. Results for MIMO training: a) accuracy;   b) loss 
 

Fig. 4 b) displays the loss collected from the MIMO architecture during 

training. The loss plot will indicate a higher loss during the spike, which is 

expected, the fact that the training and validation loss have slightly different 

points means that the model does very well on classifying data used for the 

training but does not meet the same performance on validation data. However, the 

difference is not a concern, as the difference is very low in the end; this indicates a 

high rate of correct classifications, and manual testing also proved that. 

Fig. 5 a) displays the accuracy collected from the SISO architecture during 

training. By looking at the accuracy plot, we understand the training went as 

desired. Data points impacting the curve can be observed, but the difference is so 

small it cannot indicate a badly structured model.  

 

a)        b) 

Fig.  5. Results for MIMO training: a) accuracy;   b) loss 

 

According to the plot, the structure was well determined throughout the 

training and an early stopping could have been allowed.  

Fig. 5 b) displays the loss collected from the SISO architecture during 

training. The loss plot indicates a similar behavior as it was described for the 

MIMO loss evaluation. This means the model performs very well on training data, 
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well on validation data, but not with the same performance for the training data. 

Similarly, the difference does not indicate any concern. 

Each plot indicates that the resulting model will have a good structure and 

will be able to reach is goal. No significant issues were identified by checking this 

data. In addition to the resulting metrics, we investigated the resulting models by 

checking the exact same set of input data and evaluating the results.  

The training of the SISO model is more stable than the training of the 

MIMO one. Both architectures have reached good accuracy on validation data 

which indicates how the model will perform on new data. Similarly, the loss has 

been low, concluding most of the samples were correct. 

5.2. Examples  

We selected 25 inputs for testing and evaluated how many reached a 

correct classification. By correct classification we expect both labels, if an image 

is a UML diagram or not and what kind of diagram, if applicable, to be classified. 

The MIMO model matched both labels correctly for 19 out of 25 testing inputs. 

The SISO model matched 17 out of 25 exact same testing inputs. Additionally, the 

results of the MIMO take longer to be offered than the SISO ones. The MIMO 

outputs were displayed on average in 1 minute and 12 seconds. The SISO 

displayed the results on average in 48 seconds. 

Table 1, example 1 represents a UML diagram that is not part of the three 

specific ones that were selected. On the left the output is provided by the MIMO 

neural network with a prediction score of 81% and on the right, the output is 

provided by the SISO neural network with a prediction score of 83%. 
 

Example 1 does contain a UML diagram. The image was classified as a 

UML diagram by the MIMO neural network with a prediction score of 88% and 

by the SISO neural network with a prediction score of 87%. 
 

Example 2 represents a UML diagram that is part of the three specific ones 

that were selected, in this case a class diagram. The MIMO neural network has a 

prediction score of 89% as UML and 87% as class diagram. The SISO neural 

network has a prediction score of 87% as UML and 89% as a class diagram. 
 

Example 3 is a UML diagram that is part of the three specific ones that 

were selected, in this case a state diagram. The MIMO neural network has a 

prediction score of 86% as UML and 82% as state diagram. The SISO neural 

network has a prediction score of 84% as UML and 79% as a state diagram. 
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Table 2 

Results with tested examples 

Nr. Image 

Prediction 

Score 

Is UML? 

Prediction Score 

Diagram Type 

MIMO SISO MIMO SISO 

1. 

 

Yes 

(88%) 

Yes 

(87%) 
- - 

2. 

 

Yes 

(89%) 

Yes 

(87%) 

Class 

(87%) 

Class 

(89%) 

3. 

 

Yes 

(86%) 

Yes 

(84%) 

State 

Machine 

(82%) 

State 

Machine 

(79%) 
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6. Conclusions 

The goal of the research was to investigate the techniques of artificial 

intelligence and use them in conjunction with UML modeling. As a starting point, 

we investigated what is the state of the art in combining these two domains, and 

which use cases have been highlighted. As a starting point, we identified existing 

datasets available, and we used one to solve a classification problem with multiple 

outputs required. 

We built two neural networks following different architectures to see 

which one would perform better. Both can be used based on the type of 

application that applies for a certain problem. In our case, each model provides 

good accuracy, though the MIMO model performed better in our experiments. 

For the 25 samples that were tested MIMO classified correctly 76% of the 

samples and SISO classified correctly 68% of the samples. In addition to correct 

classification, prediction score is an important metric that outlines how confident 

the model is into the classification. Most machine learning project experiments 

highlight that 80% accuracy is considered to state the model is highly performant 

as mentioned in [14]. Among the samples that were classified correctly with a 

prediction score of 80% or more, 84% matched the criteria for MIMO approach 

and 77% matched the criteria for SISO approach. 

The next step for this research is to decrease the number of wrong 

classifications and improve accuracy, so the model is highly confident on correct 

outputs. We will explore expanding the dataset and evaluate techniques for small 

datasets where performant models were obtained. Additionally, will explore 

methods to validate the performance as well as other metrics that are highly 

trusted in literature to support a model that is ready to be used. 
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