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POSITIVE SOLUTION FOR A FRACTIONAL SWITCHED SYSTEM

INVOLVING RIEMANN-STIELTJES INTEGRAL

Yang Yang1

We study positive solution for a fractional switched system involving Riemann-

Stieltjes integral. Our results cover the fractional differential equation with switched

nonlinearity, moreover, the Riemann-Stieltjes integral was involved in the boundary con-

dition. We obtain positive solution for the above system according to the fixed point

theorems for mixed monotone operators with perturbation. We obtain new iterative se-

quences to approach the positive solution. An example is given to illustrate the abstract

results.
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1. Introduction

In this article, we study fractional switched system involving Riemann-Stieltjes inte-

gral such as the following

{ϕp[Dα
0+u(t)+ϕq(

∫ t

0

gσ(s)(s, I
α
0+u(s), u(s))ds)]}

′+fσ(t)(t, I
α
0+u(t), u(t)) = 0, t ∈ J = [0, 1],

(1)

Dα
0+u(0) = 0, u(0) = u′(0) = · · · = u(n−2)(0) = 0, u(1) =

∫ 1

0

u(s)dH(s), (2)

which arises from some complex system of economic and engineering science, where n− 1 <

α ≤ n, n ∈ N, n ≥ 3, Dα
0+ , I

α
0+ are the Riemann-Liouville fractional derivative and

fractional integral of order α respectively, ϕp(s) = |s|p−2s, p > 1, (ϕp)
−1 = ϕq,

1
p + 1

q = 1,

the integrals from the boundary conditions are Riemann-Stieltjes integral with H(t) is a

bounded variation function. σ : J → M = {1, 2, · · ·, N} is a finite switching signal which is

a piecewise constant function depending on t. Corresponding to the switching signal σ(t),

we have the following switching sequence

{(i0, t0), · · ·, (ij , tj), · · ·, (ik, tk)|ij ∈ {1, 2, · · ·, N}, j = 0, 1, 2, · · ·, k},

which means that the ithj nonlinearity is activated when t ∈ [tj , tj+1) and the ithk nonlinearity

is activated when t ∈ [tk, 1]. Here x0 = 0, t0 = 0.

The study of solutions for fractional problem associated to Riemann-Stieltjes integral

has a long history. Its significance to mathematical physics is emphasized in applied fields
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such as population, dynamics, underground water flow, blood flow problems and chemical

engineering, see references [1-6]. Some authors have studied fractional problems with the

following boundary conditions

u(0) = u′(0) = · · · = u(n−2)(0) = 0, u(1) = γu(η),

u(0) = u′(0) = · · · = u(n−2)(0) = 0, u(1) = Σm−2
i=1 aiu(ηi),

u(0) = u′(0) = · · · = u(n−2)(0) = 0, u(1) =

∫ 1

0

u(s)ds,

u(0) = u′(0) = · · · = u(n−2)(0) = 0, u(1) =

∫ 1

0

u(s)ds+ γu(η).

We can see that the above boundary conditions are all special forms of (2), so it is very

important to study the solutions of (1)-(2).

In [7], Hao et al. discussed positive solutions for the following n-th order boundary

value problem with Riemann-Stieltjes integral

x(n)(t) + a(t)f(t, x(t)) = 0, 0 < t < 1,

x(k)(0) = 0, 0 ≤ k ≤ n− 2, x(1) =

∫ 1

0

x(s)dA(s).

Zhang and Han in [8] studied positive solutions for the following fractional boundary

value problem with Riemann-Stieltjes integral

Dα
0+x(t) + f(t, x(t)) = 0, n− 1 < α ≤ n, 0 < t < 1,

x(k)(0) = 0, 0 ≤ k ≤ n− 2, x(1) =

∫ 1

0

x(s)dA(s).

Haddouchi [9] investigated positive solutions for the following nonlocal boundary value

problem with Riemann-Stieltjes integral

Dα
0+u(t) + f(t, u(t)) = 0, 0 < t < 1,

u(0) = u′′(0) = 0, u(1) = µu(η) + β

∫ 1

0

u(s)dA(s).

In his monograph [10], Henderson considered the following system with the uncoupled

integral boundary conditions

Dα
0+u(t) + λf(t, u(t), v(t)) = 0, 0 < t < 1,

Dα
0+v(t) + µf(t, u(t), v(t)) = 0, 0 < t < 1,

u(0) = u′(0) = · · · = u(n−2)(0) = 0, u(1) =

∫ 1

0

u(s)dH(s),

v(0) = v′(0) = · · · = v(n−2)(0) = 0, v(1) =

∫ 1

0

v(s)dK(s).

On the other hand, switching systems have received attention from many scholars in

recent years owing to their applications in the fields of electrical and chemical engineering,

air traffic control, aircraft, automotive, etc. [11-13]. Switched systems are a particular kind

of hybrid systems that consist of a set of subsystems and a switching signal selecting a

subsystem to be active during an interval of time. Currently, research on switching systems

mainly focuses on stability analysis [14], H-infinity control [15]. As is known to all, existence
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and uniqueness of the solutions is fundamental and crucial to a switched system. In [16], the

authors considered the existence and uniqueness of solutions about switched Hamiltonian

systems. In [17], Ahmad et al. considered the existence and uniqueness of solutions for

coupled implicit ψ− Hilfer fractional switched systems. Li et al. [18] derived the existence

and uniqueness of its solutions under some time-varying switching law. We can see that the

above literature discusses the existence of solutions for the switched system, but for practical

problem, positive solutions are more meaningful. Until now, there are few literatures on the

existence of positive solutions for the switched system [19-21].

Li et al. [19] studied the positive solutions for the following switched system

x′′(t) + fσ(t)(t, x(t)) = 0, t ∈ J = [0, 1],

x(0) = 0, x(1) =

∫ 1

0

a(s)x(s)ds.

Guo [20] concerned with the positive solutions for the following p-Laplacian switched

system

Dβ
0+ϕp(D

α
0+u(t)) = fσ(t)(t, u(t), D

γ
0+u(t)), t ∈ J = [0, 1],

u(0) = µ

∫ 1

0

u(s)ds+ λu(ξ), Dα
0+u(0) = kDα

0+u(η), ξ, η ∈ [0, 1].

However, positive solutions for the fractional switched system involving Riemann-

Stieltjes integral have not been studied till now. In this article, we shall considered the

existence of positive solutions for the system (1) (2) according to the fixed point theorems

for mixed monotone operators.

2. The preliminary lemmas

Definition 2.1. [23] The fractional integral of order α > 0 of a function g : (0,+∞) → R

denoted by Iα0+g is expressed as

Iα0+g(t) =
1

Γ(α)

∫ t

0

(t− s)α−1g(s)ds, t > 0,

provided the right hand side is pointwise defined on (0,+∞).

Definition 2.2. [23] For a function g : (0,+∞) → R, the Riemann-Liouville fractional

derivative of order α > 0 denoted by Dα
0+g is expressed as

Dα
0+g(t) =

1

Γ(n− α)
(
d

dt
)n

∫ t

0

g(s)

(t− s)α−n+1
ds, t > 0,

here n = [α] + 1, provided the right hand side is pointwise defined on (0,+∞).

Suppose that E is a real Banach space, P is a cone of E,θ represents the zero element

in E. For all x, y ∈ E, θ ≤ x ≤ y implies ∥x∥ ≤ N∥y∥, where N is a positive constant,

we call P a normal cone. For all x, y ∈ E, the notation x ∼ y means that there exist

λ > 0 and µ > 0 satisfing λx ≤ y ≤ µx. Evidently, ∼ is an equivalence relation. Suppose

h > θ (i.e., h ≥ θ and h ̸= θ), the set Ph defined as Ph = {x ∈ E|x ∼ h}. Clearly, Ph ⊂ P.
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Definition 2.3. [24] We call T : P × P → P a mixed monotone operator if T (x, y) is

increasing in x and decreasing in y, i.e., ui, vi(i = 1, 2) ∈ P, u1 ≤ u2, v1 ≥ v2 imply

T (u1, v1) ≤ T (u2, v2). If x belongs to P and satisfies T (x, x) = x, we call x a fixed point

of T.

Lemma 2.1. [24] Let P be a normal cone in E. Assume that A,B : P × P → P are two

mixed monotone operators and satisfy the following conditions:

(i) for any λ ∈ (0, 1), there exists a number ψ(λ) ∈ (λ, 1] such that

A(λx, λ−1y) ≥ ψ(λ)A(x, y), x, y ∈ P ;

(ii) for any λ ∈ (0, 1), x, y ∈ P, B(λx, λ−1y) ≥ λB(x, y);

(iii) there exists h ∈ P with h > θ such that A(h, h) ∈ Ph, B(h, h) ∈ Ph;

(iv) there exists a constant δ > 0 such that for all x, y ∈ P, A(x, y) ≥ δB(x, y).

Then the operator equation A(x, x) + B(x, x) = x has a unique solution x∗ ∈ Ph, and for

any initial values x0, y0 ∈ Ph, constructing successively the sequences

xn = A(xn−1, yn−1) +B(xn−1, yn−1),

yn = A(yn−1, xn−1) +B(yn−1, xn−1), n = 1, 2, · · ·,

we have xn → x∗ and yn → x∗ as n→ ∞.

Lemma 2.2. [8] Let ∆1 = 1 −
∫ 1

0
sα−1dH(s) ̸= 0, for h ∈ C(0, 1) ∩ L1[0, 1], the unique

solution of the fractional switched system

Dα
0+u(t) + h(t) = 0, 0 < t < 1, (3)

u(0) = u′(0) = · · · = u(n−2)(0) = 0, u(1) =

∫ 1

0

u(s)dH(s), (4)

is given by

u(t) =

∫ 1

0

G(t, s)h(s)ds, (5)

here

G(t, s) = g(t, s) +
tα−1

∆1

∫ 1

0

g(τ, s)dH(τ), (t, s) ∈ [0, 1]× [0, 1], (6)

and

g(t, s) =
1

Γ(α)

{
tα−1(1− s)α−1 − (t− s)α−1, 0 ≤ s ≤ t ≤ 1,

tα−1(1− s)α−1, 0 ≤ t ≤ s ≤ 1.
(7)

Lemma 2.3. [8] The function g(t, s) given by (7) satisfied:

(i) g(t, s) = g(1− s, 1− t), for t, s ∈ [0, 1];

(ii) tα−1(1− t)s(1− s)α−1 ≤ Γ(α)g(t, s) ≤ (α− 1)tα−1(1− t).

Lemma 2.4. [8] Let F = max0≤s≤1

∫ 1

0
g(τ, s)dH(τ), if H : [0, 1] → R is a nondecreasing

function and ∆1 > 0, the Green’s function defined by (6) has the following properties:

(i) G(t, s) > 0 for each s, t ∈ (0, 1);

(ii) h(t)c
∫ 1

0
g(τ, s)dH(τ) ≤ G(t, s) ≤ h(t)d for s, t ∈ [0, 1];

where c = 1
∆1
, d = F

∆1
+ 1

Γ(α−1) , h(t) = tα−1.
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Lemma 2.5. The fractional switched system

{ϕp[Dα
0+u(t)+ϕq(

∫ t

0

gσ(s)(s, I
α
0+u(s), u(s))ds)]}

′+fσ(t)(t, I
α
0+u(t), u(t)) = 0, t ∈ J = [0, 1],

(8)

Dα
0+u(0) = 0, u(0) = u′(0) = · · · = u(n−2)(0) = 0, u(1) =

∫ 1

0

u(s)dH(s), (9)

has a unique solution

u(t) =

∫ 1

0

G(t, s)[ϕq(

∫ s

0

gσ(τ)(τ, I
α
0+u(τ), u(τ))dτ) + ϕq(

∫ s

0

fσ(τ)(τ, I
α
0+u(τ), u(τ))dτ)]ds.

(10)

Proof. By integrating both sides of (8) from 0 to t, and considering condition (9), we have

ϕp[D
α
0+u(t) + ϕq(

∫ t

0

gσ(s)(s, I
α
0+u(s), u(s))ds)] = −

∫ t

0

fσ(s)(s, I
α
0+u(s), u(s))ds,

consequently,

Dα
0+u(t) + ϕq(

∫ t

0

gσ(s)(s, I
α
0+u(s), u(s))ds) = −ϕq(

∫ t

0

fσ(s)(s, I
α
0+u(s), u(s))ds),

so,

Dα
0+u(t) + ϕq(

∫ t

0

gσ(s)(s, I
α
0+u(s), u(s))ds) + ϕq(

∫ t

0

fσ(s)(s, I
α
0+u(s), u(s))ds) = 0. (11)

Considering the above equation (11), boundary condition (9) and lemma 2.2, we can conclude

the proof. □

3. Main results

In this section, we consider (1)-(2) in the real Banach space E = C[0, 1], with the

norm ∥u∥ = max
0≤t≤1

|u(t)|. Let P = {u ∈ E : u(t) ≥ 0, t ∈ [0, 1]}, then P is a normal cone of

E. In the following, we denote h(t) = tα−1.

Define

Fσ(t, u, v) =



fi0(t, u, v), t ∈ [0, t1],
...

fij (t, u, v), t ∈ [tj , tj+1),
...

fik(t, u, v), t ∈ [tk, 1],

Gσ(t, u, v) =



gi0(t, u, v), t ∈ [0, t1],
...

gij (t, u, v), t ∈ [tj , tj+1),
...

gik(t, u, v), t ∈ [tk, 1].

Remark 1 Define two operators A,B : P × P → E by

A(u, v)(t) =

∫ 1

0

G(t, s)ϕq(

∫ s

0

Gσ(τ, Iα0+u(τ), v(τ))dτ)ds,

B(u, v)(t) =

∫ 1

0

G(t, s)ϕq(

∫ s

0

Fσ(τ, Iα0+v(τ), v(τ))dτ)ds.

Then Lemma 2.5 implies that a function u ∈ E is a solution to fractional switched system

(1)-(2) if and only if u = A(u, u) +B(u, u).

Now we give some hypotheses of the switched system (1)-(2).

(H1) H : [0, 1] → R is a nondecreasing function, ∆1 = 1−
∫ 1

0
sα−1dH(s) > 0;



62 Yang Yang

(H2) For any i ∈M, fi, gi : [0, 1]× [0,+∞)× [0,+∞) → [0,+∞) are continuous, and for all

t ∈ [0, 1], fi(t, 0, 1) ̸= 0;

(H3) For any i ∈ M, fi(t, u, v), gi(t, u, v) are increasing in u ∈ [0,+∞) for fixed t ∈ [0, 1]

and v ∈ [0,+∞), decreasing in v ∈ [0,+∞) for fixed t ∈ [0, 1] and u ∈ [0,+∞);

(H4) For any i ∈M, there exists ψ(λ) ∈ (λ, 1), such that for all t ∈ [0, 1], u, v ∈ [0,+∞),

gi(t, λu, λ
−1v) ≥ (ψ(λ))p−1gi(t, u, v),

fi(t, λu, λ
−1v) ≥ λp−1fi(t, u, v), for all λ ∈ (0, 1),

(H5) For any i ∈M, there exists a constant δ > 0, such that for all t ∈ [0, 1], u, v ∈ [0,+∞),

gi(t, u, v) ≥ δfi(t, u, v).

Remark 2 Conditions (H1)-(H5) imply the following conditions of Fσ(t, u, v) andGσ(t, u, v) :

(H ′
1) H : [0, 1] → R is a nondecreasing function, ∆1 = 1−

∫ 1

0
sα−1dH(s) > 0;

(H ′
2) F

σ, Gσ : [0, 1]×[0,+∞)×[0,+∞) → [0,+∞) are continuous, and for all t ∈ [0, 1], Fσ(t, 0, 1) ̸=
0;

(H ′
3) F

σ(t, u, v), Gσ(t, u, v) are increasing in u ∈ [0,+∞) for fixed t ∈ [0, 1] and v ∈ [0,+∞),

decreasing in v ∈ [0,+∞) for fixed t ∈ [0, 1] and u ∈ [0,+∞);

(H ′
4) there exists ψ(λ) ∈ (λ, 1), such that for all t ∈ [0, 1], u, v ∈ [0,+∞),

Gσ(t, λu, λ−1v) ≥ (ψ(λ))p−1Gσ(t, u, v),

Fσ(t, λu, λ−1v) ≥ λp−1Fσ(t, u, v), for all λ ∈ (0, 1),

(H ′
5) For any i ∈M, there exists a constant δ > 0, such that for all t ∈ [0, 1], u, v ∈ [0,+∞),

Gσ(t, u, v) ≥ δFσ(t, u, v).

Theorem 3.1. Suppose that hypotheses (H1)-(H5) hold. Then for any finite switching signal

J → M, the problem (1)-(2) has a unique positive solution u∗ ∈ Ph, here h(t) = tα−1, t ∈
[0, 1], and for any u0, v0 ∈ Ph, constructing successively the sequence as follows

un+1(t) =
∫ 1

0
G(t, s)[ϕq(

∫ s

0
Gσ(τ, Iα0+un(τ), vn(τ))dτ)

+ϕq(
∫ s

0
Fσ(τ, Iα0+un(τ), vn(τ))dτ)]ds, n = 0, 1, 2, · · ·,

vn+1(t) =
∫ 1

0
G(t, s)[ϕq(

∫ s

0
Gσ(τ, Iα0+vn(τ), un(τ))dτ)

+ϕq(
∫ s

0
Fσ(τ, Iα0+vn(τ), un(τ))dτ)]ds, n = 0, 1, 2, · · ·,

thus we have ∥un − u∗∥ → 0 and ∥vn − u∗∥ → 0 as n → ∞, that is, {un(t)} and {vn(t)}
both converges to u∗(t) uniformly for all t ∈ [0, 1].

Proof. From hypothesis (H2) and the properties of the function G(t, s), it can be concluded

that A : P × P → P and B : P × P → P. Thus we set out to prove that A,B satisfy all

the assumptions of Lemma 2.1.

Firstly, we prove that A and B are two mixed monotone operators. Let ui, vi ∈ P, i =

1, 2 with u1 ≥ u2, v1 ≤ v2, this is equal to u1(t) ≥ u2(t), v1(t) ≤ v2(t), t ∈ [0, 1], thus we

have
1

Γ(α)

∫ t

0

(t− s)α−1u1(s)ds ≥
1

Γ(α)

∫ t

0

(t− s)α−1u1(s)ds,



Positive solution for a fractional switched system involving Riemann-Stieltjes integral 63

which imply

Iα0+u1(t) ≥ Iα0+u2(t).

Considering hypothesis (H3), we have∫ 1

0
G(t, s)ϕq(

∫ s

0
gi(τ, I

α
0+u1(τ), v1(τ))dτ)ds

≥
∫ 1

0
G(t, s)ϕq(

∫ s

0
gi(τ, I

α
0+u2(τ), v2(τ))dτ)ds, i = 1, 2, · · · , N,∫ 1

0
G(t, s)ϕq(

∫ s

0
fi(τ, I

α
0+u1(τ), v1(τ))dτ)ds

≥
∫ 1

0
G(t, s)ϕq(

∫ s

0
fi(τ, I

α
0+u2(τ), v2(τ))dτ)ds, i = 1, 2, · · · , N,

which yield that

A(u1, v1)(t) ≥ A(u2, v2)(t), B(u1, v1)(t) ≥ B(u2, v2)(t),

that is

A(u1, v1) ≥ A(u2, v2), B(u1, v1) ≥ B(u2, v2).

Secondly, we prove that assumption (i) of Lemma 2.1 holds.

For any λ ∈ (0, 1), and u, v ∈ P, considering hypothesis (H4), one has∫ 1

0
G(t, s)ϕq(

∫ s

0
gi(τ, λI

α
0+u(τ),

1
λv(τ))dτ)ds

≥
∫ 1

0
G(t, s)ϕq(

∫ s

0
(ψ(λ))p−1gi(τ, I

α
0+u(τ), v(τ))dτ)ds

= ψ(λ)
∫ 1

0
G(t, s)ϕq(

∫ s

0
gi(τ, I

α
0+u(τ), v(τ))dτ)ds, i = 1, 2, · · · , N,

(12)

which yields that

A(λu, λ−1v)(t) ≥ ψ(λ)A(u, v)(t),

it means that

A(λu, λ−1v) ≥ ψ(λ)A(u, v) for λ ∈ (0, 1), u, v ∈ P.

Thirdly, we prove that assumption (ii) of Lemma 2.1 holds.

For any λ ∈ (0, 1), and u, v ∈ P, considering hypothesis (H4), we get∫ 1

0
G(t, s)ϕq(

∫ s

0
fi(τ, λI

α
0+u(τ),

1
λv(τ))dτ)ds

≥
∫ 1

0
G(t, s)ϕq(

∫ s

0
λp−1fi(τ, I

α
0+u(τ), v(τ))dτ)ds

= λ
∫ 1

0
G(t, s)ϕq(

∫ s

0
fi(τ, I

α
0+u(τ), v(τ))dτ)ds, i = 1, 2, · · · , N,

(13)

which yields that

B(λu, λ−1v)(t) ≥ λB(u, v)(t),

that is,

B(λu, λ−1v) ≥ λB(u, v) for λ ∈ (0, 1), u, v ∈ P.

Next, we prove that assumption (iii) of Lemma 2.1 holds.

In fact, since

Iα0+h(t) =
1

Γ(α)

∫ t

0

(t− s)α−1sα−1ds =
B(α, α)

Γ(α)
t2α−1 =

Γ(α)

Γ(2α)
t2α−1.

From Lemma 2.4 and hypothesis (H3), for any t ∈ [0, 1], i = 1, 2, · · · , N, we have∫ 1

0
G(t, s)ϕq(

∫ s

0
gi(τ, I

α
0+h(τ), h(τ))dτ)ds

=
∫ 1

0
G(t, s)ϕq(

∫ s

0
gi(τ,

Γ(α)
Γ(2α)τ

2α−1, τα−1)dτ)ds

≤
∫ 1

0
G(t, s)ϕq(

∫ 1

0
gi(τ,

Γ(α)
Γ(2α) , 0)dτ)ds

≤ h(t)dϕq(
∫ 1

0
gi(τ,

Γ(α)
Γ(2α) , 0)dτ).

(14)
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On the other hand, from Lemma 2.4 and hypothesis (H3), for any t ∈ [0, 1], one has∫ 1

0
G(t, s)ϕq(

∫ s

0
gi(τ, I

α
0+h(τ), h(τ))dτ)ds

=
∫ 1

0
G(t, s)ϕq(

∫ s

0
gi(τ,

Γ(α)
Γ(2α)τ

2α−1, τα−1)dτ)ds

≥
∫ 1

0
G(t, s)ϕq(

∫ s

0
gi(τ, 0, 1)dτ)ds

≥ h(t)c
∫ 1

0
[
∫ 1

0
g(τ, s)dH(τ)ϕq(

∫ s

0
gi(τ, 0, 1)dτ)]ds, i = 1, 2, · · · , N.

(15)

For i = 1, 2, · · · , N, let

mi = dϕq(

∫ 1

0

gi(τ,
Γ(α)

Γ(2α)
, 0)dτ), (16)

ni = c

∫ 1

0

[

∫ 1

0

g(τ, s)dH(τ)ϕq(

∫ s

0

gi(τ, 0, 1)dτ)]ds. (17)

It follows from (H3) and (H5), one has∫ 1

0

gi(s,
Γ(α)

Γ(2α)
, 0)ds ≥

∫ 1

0

gi(s, 0, 1)ds ≥ δ

∫ 1

0

fi(s, 0, 1)ds,

condition fi(t, 0, 1) ̸= 0 implies that
∫ 1

0
gi(s,

Γ(α)
Γ(2α) , 0)ds > 0,

∫ 1

0
gi(s, 0, 1)ds > 0.

Thus,

mi > 0, ni > 0, i = 1, 2, · · ·, N. (18)

We write n = min{ni, i = 1, 2, · · ·, N} and m = max{mi, i = 1, 2, · · ·, N}, then n > 0 and

m > 0. Therefore,

nh(t) ≤ A(h, h) ≤ mh(t), (19)

this is equal to

A(h, h) ∈ Ph. (20)

Similarly, for any t ∈ [0, 1], one has∫ 1

0
G(t, s)ϕq(

∫ s

0
fi(τ, I

α
0+h(τ), h(τ))dτ)ds

=
∫ 1

0
G(t, s)ϕq(

∫ s

0
fi(τ,

Γ(α)
Γ(2α)τ

2α−1, τα−1)dτ)ds

≤
∫ 1

0
G(t, s)ϕq(

∫ 1

0
fi(τ,

Γ(α)
Γ(2α) , 0)dτ)ds

≤ h(t)dϕq(
∫ 1

0
fi(τ,

Γ(α)
Γ(2α) , 0)dτ).∫ 1

0
G(t, s)ϕq(

∫ s

0
fi(τ, I

α
0+h(τ), h(τ))dτ)ds

=
∫ 1

0
G(t, s)ϕq(

∫ s

0
fi(τ,

Γ(α)
Γ(2α)τ

2α−1, τα−1)dτ)ds

≥
∫ 1

0
G(t, s)ϕq(

∫ s

0
fi(τ, 0, 1)dτ)ds

≥ h(t)c
∫ 1

0
[
∫ 1

0
g(τ, s)dH(τ)ϕq(

∫ s

0
fi(τ, 0, 1)dτ)]ds, i = 1, 2, · · · , N.

(21)

For i = 1, 2, · · · , N, let

mi = dϕq(

∫ 1

0

fi(τ,
Γ(α)

Γ(2α)
, 0)dτ), (22)

ni = c

∫ 1

0

[

∫ 1

0

g(τ, s)dH(τ)ϕq(

∫ s

0

fi(τ, 0, 1)dτ)]ds. (23)

It follows from (H3), one has∫ 1

0

fi(s,
Γ(α)

Γ(2α)
, 0)ds ≥

∫ 1

0

fi(s, 0, 1)ds,
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condition fi(t, 0, 1) ̸= 0 implies that
∫ 1

0
fi(s,

Γ(α)
Γ(2α) , 0)ds > 0,

∫ 1

0
fi(s, 0, 1)ds > 0.

Thus,

mi > 0, ni > 0, i = 1, 2, · · ·, N. (24)

We write n = min{ni, i = 1, 2, · · ·, N} and m = max{mi, i = 1, 2, · · ·, N}, then n > 0 and

m > 0. Therefore,

nh(t) ≤ B(h, h) ≤ mh(t), (25)

this is equal to

B(h, h) ∈ Ph. (26)

Finally, we prove that assumption (iv) of Lemma 2.1 holds.

For u, v ∈ P and t ∈ J, i = 1, 2, · · ·, N, it follows from (H5), we have∫ 1

0

G(t, s)ϕq(

∫ s

0

gi(τ, I
α
0+u(τ), v(τ))dτ)ds ≥ δ

∫ 1

0

G(t, s)ϕq(

∫ s

0

fi(τ, I
α
0+u(τ), v(τ))dτ)ds,

(27)

which yields that

A(u, v) ≥ δB(u, v). (28)

By Lemma 2.1, the fractional switched system has a unique solution u∗ ∈ Ph, here h =

tα−1, t ∈ [0, 1], and for any initial u0, v0 ∈ Ph, we can construct successively two sequences

un and vn by

un+1(t) =
∫ 1

0
G(t, s)[ϕq(

∫ s

0
gσ(τ)(τ, I

α
0+un(τ), vn(τ))dτ)

+ϕq(
∫ s

0
fσ(τ)(τ, I

α
0+un(τ), vn(τ))dτ)]ds, n = 0, 1, 2, · · ·,

vn+1(t) =
∫ 1

0
G(t, s)[ϕq(

∫ s

0
gσ(τ)(τ, I

α
0+vn(τ), un(τ))dτ)

+ϕq(
∫ s

0
fσ(τ)(τ, I

α
0+vn(τ), un(τ))dτ)]ds, n = 0, 1, 2, · · ·,

and the iterative sequence un(t), vn(t) converges uniformly to u∗ as n→ ∞. □

4. Example

Example 4.1. Consider the following fractional switched system:

{D
5
2

0+u(t)+

∫ t

0

gσ(s)(s, I
α
0+u(s), u(s))ds}

′+ fσ(t)(t, I
α
0+u(t), u(t)) = 0, t ∈ J = [0, 1], (29)

D
5
2

0+u(0) = 0, u(0) = u′(0) = 0, u(1) =

∫ 1

0

u(s)dH(s), (30)

where p = 2, n = 3, α = 5
2 , σ : J →M = {1, 2} is a finite switching signal and

g1(t, u, v) = 2 + (1 + t)
√
u+ (v + 1)−

1
2 ;

g2(t, u, v) = 1 + (2 + sint) 3
√
u+ (v + 2)−

1
6 ;

f1(t, u, v) =
u

(2 + t4)(1 + u)
+ (v + 1)−

1
2 ;

f2(t, u, v) =
u

2 + u
+ (v + 2)−

1
6 .

Let

H(t) =


0, t ∈ [0, 14 ),

3, t ∈ [ 14 ,
3
4 ),

7
2 , t ∈ [ 34 , 1].
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In the following, we prove that all the conditions of Theorem 3.1 hold.

(1)
∫ 1

0
u(s)dH(s) = 3u( 14 ) +

1
2u(

3
4 ) and ∆1 = 1 −

∫ 1

0
s

3
2 dH(s) = 1 − 3( 14 )

3
2 − 1

2 (
3
4 )

3
2 ≈

0.3002 > 0.

(2) It is obvious that fi, gi : [0, 1] × [0,+∞) × [0,+∞) → [0,+∞) are continuous, i = 1, 2,

and f1(t, 0, 1) = 1 ̸= 0, f2(t, 0, 1) = 1 ̸= 0;

(3) fi, gi, i = 1, 2 are increasing with respect to the first argument and decreasing with respect

to the second argument;

(4) on the other hand, for λ ∈ (0, 1), t ∈ [0, 1], x, y ∈ [0,+∞), choosing ψ(λ) = λ
1
2 ∈ (λ, 1),

we have

g1(t, λu, λ
−1v) = 2 + (1 + t)

√
λu+ (λ−1v)−

1
2

≥ λ
1
2 (2 + (1 + t)

√
u+ v−

1
2 ) = ψ(λ)g1(t, u, v).

g2(t, λu, λ
−1v) = 1 + (2 + sint) 3

√
λu+ (λ−1v)−

1
6

≥ λ
1
3 (1 + (2 + sint) 3

√
u+ v−

1
6 )

≥ λ
1
2 (1 + (2 + sint) 3

√
u+ v−

1
6 ) = ψ(λ)g2(t, u, v).

Similarly, for all λ ∈ (0, 1), t ∈ [0, 1], x, y ∈ [0,+∞), one has

f1(t, λu, λ
−1v) = λu

(2+t4)(1+λu) + (λ−1v)−
1
2 > λ( u

(2+t4)(1+λu) + v−
1
2 )

> λ( u
(2+t4)(1+u) + v−

1
2 ) = λf1(t, u, v).

f2(t, λu, λ
−1v) = λu

2+λu + (λ−1v)−
1
6 > λ( u

2+λu + v−
1
6 )

> λ( u
2+u + v−

1
6 ) = λf2(t, u, v).

(5) Taking δ0 = 1, for all t ∈ [0, 1], x, y ∈ [0,+∞), we have

g1(t, u, v) = 2 + (1 + t)
√
u+ v−

1
2 ≥ 2 +

√
u+ v−

1
2

≥ u
(2+t4)(1+u) + v−

1
2 = f1(t, u, v).

g2(t, u, v) = 1 + (2 + sint) 3
√
u+ v−

1
6 ≥ 1 + 3

√
u+ v−

1
6

≥ u
2+u + v−

1
6 = f2(t, u, v).

Thus, all the conditions of Theorem 3.1 hold. Hence, we conclude that (29)(30) has one and

only one positive solution u∗ ∈ Ph, here h(t) = t
3
2 , t ∈ [0, 1].

5. Conclusion

This work focuses on developing a new approach to prove the existence of positive

solutions for the fractional switched system with boundary condition of Riemann-Stieltjes

integral. A notable technical challenge arises due to the hybrid equation, making the analysis

inherently more complex and innovative. Another highlight of this work is the construction of

the fractional switched equation (1), we add the fractional integral of the unknown function

u(t) to the nonlinear term g and f in (1). In addition, this work also highlights the iterative

schemes, which can approximate the solutions.
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