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ON AN INTEGRAL AS AN INTERVAL FUNCTION

Branko Sarié¢!

Based on the total integrability we first define an integral of a real valued
function f as an interval function associated to its antiderivative F'. By introducing the
concept of the residue of a function into the real analysis, the relationship between the
integral so defined and the generalized Riemann integral is established.
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1. Introduction

An antiderivative of a real-valued function f is just a function F’ whose derivative is f.
The collection of functions F' + C, where C' is an arbitrary constant known as the constant
of integration, is a nonunique inverse of the derivative f. Another way of stating this is that
the set of all antiderivatives F' + C is an indefinite integral of f. In symbols, f f(z)dx =
F + C. So, the opposite process to differentiation is integration. The fundamental theorem
of calculus, more precisely its the second part, allows definite integrals to be computed in
terms of indefinite integrals. This part of the theorem states that if F' is the antiderivative for
f, then, under certain conditions, the definite integral of f over a compact interval I C R is
equal to the difference between the values of an antiderivative F' evaluated at the endpoints
of the interval. In symbols, [, f () dz = AF (I). Here, AF is an associated interval function
of F', such that AF (I) = F (v) — F (u) for any compact interval I = [u, v], [6]. Obviously, if
F is defined on I, then the sum of the changes in the value of F' over I with any partition is
equal to AF (I). Hence, an attempt has been made by Sarié [4, 5] to define an integral of f
over I, as the sum of these changes in the value of F' over I, for which the Newton—Leibniz
formula (the second part of the fundamental theorem of calculus) to be valid unconditionally.
The resulting integral is the so-called total Kurzweil- Henstock integral. Accordingly, instead
of the set of functions F'+ C we can use the associated interval function AF of F' to be an
integral of f. In symbols, [ f (x)dx := AF. Therefore, the purpose of this note is to convert
the fundamental theorem of calculus into the definition of integrability of f, as follows.

Definition 1.1. Let f be a real valued function with antiderivative F and let J be any
collection of compact intervals I of the real line R. If AF :J — R is the associated interval
function of F, then f is integrable to AF (I) on I € 3. In symbols, fI f(z)dx = AF (I).

When working with functions, which have a finite number of discontinuities on the
compact interval [a,b] C R, it does not really matter how these functions will be defined on
the set F of discontinuities. Unless otherwise stated in what follows, we assume that the
endpoints of [a,b] do not belong to E. As this situation will arise frequently, we adopt the
convention that such functions are equal to 0 at all points at which they have an infinite
value (£00) or not be defined at all. Hence, we may define point functions Fe, : [a,b] — R
and fey : [a,b] — R by extending F' and its derivative f from [a,b]\E to E by Fe, () =0
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and fe, () =0 for x € E, so that

Fea (3'3) = { F (x)é’lffxxee[% b] \E and
fra o) = { T L Sl T o

If we denote any generalized Riemann integral of fe, on I by R — [} fex (x)dz, in-
cluding the Riemann integral itself, then we will prove below the following result AF (I) =
J; f(x)dz = R — [} fex (z) dz + R, where R is the sum of residues of F' on the set E C I
at whose pomts F' is not dlfferentlable Clearly, if R — f 1 fea ( x) dx does not exist, then
R—[ 1 fex (¥) dz + R is reduced to the so-called indeterminate expression oo — oo that actu-
ally have, in thls situation, the real numerical value of AF(I).

2. Preliminaries

Given a compact interval [a,b] in R, let the collection I ([a,b]) be a family of all
compact subintervals I of [a,b]. The Lebesgue measure in R is denoted by u, however, for
I C R we write |I| = Az (I) instead of u(I). A partition Pla,b] of a compact interval
[a,b] € R is a finite set (collection) of interval-point pairs ([a;,b;],%;)i<y, such that the
subintervals [a;, b;] are non-overlapping, U;<,[a;,b;] = [a,b] and x; € [a,b]. The points
{z;}i<, are the tags of Pla,b], [1]. It is evident that there are many different ways to
arrange the position of the tags x; with respect to [a;,b;]. Each of these positions leads
to one of a Riemann type definition of the generalized Riemann integral. If E is a subset
of [a,b], then the restriction of Pla,b] to E is a finite collection of ([a;,b;],x;) € Pla,b],
such that each pair of sets [a;,b;] and E intersects in at least one point and all z; are
tagged in E. In symbols, Pla,bl|g = {([a;,bi],x;) € Pla,b] | [a;,b;] N E # 0 and z; € E}.
Given 0 : [a,b] — Ry, named a gauge, a point-interval pair ([a;, b;],x;) is called 0-fine if
[a;, b;i] C (x; — 6(x;),x; + 5(x;)). Let Pla,b] be the family of all partitions Pla,b] of [a, b].
If E C [a,b], then for any position of the tags x; with respect to [a;,b;] the family of all
d-fine partitions Pla,b] of [a,b], such that Pla,b]|g C Pla,b], denoted by Ps[a,b]|g. In
what follows we will use the following notations: >, AFe,([a;,b;]) = AF(P[a,b]|g) and
i few () |[ai, bi]] = 6F (P [a,b] |g), whenever ([a;,b;],2;) € Pla,b]|g.

Definition 2.1. Let ¢ : J[a,b] — R be an arbitrary interval function and E C [a,b]. A
point function f : [a,b] — R is the limit of ¢ on [a,b]\E if for every e > 0 there exists a
gauge 6 : [a,b] — R, such that

lp(lai, bi]) = f (zi)] <e, (2)
whenever ([a;, b;],z;) € Pla,b]\P [a,b] |z and P a,b] € Ps[a,b] |

Given a derivative-antiderivative pair (f and F'), the derivative f is the limit of the
interval function

AF (I) 1
I = = d
where AF (I) is the associated interval function of F'.

3. Main results

Let F : [a,b] — R. It is an old result that F' is continuous on [a,b] if and only if the
associated interval function AF of F' converges to 0 at all points of [a,b], [3]. Accordingly,
we are now in a position to define the linear differential form on [a, b].

For F' : [a,b] — R let ¢ be defined by (3). Then, dF = fdx as the limit of the interval

function
/ f (2) d = p(D)Ax(D) (4)

on [a,b] is a linear differential form on [a, b]
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Clearly, if F is continuous on [a, b] then dF' = fdx vanishes identically on [a, b]. In case
F is differentiable to f everywhere on [a, b] except for a set E C [a,b] of Lebesgue measure
zero, we can introduce into the analysis an interval-point function 0F : [a,b] x I ([a,b]) — R
being the product of the point function f., defined by (1) and the interval function Az, as
follows
OF(I,x) = fex (x) Az(I). (5)
As we can see, there is a difference between the interval-point function §F (I, z) and
the interval function AF(I), as well as between their limits on E. However, by Definition
2.1, since f is the limit of ¢ on [a,b] \F, given € > 0 there exists a gauge 0 : [a,b] — Ry,
such that
0F ([as,bil, w:) — AF([as, b))| < eAa(las, bi), (6)
whenever ([a;,b;],2z;) € P[a,b]\P [a,b]|g and P [a,b] € Ps[a,b]|E. So, in this emphasized
case fdx is the limit of both 6F and AF on [a,b]\E.
Remember, there are many different ways to arrange the position of the tags z; with
respect to [a;, b;], each of which leads to one type of the generalized Riemann integral defined
by the following definition.

Definition 3.1. For [a,b] € R let E C [a,b] be a set of Lebesgue measure zero at whose
points a real valued function f is not defined. A point function fe, : [a,b] — R is generalized
Riemann integrable to a real point F on [a,b] if for every ¢ > 0 there exists a gauge § :
[a,b] — Ry, such that

0F (P a,b]) — F| <e, (7)

whenever P [a,b] € Ps[a,b]|g. In symbols, F:= R — fab f(x)de.

If z; € [a;,b;] and the gauge d(x) has a positive infimum on [a, b], then the previous
definition becomes that of the ordinary Riemann integral.

The following two definitions introduce the concept of the residue of a function into
the real analysis.

Definition 3.2. For[a,b] € R let E C [a,b] be a set of Lebesgue measure zero at whose points
a real valued function F is not defined. The function F is said to be basically summable
(BSs5) on E to a real number R, if for every e > 0 there exists a gauge 0 : [a,b] — Ry,
such that |AF (P [a,b] |g) — R| < €, whenever Pla,b] € Ps[a,b]|g. If in addition E can be
written as a countable union of sets on each of which F' is BSs, then F is said to be BSGs
on E. In symbols, R := " 5 f (x)dx.

If F is absolutely continuous on [a,b], that means it has negligible variation on E,
then R is equal to zero, [1].

Definition 3.3. The linear differential form dF = fdx is a residue function of F. In
symbols, R := dF.

Obviously, the residue function of F' being basically summable (BS;) on E C [a,b] to
a real number R is a null function on [a,b] (4 function F : [a,b] — R is said to be a null
function on [a,b], if the set {x € [a,b] | F (x) # 0} is a set of Lebesque measure zero, see

2.4 Definition in [1]) and
R=Y R(x). (8)

relk
On the other hand, for any compact interval [a,b] € R the infinite sum }° ., ;R (z) is in
fact the integral of f on [a,b] since the antiderivative F of f is by Definition 3.2 basically
summable (BSs) on [a,b] to AF ([a,b]), so that
AF ([ab]) = ) R(a). (9)
z€la,b]

In case when F has a certain number of discontinuities within [a, b], gathered together into
the set E C [a, b], at which its derivative f can take values +0c0 or not be defined at all, the

sum >, o\ 5 R (%) reduces to the sum 30, o1, ) fer () do = R — f: few (z) dz, since fe,dx
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is the limit of 0" on [a, b]. Hence, if we split the sum >, ., ;) % () into two sums of R (z)
over two separate sets [a,b] \E and E, then we finally obtain that

b b
/ f(x)dxzﬂz—/ Fou (2) da + R. (10)
In what follows we shall formulate the result (10) as a theorem and prove it explicitly.

Theorem 3.1. For a compact interval [a,b] € R let E C [a,b] be a set of Lebesgue measure
zero at whose points a real valued function F defined and differentiable on [a,b]\E and its
derivative f can take values 0o or not be defined at all. If F is basically summable (BSs)
on E to R, then fe, is generalized Riemann integrable on [a,b] and

bf(x)dx:fR— bfez(x)dm—i-@?. (11)
J /

Proof. Let F., and fe, be defined by (1). Since F' is BSs on E to R it follows from
Definition 3.2. that for every ¢ > 0 there exists a gauge ¢ : [a,b] — R,, such that
|AF(Pa,b]|g) —R| < e, whenever Pla,b] € Psla,b]|g. In addition, fe;(x) = 0 on E
and AF(P [a,b]) = AF ([a,b]) whenever P [a,b] € P[a,b]. Hence, by the result (6), for every
€ > 0 there exists a gauge 0 : [a,b] — R, such that

[0F(P [a,b]) = [AF ([a,b]) — R]| <
< [0F(P[a,b]\P [a,b] [z) = AF (P [a,b] \P[a,b] [5)[ +
+[AF(P[a,b]|p) =R <& (|la,0]] + 1),
whenever P [a,b] € Ps[a,b]|g. So, by Definition 3.1, f., is generalized Riemann integrable
on [a, b] and fRff; fex (x)dz = AF ([a,b])—R, that is f; f(z)dx = fRff; fex (x)dz+R. O

This result provides an extension of Cauchy’s result from the calculus of residues in
R (compare with results in [4]).

4. Example

Let C : [0,1] — R be the Cantor function, [2]. Its derivative c¢ is a null function
on [0,1] that is not defined on the Cantor set C. Since the generalized Riemann integral
of ey 1 [0,1] +— 0 is equal to zero on [0,1] it follows from (10) that R :fol c(z)de — R —
fol Cex () dx = AC([0,1]) — 0 = 1. So, the sum of the changes in the value of C over C is
reduced to the so-called indeterminate expression co-0 (the residue function 2R of C' vanishes
identically on [0, 1] because C' is continuous on [0, 1]), that actually have, in this situation,
the real numerical value of 1 (it means that C is not absolutely continuous and has no
negligible variation on €). Let’s prove it once more. For the Cantor function with the total

length of 2 on [0,1] the total length of all line segments contained within [0, 1] \€, on each
of which C is constant, is as follows, % :2(%)" = 1(3—1) = 1. Hence, the sum of the

changes in the value of C over € is equal to 2 — 1.
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