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POSITIVE SOLUTION FOR A FRACTIONAL SWITCHED SYSTEM
INVOLVING RIEMANN-STIELTJES INTEGRAL

Yang Yang!

We study positive solution for a fractional switched system tnvolving Riemann-
Stieltjes integral. Our results cover the fractional differential equation with switched
nonlinearity, moreover, the Riemann-Stieltjes integral was involved in the boundary con-
dition. We obtain positive solution for the above system according to the fixed point
theorems for mized monotone operators with perturbation. We obtain new iterative se-
quences to approach the positive solution. An example is given to illustrate the abstract

results.
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1. Introduction

In this article, we study fractional switched system involving Riemann-Stieltjes inte-
gral such as the following

{Bp[Dgu(t)+ 6 / 9o (s (5, T uls), u(9))ds) Y + ooy (8, I u(t) u(®)) = 0, € J = [0,1],
1 (1)
Dgu(0) =0, u(0) =/ (0) =--- = u® () =0, (1) = / u(s)dH(s),  (2)

which arises from some complex system of economic and engineering science, where n —1 <
a<n, neN n>3 Dy, I are the Riemann-Liouville fractional derivative and
fractional integral of order « respectively, ¢,(s) = [s[P72s, p > 1, (¢,) " = ¢, % + % =1,
the integrals from the boundary conditions are Riemann-Stieltjes integral with H(t) is a
bounded variation function. o : J — M = {1,2,---, N} is a finite switching signal which is
a piecewise constant function depending on t. Corresponding to the switching signal o(t),

we have the following switching sequence
{(iOat0)7 ) (l]at])a ) (Zk:atk:)h] S {1727 o '7N}aj = 0) 1727 T k}a

which means that the i nonlinearity is activated when ¢ € [t;, ;1) and the ;" nonlinearity
is activated when t € [tg, 1]. Here 2o = 0, to = 0.
The study of solutions for fractional problem associated to Riemann-Stieltjes integral

has a long history. Its significance to mathematical physics is emphasized in applied fields
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such as population, dynamics, underground water flow, blood flow problems and chemical
engineering, see references [1-6]. Some authors have studied fractional problems with the

following boundary conditions
u(0) =u/'(0) =+ =ul""2(0) =0,  u(l) =~u(n),
u(0) =/ (0) =---=u"20) =0, wu(l) =" au(n),

1=

w(0) = w'(0) = - = u™D(0) =0,  u(1) :/O u(s)ds,

uw(0) =u'(0)=-- - =u20)=0, wu(l)= /O u(s)ds + yu(n).

We can see that the above boundary conditions are all special forms of (2), so it is very
important to study the solutions of (1)-(2).
In [7], Hao et al. discussed positive solutions for the following n-th order boundary

value problem with Riemann-Stieltjes integral

™ () 4+ a(t) f(t,z(t) =0, 0<t<1,

1
2™ 0)=0, 0<k<n-2, z(1)= /0 z(s)dA(s).

Zhang and Han in [8] studied positive solutions for the following fractional boundary
value problem with Riemann-Stieltjes integral

Dgyx(t) + f(t,z(t) =0, n—1<a<n, 0<t<I,

™ 0)=0, 0<k<n-2 z(1)= /01 x(s)dA(s).

Haddouchi [9] investigated positive solutions for the following nonlocal boundary value

problem with Riemann-Stieltjes integral

Dfiu(t) + f(t,u(t) =0, 0<t<1,

(0) = '(0) = 0. u(1) = eu(a) + 5 [ ul(s)dA().

In his monograph [10], Henderson considered the following system with the uncoupled

integral boundary conditions
Dgiu(t) + Mf(t,u(t),v(t) =0, 0<t<1,
Do) + pf(t,u®),v(t) =0, 0<t<1,

w(0) =W (0) = - = u™D(0) =0, u(l) = /0 w(s)dH(s),

1
0(0) = /(0) = - =™ D) =0, (1) :/ o(s)dE (s).

On the other hand, switching systems have received atteontion from many scholars in
recent years owing to their applications in the fields of electrical and chemical engineering,
air traffic control, aircraft, automotive, etc. [11-13]. Switched systems are a particular kind
of hybrid systems that consist of a set of subsystems and a switching signal selecting a
subsystem to be active during an interval of time. Currently, research on switching systems
mainly focuses on stability analysis [14], H-infinity control [15]. As is known to all, existence
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and uniqueness of the solutions is fundamental and crucial to a switched system. In [16], the
authors considered the existence and uniqueness of solutions about switched Hamiltonian
systems. In [17], Ahmad et al. considered the existence and uniqueness of solutions for
coupled implicit ¢— Hilfer fractional switched systems. Li et al. [18] derived the existence
and uniqueness of its solutions under some time-varying switching law. We can see that the
above literature discusses the existence of solutions for the switched system, but for practical
problem, positive solutions are more meaningful. Until now, there are few literatures on the
existence of positive solutions for the switched system [19-21].

Li et al. [19] studied the positive solutions for the following switched system

zll(t)+fa(t)(t7x(t)) =0, tedJ= [Oa 1]7

Guo [20] concerned with the positive solutions for the following p-Laplacian switched

system

DS\ ¢p(Dgu(t)) = forn(t,ult), DY u(t), teJ=][0,1],

u(0) = M/o u(s)ds + Au(§), Dgru(0) = kDgu(n), &,ne(0,1].

However, positive solutions for the fractional switched system involving Riemann-
Stieltjes integral have not been studied till now. In this article, we shall considered the
existence of positive solutions for the system (1) (2) according to the fixed point theorems

for mixed monotone operators.

2. The preliminary lemmas

Definition 2.1. [23] The fractional integral of order o > 0 of a function g : (0,+00) = R

denoted by I, g is expressed as

1 t
I8 gt) = —— [ (t—s)*"tg(s)ds, t>0
Fealt) = iy [ 0= tateds, 10,
provided the right hand side is pointwise defined on (0, +00).

Definition 2.2. [23] For a function g : (0,400) — R, the Riemann-Liouville fractional

derivative of order o > 0 denoted by Dg, g is expressed as

Dgig(t) = 7“”1_ a)(%)"/o (R r=st _’;gi)_nﬂds, t>0,

here n = [a] + 1, provided the right hand side is pointwise defined on (0, +00).

Suppose that E is a real Banach space, P is a cone of E,f represents the zero element
in E. For all z,y € E, § < z < y implies ||z|| < N|ly||, where N is a positive constant,
we call P a normal cone. For all x,y € E, the notation x ~ y means that there exist
A > 0 and p > 0 satisfing Az < y < px. Evidently, ~ is an equivalence relation. Suppose
h >0 (i.e.,h > 0 and h # 0), the set P, defined as P, = {x € E|z ~ h}. Clearly, P, C P.
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Definition 2.3. [2/] We call T : P x P — P a mized monotone operator if T(x,y) is
increasing in x and decreasing in y, i.e.,u;,v;(i = 1,2) € P, up < ug, vy > vy imply
T(u1, v1) < T(ug, ve). If x belongs to P and satisfies T(x,x) = x, we call x a fized point
of T.

Lemma 2.1. [2/] Let P be a normal cone in E. Assume that A,B : P x P — P are two
mized monotone operators and satisfy the following conditions:
(i) for any A € (0,1), there exists a number () € (A, 1] such that

A(Az, A_ly) > Y(NA(z,y), =,y € P;

(ii) for any X € (0,1), x,y € P, B(Az,A\"ly) > AB(z,y);

(43i) there exists h € P with h > 0 such that A(h,h) € Py, B(h,h) € Py;

(iv) there exists a constant § > 0 such that for all z,y € P, A(x,y) > dB(z,y).

Then the operator equation A(x,z) + B(x,x) = x has a unique solution x* € Py, and for

any wnitial values xg,yo € Py, constructing successively the sequences
Tn = A(l'nflv ynfl) + B(‘rnfla ynfl);
Yn = AWYn-1,Tn-1) + B(yn—1,Tn-1), n=1,2,--+
we have ., — x* and y, — r* as n — oo.

Lemma 2.2. [8] Let Ay =1 — fol s*~YdH(s) # 0, for h € C(0,1) N LY[0,1], the unique
solution of the fractional switched system

Dgiu(t) +h(t) =0, 0<t<I, (3)
1
uw(0) = (0)=---=u20)=0, wu(l)= / u(s)dH(s), (4)
0
18 given by X
u(t) = /0 G(t, s)h(s)ds, (5)
here
a—1 1
Glt.9) = glt.)+ 5= [ a(ra)dH (). () € 0.1 x [0.1], (©
and

t,8) = ——
9(:9) = 7y fa=1(1 = g)a=1, 0<t<s<1

| {ﬂlu—@at%www1vossstéL

Lemma 2.3. [8] The function g(t,s) given by (7) satisfied:
(Z) g(t,s) - g(]- -5, 1- t)7 fOT’ t,S € [Oa 1]7
(i7) t*7 11 —t)s(1 — 5)*7t < T(a)g(t,s) < (a— 1)t 1(1 —¢).

Lemma 2.4. [8] Let F' = maxo<s<1 fol g(7,8)dH(T), if H : [0,1] — R is a nondecreasing
function and Ay > 0, the Green’s function defined by (6) has the following properties:

(1) G(t,s) > 0 for each s,t € (0,1);

(ii) h(t)e [ g(r.s)dH (r) < G(t,s) < h(t)d for s,t € [0,1];

where ¢ = Ail, d= ALI + 71“((11—1)7 h(t) = t>=L.
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Lemma 2.5. The fractional switched system

{gZ)p[D(‘)ﬁu(t)—F(bq(/o 9o (s) (8, L5 u(s), u(s))ds) |} + fo) (8, 15 u(t), u(t)) =0, te J=][0,1],

D&u(0) =0, wu(0)=u'(0)=---=u™20)=0, u(l)= /O u(s)dH(s), (9

has a unique solution
u(t) = /0 G(t, )by /0 o) (1 IS u(r) (7)) + /O ooy (7 (), () dr)ds,
(10)

Proof. By integrating both sides of (8) from 0 to ¢, and considering condition (9), we have

6o D3 u(t) + 4 / 0o o) (5 185 u(s), u(s))ds)] = — / Foo) (5, I8 u(s), u(s))ds,
consequently,
Dg.ult) + g / ooy (5, T u(s), u(5))ds) = — / Foto) (5. I8 u(s), u(s))ds),
S0,
Dg,u(t) + / (o) (5 T (), u(5))ds) + / Fote) (5. Iy u(s), u(s))ds) = 0. (11)

Considering the above equation (11), boundary condition (9) and lemma 2.2, we can conclude
the proof. O

3. Main results

In this section, we consider (1)-(2) in the real Banach space E = C]0, 1], with the
norm ||ul| = Jnax lu(t)|. Let P ={ue€ E: u(t) >0, t €[0,1]}, then P is a normal cone of

E. In the following, we denote h(t) =t~ 1.

Define
fio (tu,v),  t€[0,t1], Gio (L, u,v), t€[0,t1],
Fo(t,u,v) = ¢ fi,(t,u,v), teltjtiy), G7(tLu,v)=1q g,(tu,v), teltjtjr),
fir (tu,v), €€ [t 1], g, (tu,v), € [ty 1].

Remark 1 Define two operators A,B: P x P — E by

A, v)(t) = /0 Gt 5)oy /O TG (r, I8 u(r), (7)) dr)ds,

B(u,v)(t):/o G(t,s)d)q(/ Fo(r,Igiv(T),v(T))dr)ds.

0
Then Lemma 2.5 implies that a function v € E is a solution to fractional switched system

(1)-(2) if and only if u = A(u,u) + B(u,u).
Now we give some hypotheses of the switched system (1)-(2).
(H,) H : [0,1] — R is a nondecreasing function, Ay =1 — f01 s*rdH(s) > 0;
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(Hs) For any i € M, f;,g; : [0,1] x [0,400) x [0, +00) — [0, +00) are continuous, and for all
te[0,1], fi(t,0,1) #0;

(H3) For any i € M, fi(t,u,v),g;(t,u,v) are increasing in u € [0,+oc) for fixed ¢ € [0, 1]
and v € [0, +00), decreasing in v € [0, +00) for fixed ¢ € [0,1] and u € [0, +00);

(H,) For any i € M, there exists ¥(\) € (A, 1), such that for all ¢ € [0, 1], u,v € [0, +0),

gi (t7 Au’ )‘71’0) 2 (l[}(A))pilgi (t’ u, U)?

filt, Au, A 1w) > AL fi(t u,v), for all A € (0, 1),
(Hs) For any i € M, there exists a constant § > 0, such that for all ¢ € [0, 1], u,v € [0, 4+00),

gi(t,u,v) > 8 fi(t,u,v).

Remark 2 Conditions (H;)-(Hs) imply the following conditions of F? (¢, u,v) and G (t, u,v) :

(Hy) H : [0,1] — R is a nondecreasing function, Ay =1 — f01 s*"IdH(s) > 0;

(H%) F7,G? : [0,1]%[0, +00) %[0, +00) — [0, +00) are continuous, and for all ¢t € [0,1], F(¢,0,1) #
0;

(H}) Fo(t,u,v),G?(t,u,v) are increasing in u € [0, 4o00) for fixed ¢ € [0,1] and v € [0, +00),
decreasing in v € [0,400) for fixed t € [0, 1] and u € [0, +00);

(H}) there exists ¥(\) € (A, 1), such that for all ¢ € [0, 1], u,v € [0, +00),

G (t, Mu, N Ho) > ((N)PLGO (t, u,v),

Fo(t, Au, A=) > NP=LF9 (¢t u,v), for all A € (0,1),
(H{) For any ¢ € M, there exists a constant § > 0, such that for all t € [0,1], u,v € [0, +00),

G (t,u,v) > dF7 (t,u,v).

Theorem 3.1. Suppose that hypotheses (Hy)-(Hs) hold. Then for any finite switching signal
J — M, the problem (1)-(2) has a unique positive solution u* € Py, here h(t) =t~ t €

[0,1], and for any ug, vy € P, constructing successively the sequence as follows

Uni1(t) = [ Gt 8)[g(J5 GO (7, I§, un (7), 00 (7))d7)
+Qz)q(f() FU 7_7 Io+un( )v n( ))dT)]dS, n= 031a27' Y

Va1 () = [ G(t,9)[g(fi GO (7, I v (7), un (7))dr)
—i—qﬁq(ﬁ) Fo (1, I¢ vn(7), un(7))d7)lds, n=0,1,2,- -,
thus we have |uy, — u*|| = 0 and ||v, — u*|| = 0 as n — oo, that is, {u,(t)} and {v,(t)}
both converges to u*(t) uniformly for all t € [0, 1].

Proof. From hypothesis (H3) and the properties of the function G(¢, s), it can be concluded
that A: Px P — Pand B: P x P — P. Thus we set out to prove that A, B satisfy all
the assumptions of Lemma 2.1.

Firstly, we prove that A and B are two mixed monotone operators. Let u;,v; € P,i =
1,2 with u; > ug, v; < vo, this is equal to ui(t) > ua(t), v1(t) < va(t), t € [0,1], thus we

have
1

[ t — 8)* Ly (s)ds 1 t — 5)* tuy (s)ds
i [ =9 e > s [ -
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which imply
Ig+U1(t) 2 I€+U2(t).
Considering hypothesis (Hs), we have
fol (t,s ¢q fo gi(T, Io+u1( 7),v1(7))dT)ds
Zfo t75 ¢q f() gl 2(7_)71)2(7—)) T)d57 i=1,2,---,N,
[y G(t,8)bq ([ filr, Io+u1(7),v1(7))d7)
> fo (t, 8)pq fo fi(r, I ug(7), v2(7))dT)ds, i =1,2,--- | N,
which yield that
A(ula Ul)(t) > A(U'27 UQ)(t)a B(uh Ul)(t) > B<u2> UQ)(t)’
that is
A(ur,v1) > A(ug,va), B(ui,v1) > B(usg,vs).
Secondly, we prove that assumption (i) of Lemma 2.1 holds.
For any A € (0,1), and u,v € P, considering hypothesis (Hy4), one has
Jo Gt,8)00(Jy 9i(r, Mitcu(r), Fu(r)dr)ds
> [, G(t,18)¢q(fos(d)()\))p_lgi(ﬂ 1§ u(7), v(T))dT)ds (12)
A) fo G(t, s)¢q(fos gi(T, I u(r),v(7))dr)ds, i =1,2,--- , N,
which yields that
A A1) () > 9N Al o)1),
it means that
A(Au, N ) > (N A(u,v) for A € (0,1), u,v € P.
Thirdly, we prove that assumption (ii) of Lemma 2.1 holds.
For any A\ € (0,1), and u,v € P, considering hypothesis (Hy), we get
Jy G(t,9)0(Jy filr, MGu(r), Fo(r)dr)ds
> [, G(t, s)gzbq(fos AL f (7, I8 u(T), u(T))dT)ds (13)
=X fy G(t,8)bg(fS fi(r, Igu(r),0(r))dr)ds, i =1,2,--- N,
which yields that
B, A1) (8) > AB(u, v)(1),
that is,
B(Mu, \"*v) > AB(u,v) for A € (0,1), u,v € P.
Next, we prove that assumption (iii) of Lemma 2.1 holds.
In fact, since
1 ¢ o B(a, @) o, I'(«) _
a bt) = t— alald: ) t2a 1 _ t2a1.
510 = gy 0= 9o s = S0 [(20)
From Lemma 2.4 and hypothesis (Hs), for any ¢t € [0,1], ¢ =1,2,--- , N, we have
I Gl(t 8)ba( [y gi(, Iggh( ) h(r))dr)ds
:fo (t,s)dq fo gl 7F(2a) r2e=1 ra=b)dr)ds (14)

< Jy Gt 9)bq(fy 9i(7: 7525, 0)dr)ds
1
< h(t)d¢q(fo gi(T, p((ga)) ,0)dr).




64 Yang Yang

On the other hand, from Lemma 2.4 and hypothesis (H3), for any ¢ € [0, 1], one has

Jy Gl(t 8)oq(fi 9i(T, Ig+h( 7), h(7))dr)ds
= [y G(t.8)oq( [y gi(7 ’F(2o¢)) Za=l ro=lydr)ds
> fol (t,s ¢q s 9i(7,0,1)dr)ds
fo fo (7, $)dH (T)dq( [y 9i(7,0,1)dr)]ds, i=1,2,-

Fori=1,2,---, N, let

m; = d¢q(/0 gi (7-7 Il‘j((;;)) ) O)dT)’

1ol
mi=c [ ([ sro)it (o
o Jo
It follows from (Hs) and (Hs), one has

9i(7,0,1)d7)]ds.

S~

1 1 1
/ gi(s, [() ,0)ds > / 9i(s,0,1)ds > & fi(s,O7 1)ds,
0 0

I'(2«)

(15)

, N

(16)

(17)

condition f;(¢,0,1) # 0 implies that fol gi(s, IF((;(;)’ 0)ds > 0, fo 9i(s,0,1)ds > 0.

Thus,
m; >0, n;>0, i=12---N.
We write n = min{n;, i =1,2,--+, N} and m = max{m,;, i = 1,2, -,
m > 0. Therefore,
nh(t) < A(h, h) < mh(t),
this is equal to
A(h,h) € Py

Similarly, for any ¢ € [0, 1], one has

Jy Gt.8)dq(J§ filr, Igh(r), A(r))ir)ds
= fol (t,8)dq fO il ,IF((;;) a=l ra=bydr)ds
< fol (t,8)0q( fo Ji( 711—‘(2(103 0)dr)ds

d(bq fo fl 71" 202)70)d7)

Iy Gt 0nlfy £, 5. 1) Ay
= fO t S (bq fo f’L ’Il:‘((;;)) _177a_1)d7')d8
> fol (t,9)60(Jy (7,0, 1)

fofo (r,8)dH (T)g ([ fi(7,0,1)dr)]ds, i =1,2,---

Fori:1,2,-~~ ,N, let

,0)dr),

— dg, / fitr

m—c/ol[/o g(r, 8)dH (7 (;sq/fmonch)]d

It follows from (Hs), one has

/fz

ds>/f1501

(18)

N}, then n > 0 and

(19)

(20)
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condition f;(¢,0,1) # 0 implies that fo fi(s, 1F(;;)),O)ds > 0, fol fi(5,0,1)ds > 0.
Thus,
m; >0, m>0, i=1,2,--- N. (24)
We write m = min{7n;, ¢ =1,2,--+, N} and m = max{m;, i =1,2,---, N}, then 7= > 0 and
m > 0. Therefore,
nh(t) < B(h,h) < mh(t), (25)
this is equal to
B(h,h) € Py. (26)
Finally, we prove that assumption (iv) of Lemma 2.1 holds.
Foru,v € Pand t € Ji=1,2,---, N, it follows from (Hs), we have

1 s 1 s
/ G(t,s)(bq(/ gi (1, Igvu(r), v(7))dr)ds > 5/ G(t,s)%(/ fi(r, I§vu(r), v(7))dr)ds,
0 0 0 0 (27)
which yields that
A(u,v) > dB(u,v). (28)
By Lemma 2.1, the fractional switched system has a unique solution u* € P, here h =

te=1 ¢t €]0,1], and for any initial ug,vy € Pj,, we can construct successively two sequences
u, and v, by

Uns1(t) = fiy G(t,8)[bg([ Go(r) (T, Imunm,vn( )) T)
+¢q(fos fO’(T)(T7 Ig—%-un(T)a n( )) ] - Oa 1323

7)
e
vnt1(t) = fo (t,8)[0q fos 9o (1) (T, I(()XJrvn(T)vun(T))dT)
+dq fo Jor) (T, 1§00 (T), un (7))dT)]ds, n=0,1,2,-- -,
and the iterative sequence uy,(t), v, (t) converges uniformly to u* as n — oc. O

4. Example

Example 4.1. Consider the following fractional switched system.:

{Dg,ult )+/O 9o (s) (8, 15w u(s), u(s))ds} + fon) (¢, I u(t), u(t)) =0, t€J=10,1], (29)

Diul0) =0, w(0) =0 =0, u(1) = [ u(s)dH (o). (30

wherep=2, n=3, a = g, o: J—= M=/{1,2} is a finite switching signal and

gt u,v) =24+ (1+t)vVu+ (v+1)77;
g2 (t,u,v) = 1+ (2 + sint) Ju + (v —|—2)7%'

filt,u,v) = m +(w+1)" %

folt,u,v) = ——— 4 (v +2)75.

2+u
Let
0, telo,1),
H(t): 3, te[%v%)
I, tel3 1.
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In the following, we prove that all the conditions of Theorem 3.1 hold.
(1) fi u s) = 3u(}) + tu(3) and Ay = 1~ [} s3dH(s) = 1 - 3(1)% -
0.3002 > 0.
(2) It is obvious that f;,g; : [0,1] x [0,400) X [0,+00) — [0, +00) are continuous, i = 1,2,
and f1(t,0,1) =1#0, fa(t,0,1) =1 #0;
(8) fi,9i,i = 1,2 are increasing with respect to the first argument and decreasing with respect
to the second argument;
(4) on the other hand, for A € (0,1), t € [0,1], x,y € [0,+00), choosing (\) = A2 € (A1),
we have

w\»—A

g1(t, du, A1) + (1 +)VIu+ (A1)~

=2+
> A2+ (1+t)Vu+072) = »(N)agi(t, u,v).

1+ (2 + sint) ¥ Au+ (A\Lv) 5
> A3 (1+ (2 + sint)Ju+v6)
> A2(1+4 (24 sint) Ju+v"5) = Y(N)galt, u, v).

Similarly, for all A € (0,1), t € [0,1], =,y € [0,400), one has

— _ Au — —1 m _1
fl(t, )\’LL7>\ 1’[}) = m + (A 117}) 2 > A(m + v 2)
> )\(m + 'Uia) = )\fl(t,u, 'U).

folt, du, A "lo) = A 4 (/\‘1111)‘% > Mzte +v7%)
> Mgty tv7s) =Afa(tu,v).

(5) Taking 6o = 1, for allt € [0,1], z,y € [0, +00), we have

gtu,v) =24+ (14+t0)Ju+v 2 >2+Ju+v 2
_1
2 (2+t47;(1+u) +tv 2= fl(t,u,ﬂ)-

g2(t,u,v) =14 (24 sint)Yu+v6>14 Ju+v s
_1
> ot tvTs = fa(t,u,v).

Thus, all the conditions of Theorem 3.1 hold. Hence, we conclude that (29)(30) has one and
only one positive solution u* € Py, here h(t) = t3, t € [0,1].

5. Conclusion

This work focuses on developing a new approach to prove the existence of positive
solutions for the fractional switched system with boundary condition of Riemann-Stieltjes
integral. A notable technical challenge arises due to the hybrid equation, making the analysis
inherently more complex and innovative. Another highlight of this work is the construction of
the fractional switched equation (1), we add the fractional integral of the unknown function
u(t) to the nonlinear term g and f in (1). In addition, this work also highlights the iterative
schemes, which can approximate the solutions.
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