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ON THE MULTIPLIER ALGEBRA OF FRECHET ALGEBRAS

Z. Alimohammadi’, A. Rejali®

Let A be a Fréchet algebra and let M(A) denote the algebra of all multipliers of
A. In this paper, we show that if A has a bounded approzimate identity, then M(A) is
a Fréchet algebra with respect to the strict topology. Under this topology, we then study
the spectrum of M(A) and provide some examples in this field. Finally, we introduce
and study the notion of p-multiplier amenability of A, where ¢ is a complex-valued
homomorphism on A.

Keywords: Multiplier, Fréchet algebra, p-amenability.
MSC2010: 46HO05, 46J05, 43A07, 43A22.

1. Introduction and preliminaries

The class of Fréchet algebras which is an important class of locally convex algebras
has been widely studied by many authors. For a full understanding of Fréchet algebras, one
may refer to [8, 10]. In the class of Banach algebras, there are many concepts which were
generalized to the Fréchet case. For example, the notion of amenability of Fréchet algebras
was introduced by Helemskii [9] and studied by Pirkovskii [19]. He generalized some theo-
rems about amenability of Banach algebras such as strictly flat Banach A-bimodule, virtual
diagonal and approximate diagonal of Banach algebras, to Fréchet algebras. Lawson and
Read [15], introduced and studied the notions of approximate amenability and approximate
contractibility of Fréchet algebras. Moreover, Abtahi et al. [4] studied the notion of weak
amenability of Fréchet algebras. Furthermore, according to the basic definition of Segal
algebras and abstract Segal algebras, recently they introduced the notion of Segal Fréchet
algebra in the Fréchet algebra (A, pe)een; see [3] for more information. Also, Ranjbari and
Rejali generalized the concept of ideal amenability in the class of Fréchet algebras in [20].

In this paper, we study the notion of multiplier algebra of Fréchet algebras. Given a
Banach algebra A, denote by A(A) the spectrum of A consisting of all nonzero characters
on A. Let ¢ € A(A). Following [13], A is called p-amenable if there exists m € A* such
that m(p) =1 and m(f - a) = p(a)m(f) for all f € A* and a € A. Also, A is p-amenable if
and only if for every Banach A-bimodule X with the left module action

a-x=¢(a)x (a €A, zeX),

every continuous derivation from A into X™* is inner. This notion of amenability was recently
generalized by Rejali et al. [2] to the Fréchet case.

The multipliers for topological algebras was studied by Johnson; see [11] and [12].
Many other authors investigated this concept in the case of C*-algebras and Banach algebras.
We refer the reader to [5], [7], [21], and [22] for more information.

Let A be a Fréchet algebra. Consider M (A), the algebra of all multipliers of A. In
section 2, we show that if A has a bounded approximate identity, then M (A) is also a Fréchet
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algebra under the strict topology. In section 3, we study the spectrum of M (A). We prove
that

AM(A) ={¢:p e A(A)},
if M(A) is equipped with the strict topology. Finally, in section 4, we show that -
amenability of A is equivalent to @-amenability of M (A).

Before proceeding to the main results, we provide some basic definitions and frame-
works, which will be required throughout the paper. Following [8] and [18], a complete
topological algebra A is a Fréchet algebra if its topology is produced by a countable fam-
ily of increasing submultiplicative seminorms (ps)sen. Note that (p)een is a fundamental
system of continuous seminorms. In other words, it has the following properties:

(i) for every a € A with a # 0, there exists an ¢ € N such that py(a) > 0;
(i) for all £,n € N, there exist m € N and also M > 0 such that

max(pe(a), pu(a)) < Mpm(a)  (a € A).

We denote by (A, pe) the Fréchet algebra A with the fundamental system of seminorms
(pe)een. In general, every locally convex Hausdorff space has a fundamental system of
seminorms. Throughout the paper, we assume that all locally convex spaces are Hausdorff.
Let E and F be locally convex spaces with the fundamental system of seminorms (pa)aca
and (gg)pen, respectively. By [18, Proposition 22.6], for every linear mapping T': E — F,
the following assertions are equivalent:

(i) T € B(E, F), i.e. T is continuous;

(ii) T is continuous at 0;

(iii) for each 8 € B there exist an a € A and M > 0, such that

a5(T(z)) < Mpa(z)  (z € E).
In this paper, B(E, E) is denoted by B(E).

2. Multipliers of Fréchet algebras
Let (A,pe) be a Fréchet algebra. We recall that the multiplier algebra of A, denoted
by M(A), is
M(A)={T € B(A) : T(ab) =T(a)b=aT(b) (a,be A)}.
Suppose that A is faithful, that is
{acA:a-A=A-a={0}} ={0}.

In this case A = {L, : a € A}, where L, is defined on A as L,(b) = ab (b € A). Moreover, if
A is commutative, then {L, : a € A} C M(A). Let A has a bounded approximate identity
(éa)aea. Clearly, A is faithful. Let ¢ € N. Define

q(T) = liénpg(Tea) (T € M(A)) (1)

By applying [18, Remark 23.2], sup,cp pe(Teq) < 00, and so (1) is well-defined. It is easy
to see that g is a continuous seminorm on M(A). Also, q/(L,) = pe(a) for every a € A.
Now, the following theorem is immediate.

Theorem 2.1. Let (A, ps) be a commutative Fréchet algebra with a bounded approzimate
identity (eq)acn- Consider the seminorms (qe¢)een defined as in (1). Then the following
statements hold.

(i) (M(A),q) is a Fréchet algebra.
(ii) A is dense in M(A) with respect to the topology generated by (qe)een-
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Proof. (i). First, we prove that (g¢)sen is a fundamental system of submultiplicative semi-
norms. Let T be a nonzero element in M(A). We then have lim,, Te, # 0. Thus, there
exists £y € N such that

lim g, (T) = Tim pg, (Teq) 7 0.

Furthermore, if ¢1,¢s € N with £; < ¢, then py, (Teq) < pe,(Te,) for each a € A. Conse-
quently, g, (T') < q¢,(T). Therefore, by [18, Lemma 22.4], (¢¢)¢en is a fundamental system
of seminorms. Also, if T, S € M(A) and ¢ € N, then

q(T-8) = limpe((T-S)ea)
= lim liénpz((T -S)(eaes))
- 11(1};111?1p¢((T6a)(565))
< hglhénpg(Tea)pf(Seﬁ)

= q(T)q(S).

It remains to show that (M(A),q) is complete. Let (T},)nen be a Cauchy sequence in
M(A). Given € > 0, there exists ng € N such that for every ny,ny > ng we have

@(Tp, —Tn,) = 1i£1pg(Tnlea —Th,eq) <€ (£ €N).
Since (A,py¢) is complete, there exists a € A such that lim, py(T,eq — a) —, 0. Thus, for
each ¢ € N we have
q(T, — L) = liglpg(Tnea —aey)
< liglpg(Tnea —a)+ liénpg(a —aey)
—n 0.
(ii). Let T € M(A). For each £ € N,
q¢(T) = limp,(Teq) = lim ge(Lre,)-
Therefore, A is dense in M (A). O

Corollary 2.1. Let (A, | - ||la) be a Banach algebra with a bounded approzimate identity
(ea)aca- Then, M(A) is a Fréchet algebra with respect to the topology generated by the
seminorm

TN = tim [Tealla (T € M(A)).
Remark 2.1. Let (A, || |l.a) be a Banach algebra. Following [14], M (A) is a Banach algebra
with respect to the operator norm || - ||arca), defined by
ITascay =sup {[|Tal :a € A, [la]| <1} (T € M(A)).
If A has a bounded approximate identity, then there exists M > 0 such that
TN < M| T sy (T € M(A)),
where ||| - ||| is defined as in Corollary 2.1.
Let (A, pe) be a faithful, commutative Fréchet algebra. Clearly,
Lo T=T Ly=Lra (a€A, T M(A)).
Consider the seminorms (p¢)sen on {L, : a € A}, defined by
Pe(La) = pe(a) (a € A).
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Following [1], for every a € A and £ € N, ¢, ¢ is a continuous seminorm on M (A), where
G, 0(T) :=pe(Lo - T) 4+ pe(T - Ly) = 2p¢(Lrg) = 2pe(Ta) (T € M(A)).
Also, the strict topology on M (A), with respect to A, is defined by the system of seminorms
qr,e = gleafg( qL, .6,
for every finite subset F' of A and £ € N. We state here the main result of this section.

Proposition 2.1. Let (A, py) be a commutative Fréchet algebra with a bounded approximate
identity (eq)aca- Consider the seminorms (qe)een defined as in (1). Then, (M(A),qe) is
homeomorphic to (M(A),Gre).

Proof. Let a net (Ty)yer € M(A) be convergent to some 7' in (M(A), g¢). Thus,
limq(Ty — T) = limlim py(Tyeq — Teq) =0 (£ eN).
B! v«

If F is a finite subset of A, then for every a € F' we have
4. (Ty—T) = 2py(Tya—Ta)
lim QPZ(T’Y (eaa) — T(eqa))

IA

lim QPZ(T’yea —Teq)pe(a).
Therefore, lim, gz, (T, —T) = 0 for every a € F and so
lim G (T, — T) = 0.
v

Conversely, suppose that T, —, T in (M (A),dre). If FF C A is finite, then by assumption,
lim,, p¢(Tya — Ta) = 0 for every a € F and ¢ € N. Consequently,

lim g, (T, — T) = limlim py(Tyeq — Teq) =0,

¥ v a

which completes the proof. O

Corollary 2.2. Let (A,p¢) be a commutative Fréchet algebra. If A has a bounded approxi-
mate identity, then M (A) is a Fréchet algebra with respect to the strict topology.

3. On the spectrum of M(A)

Let (A,pe) be a faithful, commutative Fréchet algebra and a € A. Following [14],
define
a:AA) = C, alp) =¢la)  (peAA)).
Consider A = {@ : a € A} and M(A) = {6 € B(A(A)) : 0A C jl} Similar to the proof of
[14, Theorem 1.2.2], one can show that for every T' € M (A) there exists a unique element
T € M(A) such that
. oT(a
i(p) = £2710)
p(a)

for some a € A with ¢(a) # 0. Clearly, this definition of 7" is independent of the choice of a.

(v € A(A)),

Theorem 3.1. Let (A,py) be a commutative Fréchet algebra. For every ¢ € A(A) there
exists a unique homomorphism @ on M(A) such that the following hold.

(i) For every a € A, $(L,) = p(a).
(ii) If A is faithful, then $|la = .

Proof. Let ¢ € A(A). Define ¢ : M(A) — C by ¢(T) = T(¢). The details of the proof are
similar to the Banach algebra case; see [14, Theorem 1.4.1]. O
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Throughout the paper, ¢ is the nonzero homomorphism which is defined as in the
proof of Theorem 3.1. Clearly, if A is a Banach algebra, then ¢ € A(M(A)). However, the
following lemma is immediate for a Fréchet case.

Lemma 3.1. Let (A,p;) be a commutative Fréchet algebra with a bounded approzimate
identity (eq)acn- If ¢ € A(A), then p € A(M(A)).

Proof. Let ¢ € A(A). It is enough to show that ¢ is continuous at zero. To prove this,
consider the net (T,)~er such that

lim g, (7) = limlim py(Theq) = 0 (¢ e N);
B! v

see Theorem 2.1. Without loss of generality we may assume that p(e,) # 0 for each o € A.
Now, set f, := Sa(eeo;) (a € A). Clearly, o(fa) =1 (o € A). Since ¢ is continuous, there
exist an £y € N and M > 0 such that

o(Tyfa) < Mpg,(Tyfa) (€A, yeD).

Thus, we have
lim lim (T fo) < limlim Mpg, (T fo)-
v o« ¥ o«

Consequently, lim., ¢(7T) = 0, which implies that ¢ is continuous. a

Theorem 3.2. Let (A,py) be a commutative Fréchet algebra. If A has a bounded approxi-
mate identity, then

{prp e A} = A((M(A), a)).
Proof. Let (eq)aca be a bounded approximate identity for A, and £ € A(M(A)). Define
p(a) :=&(L,) for every a € A. Thus, we have
p(ab) = §(Lap) = &(La)€(Ls) = p(a)p(b),
for every a,b € A. In addition, there exists T € M (A) such that £(T") # 0. Now, by applying

Theorem 2.1, lim,, £(Lre, ) # 0. For this reason, there exists a € A such that ¢(a) # 0. To
show £ = ¢, let T € M(A). Therefore,

o(Tea)s)  o(Ta)
@) e AT

Consequently, A((M(A),q)) € {¢: ¢ € A(A)}. As the reverse inclusion is trivially true,
{¢: ¢ € AA)} = A((M(A), q0))-

&(T) =lim&(Lre,) =limp(Te,) = lim

O

Example 3.1. (i). Let G be a locally compact Abelian group. Due to Wendel [23], M (L*(G)) =
M(G), the Banach algebra of bounded regular complex valued Borel measures on G. Indeed,
for every T € M(L*(Q)) there exists a unige element u € M(G) such that

T(fy=f*p  (fe L' Q).

Also, A(LY(G)) = G, the dual group of G, that is the group of continuous characters on G.
In addition, for every x € G we have

X(Frm) = / £ p(e)x(x)dA(z) = / / Fay ) x(@)dp(y)dA ()
- / / F@)x(@)x@)du(y)dAz) = X(f) / X du(y),

where X is the Haar measure on G. Let (fo)aca be a bounded approximate identity for
LY(G). By applying Corollary 2.1, consider the seminorm

el = Yim | fo a2
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on M(G). Then, from Theorem 8.2, it follows that
A(M@G), NI -1ID) = {%: x € G},
where for every u € M(G) and f € LY(G) with x(f) # 0 we have
sy xUrp)
X(p) = NG /x(y)du(y)~

(ii). Let G be any locally compact Abelian group, and let A(G) denote the Fourier
algebra with pointwise product. By [6, chapter 3], A(A(G)) = G, where

0(f) = flx)  (z€G, feAG)).
Also, if G is amenable, then A(G) has a bounded approzimate identity and M(A(G))
B(G), the Fourier-Stieltjes algebra; see [16] and [17]. Indeed, for every T € M(A(G)) there
exists a unique element u € B(G) such that
Tf=uf  (f€AG)).

Now, let (eq)aca be a bounded approzimate identity for A(G). Consider the seminorm
llull] = limy ||ueq]| on B(G). By using Theorem 3.2, we have

A(B@G)I1-11) = {ds s 2 € G},
where if v € G and f € A(G) with f(x) # 0, then

5y = 2D _w@l@) e o))

82 (f) f(z)

4. p-multiplier amenability

Let A be a Fréchet algebra and ¢ € A(A). Following [2], A is left p-amenable if there
exists m € A** such that

m(p) =1 and m(f-a)=p(a)m(f),
for every a € A and f € A*. Now, consider the left locally convex M (A)-module X with
the module action

T -z:=¢(T)x (T e M(A), z € X).
Note that if T, S € M(A) and z,y € X, then clearly

T (z4+y)=T-2+T-y and T+S95) z=T-2+5 =z
Also, by Theorem 3.1, we have
(T-8) -z =¢(T-S)x=p(T)p(S)z = ¢(T)(S-z) =T (5 x).
Therefore, X* is a right locally convex M (A)-module with the module action
(f-T)x)=f(T-x) (TeM(A), feX", zeX).

In the following, we define the concept of ¢-multiplier amenability. Then, we investigate the
relation between p-multiplier amenability and p-amenability.

Definition 4.1. Let A be a commutative Fréchet algebra and ¢ € A(A). We say that A is
left o-multiplier amenable if there exists M € M(A)** such that

M(@)=1 and M(F-T)=$(T)M(F),

for all T € M(A) and F € M(A)*. In other words, A is left @-multiplier amenable if and
only if M(A) is left p-amenable.



On the multiplier algebra of Fréchet algebras 131

Consider the commutative Eréchet algebra A with a bounded approximate identity
(éa)aca. For every f € A* define f € M(A)*, by

f(T) :=1im f(Teq) (T € M(A)).
Obviously, fla = f. Now, we can conclude the following lemma.

Lemma 4.1. Let A be a commutative Fréchet algebra with a bounded approximate identity
and let ¢ € A(A). Then, A is left o-multiplier amenable if and only if it is left p-amenable.

Proof. Let (eq)aca be a bounded approximate identity for A. Consider M € M (A)** such
that
M(@) =1 and M(F-T) = §(T)M(F),
for every T € M(A) and F € M(A)*. According to the previous arguments, define
m(f) =M(f)  (feA).
If f € A* and a € A, then
m(f-a) =M(fa) = M(f - La) = ¢(La)M(f) = (a)m(f).
Let T € M(A). Therefore, by Theorem 3.1, we have

= — lim — lim ‘P(LTeaa2) — lim ¢(Lre,a) _ ¢(Ta) _ 2
Aal) =Rplbre) =0 =0y~ 0w~ e AT

for some a € A with ¢(a) # 0. For this reason,

m(e) =m(¢la) = M(¢la) = M(¢) = 1.
Thus, A is left p-amenable.
Conversely, let m € A** such that

m(p) =1 and m(f-a)=p(a)m(f),
for all « € A and f € A*. Consider the map ¢ : A — M(A) defined by ¢(a) = L,. Set
M :=mo¢* € M(A)**. Thus,

M(¢) =mo (@) =m(por) =m(p) = 1.
Also, by Theorem 2.1, for every F' € M(A)* and T € M(A) we have
M(F-T) = mo(F-T)=limmo /" (F-Lr.,)
= lmm((F - Lpe,)ot) =lmm((Fout)- Tey)
= limp(Tey)m(F o) =lm @(Lye, )m(F o)
« «
= @(T)M(F).
Consequently, A is left p-multiplier amenable. O

Theorem 4.1. Let A be a commutative Fréchet algebra with a bounded approzimate identity
and let ¢ € A(A). Then, the following statements are equivalent:
(i) A is left p-amenable;
(ii) A is left o-multiplier amenable;
(iii) every continuous derivation D : M(A) — (%)*
T (F+Cp) = ¢(T)F+Cp (T € M(A), F & M(A));
(iv) for every left locally convexr M(A)-module X, with the module action
T -z:=¢)x (Te M(A), z € X),

every continuous derivation D : M (A) — X* is inner.

is inner, where
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Proof. Due to Corollary 2.2, M(A) is a Fréchet algebra with respect to the strict topology.
Also, we have
T-¢=¢-T=¢T)¢p  (T'eMA).
Now, in [2, Theorem 3.2], it is enough to use M(A) and ¢ instead of A and ¢, respectively.
O

Corollary 4.1. If A is a commutative Banach algebra with a bounded approximate identity
and ¢ € A(A), then (i), (ii), and (iii) in Theorem 4.1, are equivalent to
o for every left Banach M(A)-module X, with the module action
T -z:=¢)x (T'e M(A), z € X),
every continuous derivation D : M(A) — X* is inner.
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