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ON THE STABILITY OF A SYSTEM OF TWO DIFFERENCE

EQUATIONS

Alexandru Negrescu1

Using the centre manifold theory, we study the stability of the

zero equilibrium of a system of two difference equations in the special case

when one of the eigenvalues is equal to 1 and the other eigenvalue has the

absolute value less than 1.
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1. Introduction

The study of the difference equations and systems of difference equations,
especially those involving exponential terms, is a topic in current mathematical
research (see, e.g., [1], [2], [3], [6], [8], [9], [13], [15], [16], [18], [19], [20], [22],
[23], [28], [29], [30], [31], [34]). This is also due to the fact that the difference
equations have many applications in biology, population dynamics, genetics,
economy, physics and other applied sciences (see, e.g., [5], [7], [10], [14], [17],
[26], [32], [33], [35]).

In their study of the dynamics of a perennial grass, Tilman and Wedin
[33] investigated the following model

{
Bt+1 = cN ea−bLt

1+ea−bLt
,

Lt+1 =
L2

t

Lt+d
+ ckN ea−bLt

1+ea−bLt
,

where B represents the living biomass, L the litter mass, N the total soil
nitrogen, t the time (measured in years) and constants a, b, c, d > 0 and 0 <
k < 1.

Motivated by the second equation of the previous system, Papaschinopou-
los, Schinas and Ellina [21] studied the dynamics of the solutions of the bio-
logical model described by the following difference equation

xn+1 =
ax2n
xn + b

+ c
ek−dxn

1 + ek−dxn
,

where 0 < a < 1, b, c, d, k are positive constants and the initial condition x0
is a positive real number. Also, Psarros, Papaschinopoulos and Schinas [25]
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investigated the stability of the zero equilibria of the following two systems of
difference equations:
{
xn+1 = a1

yn
b1+yn

+ c1
xne

k1−d1xn

1+ek1−d1xn
,

yn+1 = a2
xn

b2+xn
+ c2

yne
k2−d2yn

1+ek2−d2yn
,

and

{
xn+1 = a1

xn

b1+xn
+ c1

yne
k1−d1yn

1+ek1−d1yn
,

yn+1 = a2
yn

b2+yn
+ c2

xne
k2−d2xn

1+ek2−d2xn
,

where a1, a2, b1, b2, c1, c2, d1, d2, k1 and k2 are real constants and the initial
values x0 and y0 are real numbers.

Psarros, Papaschinopoulos and Schinas [24] provided some conditions for
the semistability of the zero equilibria of the following two close-to-symmetric
systems of difference equations:

{
xn+1 = axn + byne

−xn,

yn+1 = cyn + dxne
−yn ,

and

{
xn+1 = ayn + bxne

−yn ,

yn+1 = cxn + dyne
−xn ,

where a, b, c and d are positive constants and the initial conditions x0 and
y0 are positive numbers. Mylona, Psarros, Papaschinopoulos and Schinas [15]
provided some conditions for the stability of the zero equilibria of the same
two systems of difference equations.

Flondor, Olteanu and Ştefan [11] proved the asymptotic stability of the
unique equilibrium point of the following system of two differential equations:

{
dm
dt

= b−m (d+ Aµ) ,
dµ
dt

= β − µ (δ +Bm) .

The previous system models a certain class of (open) enzymatic reactions.
Their approach uses Lyapunov theory, invariant regions and controllability.

Motivated by those presented above, in this paper we will study the
stability of the zero equilibrium of the following system of difference equations:

{
xn+1 = (1− a1)xn − b1xnyn + c1yne

−d1xn,

yn+1 = (1− a2)yn − b2xnyn + c2xne
−d2yn ,

n = 0, 1, 2, ...,

where the parameters a1, c1, a2, c2 ∈ (0, 1), b1, b2 are negative numbers and the
initial conditions x0 and y0 are positive numbers.

2. Preliminaries

Let us consider the following two-dimensional discrete dynamical system:
{
xn+1 = f1 (xn, yn) ,

yn+1 = f2 (xn, yn) ,
n = 0, 1, 2, ..., (1)

where f1 : I × J → I and f2 : I × J → J are continuously differentiable
functions and I, J are some intervals of real numbers. Furthermore, a solution,
{(xn, yn)}n≥0, of the system (1) is uniquely determined by the initial conditions
(x0, y0) ∈ I × J (see, e.g., [27], Theorem 4-1, p. 167).

We first recall the following definition ([7], p. 2).
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Definition 2.1. An equilibrium point of the two-dimensional discrete dynam-
ical system (1) is a point (x, y) that satisfies

{
x = f1 (x, y) ,

y = f2 (x, y) .

We continue with the following definition ([7], Definition 2.1, p. 2).

Definition 2.2. Let (x, y) be an equilibrium point of the two-dimensional dis-
crete dynamical system (1).

(1) The equilibrium point (x, y) is stable if, for every ε > 0, there exists δ >
0 such that, for every initial condition (x0, y0), if ‖(x0, y0)− (x, y)‖ <
δ then ‖(xn, yn)− (x, y)‖ < ε, for all n > 0, where ‖·‖ is the usual
Euclidean norm in R

2.
(2) The equilibrium point (x, y) is unstable if it is not stable.
(3) The equilibrium point (x, y) is asymptotically stable if there exists η > 0

such that if ‖(x0, y0)− (x, y)‖ < η, then the solution with initial data
(x0, y0) verifies (xn, yn) → (x, y), as n→ ∞.

Let T : R2 → R
2 be a map written in the following form

{
x 7→ Ax+ f(x, y),

y 7→ By + g(x, y),
(2)

where (x, y) ∈ R
2, A and B are real numbers such that |A| = 1 and |B| < 1,

the functions f and g are of class C2 and the functions f , g, and their first
order partial derivatives are zero at the origin.

The following theorem ([10], Theorem 5.1, p. 243) establishes the exis-
tence of a (non-unique) centre manifold (i.e., a curve y = h(x)) on which the
dynamics of the system (2) is given by the map on the centre manifold.

Theorem 2.1. There is a Cr centre manifold for system (2) that can be rep-
resented locally, for a sufficiently small δ, as

Mc =
{
(x, y) ∈ R

2 | y = h(x), |x| < δ, h(0) = 0, h′(0) = 0
}
.

Furthermore, the dynamics restricted to the center manifold Mc are given lo-
cally by the map

x 7→ Ax+ f (x, h(x)) , x ∈ R.

If the system (2) is Ck-smooth, with k <∞, then the center manifold is
Ck-smooth ([12], Theorem 5A.1, p. 68).

In order to determine the expression of the function h(x) we have to solve
the equation

h (Ax+ f (x, h(x))) = Bh(x) + g (x, h(x)) .

For functions ψ : R → R, define

F (ψ(x)) = ψ (Ax+ f (x, ψ(x)))−Bψ(x)− g (x, ψ(x)) ,
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so that F (h(x)) = 0.
Mostly, the function h(x) cannot be found explicitly, and, therefore, it is

approximated using power series. The following theorem ([4], Theorem 7, p.
35) provides the theoretical justification for this approximation.

Theorem 2.2. Let ψ : R → R be a C1 map with ψ(0) = ψ′(0) = 0. Suppose
that

F (ψ(x)) = O (|x|r) ,

as x→ 0, for some r > 1. Then

h(x) = ψ(x) +O (|x|r) , as x→ 0.

We continue with the following theorem ([4], Theorem 8, p. 35), which
shows that the dynamics of the centre manifold Mc completely determines the
dynamics of (2).

Theorem 2.3. If the equilibrium point (0, 0) of the map x 7→ Ax+ f (x, h(x))
is stable/asymptotically stable/unstable, then the equilibrium point (0, 0) of the
system (2) is stable/asymptotically stable/unstable.

Finally, to determine the nature of the equilibrium point of the previous
map we will use the following result ([10], Theorem 1.5, p. 28).

Theorem 2.4. Let x be an equilibrium point of a one-dimensional map G

such that G′ (x) = 1. If G′(x), G′′(x) and G′′′(x) are continuous at x, then the
following statements hold true:

(1) if G′′ (x) 6= 0, then x is unstable;
(2) if G′′ (x) = 0 and G′′′ (x) > 0, then x is unstable;
(3) if G′′ (x) = 0 and G′′′ (x) < 0, then x is asymptotically stable.

3. Main results

As we have stated in the first section, we will study the stability of the
zero equilibrium of the following system of difference equations:

{
xn+1 = (1− a1)xn − b1xnyn + c1yne

−d1xn,

yn+1 = (1− a2)yn − b2xnyn + c2xne
−d2yn ,

n = 0, 1, 2, ..., (3)

where the parameters a1, c1, a2, c2 ∈ (0, 1), b1, b2 are negative numbers and the
initial conditions x0 and y0 are positive numbers.

The following theorem represents the main result of the paper.

Theorem 3.1. Let us consider:

α =
a1

c1
, β = −

a2

c1
, η =

α

(1− λ2) (β − α)
[α (b1 + c1d1)− (b2 + c2d2)] ,

γ =
2α

β − α
[−β (b1 + c1d1) + b2 + c2d2] ,
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and

δ =
3

β − α

(
−2β2ηb1 − 2αβηb1 − 2αβηc1d1 + αβc1 − 2β2ηc1d1+

+2βηb2 + 2αηb2 + 2βηc2d2 − α2c2 + 2αηc2d2
)
.

If a1a2 = c1c2, then the following statements hold true:

(1) if γ 6= 0, then the zero equilibrium of (3) is unstable;
(2) if γ = 0 and δ > 0, then the zero equilibrium of (3) is unstable;
(3) if γ = 0 and δ < 0, then the zero equilibrium of (3) is asymptotically

stable.

Proof. We consider the following functions:
{
f1(x, y) = (1− a1)x− b1xy + c1ye

−d1x,

f2(x, y) = (1− a2)y − b2xy + c2xe
−d2y.

The first order partial derivatives of the functions f1 and f2 are

∂f1

∂x
= 1− a1 − b1y − c1d1ye

−d1x,
∂f1

∂y
= −b1x+ c1e

−d1x,

∂f2

∂x
= −b2y + c2e

−d2y and
∂f2

∂y
= 1− a2 − b2x− c2d2xe

−d2y.

Hence
∂f1

∂x
(0, 0) = 1− a1,

∂f1

∂y
(0, 0) = c1,

∂f2

∂x
(0, 0) = c2,

∂f2

∂y
(0, 0) = 1− a2,

and the Jacobian matrix at the zero equilibrium is

J0 =

(
1− a1 c1
c2 1− a2

)
.

To determine the eigenvalues of the matrix A, we calculate the following
determinant

det (J0 − λI2) = (1− a1 − λ)(1− a2 − λ)− c1c2

= λ2 + (a1 + a2 − 2)λ+ (1− a1 − a2 + a1a2 − c1c2).

Taking into account, from the hypothesis, that a1a2 = c1c2, we obtain that the
eigenvalues of the matrix J0 are λ1 = 1 and λ2 = 1− a1 − a2. Again, from the
hypothesis we have that |λ2| < 1.

We rewrite the initial system as
(
xn+1

yn+1

)
= J0

(
xn
yn

)
+

(
f (xn, yn)
g (xn, yn)

)
, (4)

where
f(x, y) = −b1xy + c1ye

−d1x − c1y

and
g(x, y) = −b2xy + c2xe

−d2y − c2x.
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It can be easily demonstrated that the vector v1 =

(
1
a1
c1

)
is an eigenvector

associated with the eigenvalue λ1 = 1 and the vector v2 =

(
1

−a2
c1

)
is an

eigenvector associated with the eigenvalue λ2 = 1 − a1 − a2. Then a matrix
which diagonalizes matrix J0 is

T =

(
1 1
α β

)
,

where α = a1
c1

and β = −a2
c1
.

Using the previous matrix T , we write
(
xn
yn

)
= T

(
un
vn

)
, (5)

equivalent to {
xn = un + vn,

yn = αun + βvn.
(6)

With this, the relationship (4) becomes

T

(
un+1

vn+1

)
= J0T

(
un
vn

)
+

(
f (un + vn, αun + βvn)
g (un + vn, αun + βvn)

)
.

We multiply our last relationship with the inverse of the matrix T and
obtain (

un+1

vn+1

)
= D

(
un
vn

)
+ T−1

(
f (un + vn, αun + βvn)
g (un + vn, αun + βvn)

)
,

where D =

(
1 0
0 λ2

)
and T−1 = 1

β−α

(
β −1
−α 1

)
.

Hence (
un+1

vn+1

)
=

(
1 0
0 λ2

)(
un
vn

)
+

(
f̂ (un, vn)
ĝ (un, vn)

)
,

where

f̂ (un, vn) =
1

β − α
[βf (un + vn, αun + βvn)− g (un + vn, αun + βvn)]

=
1

β − α
[β (−b1 (un + vn) (αun + βvn)+

+c1 (αun + βvn) e
−d1(un+vn) − c1 (αun + βvn)

)
−

−
(
−b2 (un + vn) (αun + βvn) + c2 (un + vn) e

−d2(αun+βvn)−

−c2 (un + vn))]
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and

ĝ (un, vn) =
1

β − α
[−αf (un + vn, αun + βvn) + g (un + vn, αun + βvn)]

=
1

β − α
[−α (−b1 (un + vn) (αun + βvn)+

+c1 (αun + βvn) e
−d1(un+vn) − c1 (αun + βvn)

)
+

+
(
−b2 (un + vn) (αun + βvn) + c2 (un + vn) e

−d2(αun+βvn)−

−c2 (un + vn))]

Based on the Theorem 2.2, we consider

v = h(u) = φ(u) +O
(
u4
)
,

with φ(u) = ηu2 + θu3, where η and θ are real numbers.
According to the Theorem 2.3, the study of the stability of the zero

equilibrium of the system (3) is reduced to the study of the stability of the
zero equilibrium of the equation

un+1 = un + f̂ (un, φ (un)) . (7)

Now, consider the map

G(u) = u+ f̂ (u, φ (u)) ,

which leads to

G(u) = u+ f̂
(
u, ηu2 + θu3

)

= u+
1

β − α

[
β
(
−b1

(
u+ ηu2 + θu3

) (
αu+ βηu2 + βθu3

)
+

+c1
(
αu+ βηu2 + βθu3

)
e−d1(u+ηu2+θu3)−

−c1
(
αu+ βηu2 + βθu3

))
−

(
−b2

(
u+ ηu2 + θu3

) (
αu+ βηu2 + βθu3

)

+c2
(
u+ ηu2 + θu3

)
e−d2(αu+βηu2+βθu3) − c2

(
u+ ηu2 + θu3

))]

Using the power series expansion, we find that

G(u) = u+
α

β − α
[−β (b1 + c1d1) + b2 + c2d2] u

2 +

+
1

β − α

(
−β2ηb1 − αβηb1 − αβηc1d1 +

1

2
αβc1 − β2ηc1d1+

+βηb2 + αηb2 + βηc2d2 −
1

2
α2c2 + αηc2d2

)
u3 +O(u4).

Then

G′(0) = 1, G′′(0) =
2α

β − α
[−β (b1 + c1d1) + b2 + c2d2]
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and

G′′′(0) =
3

β − α

(
−2β2ηb1 − 2αβηb1 − 2αβηc1d1 + αβc1 − 2β2ηc1d1+

+2βηb2 + 2αηb2 + 2βηc2d2 − α2c2 + 2αηc2d2
)
.

Now we will determine the expression of η. According to the comments
following the Theorem 6 from [4], the map h satisfies the centre manifold
equation

h
(
u+ f̂ (u, h(u))

)
= λ2h(u) + ĝ (u, h(u)) .

As before, using the power series expansion, we find that

η =
α

(1− λ2) (β − α)
[α (b1 + c1d1)− (b2 + c2d2)] .

Finally, according to the Theorem 2.4, we have:

• if G′′(0) 6= 0, then the zero equilibrium of (7) is unstable, therefore, due
to the Theorem 2.3, the zero equilibrium of the system (3) is unstable;

• if G′′(0) = 0 and G′′′(0) > 0, then the zero equilibrium of (7) is unstable,
therefore, due to the Theorem 2.3, the zero equilibrium of the system
(3) is unstable;

• if G′′(0) = 0 and G′′′(0) < 0, then the zero equilibrium of (7) is asymp-
totically stable, therefore, due to the Theorem 2.3, the zero equilibrium
of the system (3) is asymptotically stable.

The conclusions of the Theorem 3.1 follow immediately. �

4. Conclusions

Using centre manifold theory, we provided some conditions for the sta-
bility of the zero equilibrium of the system (3).
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[6] D. Clark, M.R.S. Kulenović, A coupled system of rational difference equations, Com-

puters & Mathematics with Applications, 43 (2002), pp. 849-867.

[7] Q. Din, Dynamics of a discrete Lotka-Volterra model, Advances in Difference Equations,

2013 (2013), Article Number 95, pp. 1-13.

[8] Q. Din, K.A. Khan, A. Nosheen, Stability Analysis of a System of Exponential Difference

Equations, Discrete Dynamics in Nature and Society, 2014 (2014), Article ID 375890,

11 pp.

[9] S.N. Elaydi, An Introduction to Difference Equations, Third Edition, Springer, New

York, 2005.

[10] S.N. Elaydi, Discrete Chaos, Second Edition, Chapman&Hall/CRC, Boca Raton, 2007.
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