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ROLLING BEARING FAULT DIAGNOSIS BASED ON BRB
AND PSO-SVM

Zhenghui LI'", Na ZHANG?

A rolling bearing fault diagnosis method based on belief-rule-base (BRB)
and the particle swarm optimization (PSO)-based support vector machine (SVM)
was proposed to solve the insufficient adjustment accuracy and long computation
time due to the linear decrease of inertia weights cannot truly reflect the actual
search process. Firstly, the ensemble empirical mode decomposition (EEMD)
method was utilized to process the vibration information data of rolling bearing and
decompose the information data into several intrinsic mode functions (IMFs), and
then the root mean square of the IMFs was feature vector. The inference structure of
BRB was built to obtain the estimates of inertia weight increments and update the
historical inertia weights. Based on this inertia weight, the velocity, position and
other parameters of each particle in PSO algorithm were adjusted and iterated
sequentially until the stopping criteria were satisfied, then the optimization of PSO-
SVM model parameters was realized. The datasets collected from two different
experimental platforms in different environments were used to experiment with this
method and other methods. This method contributes a novel attempt of effective
adaptive adjustment of inertia weights in the existing method.
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1. Introduction

Rotating machinery, as a very important power device, is widely used in
industries such as mechanical engineering, water treatment, mining and
quarrying[1-4]. The frequency of faults and accidents in rolling bearings is
increasing due to the frequent exposure to heavy mechanical pressure and
prolonged operation. According to statistics, the majority of faults in large
mechanical power equipment are caused by bearing faults or damages[5-6]. The
complexity of today's rotating machinery is increasing, and establishing an
intelligent fault diagnosis system is the main direction of fault diagnosis
research[7]. The overall process of fault diagnosis mainly consists of the
following parts: (1) analyzing and processing of fault signal data; (2)selection and
extraction of fault features in fault signal; (3)classification of fault type [8-9].
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Due to the high noise working environment of rotating machinery
equipment, the obtained fault vibration signal data often contains noise and
exhibits nonlinear characteristics. The commonly used methods for analyzing and
processing fault signal data are Fourier transform (FT) and wavelet transform
(WT)[10-11]. FT is a frequency domain analysis method for the entire signal,
which cannot determine the time corresponding to the frequency. WT is an
improved version of Fourier transform. It not only can complete analyzing and
processing of fault signal data in the time domain, but can also can complete
analyzing and processing of fault signal data in the frequency domain. But its
adaptability in selecting wavelet functions is poor. The method for selecting and
extracting fault features in fault signals is Empirical Mode Decomposition (EMD).
Song et al.[12] used this method to analyze fault signals and converted them into
images for fault diagnosis, achieving good experimental results. The adaptive data
processing method decomposes any type of signal into several Intrinsic Mode
Functions (IMFs), each representing local features of the original signal at
different time scales. Relevant IMFs can be selected for signal analysis or
recombination. However, EMD method suffer from pattern aliasing issues[13].
The Ensemble Empirical Mode Decomposition (EEMD) technique effectively
addresses the pattern aliasing problems associated with EMD. It has better overall
performance than EMD in analyzing vibration information[14-15].

The methods for classifying fault types and degrees include artificial
neural networks (ANN), decision trees (DT), and support vector machines
(SVM)[16-18]. Cavallaro et al.[16] optimized many parameters of ANN and
provided some help and guidance for using this method. However, ANN based
bearing fault diagnosis not only requires a sufficient number of samples, but also
has a slow learning speed. The disadvantage of DT is the potential introduction of
deviations. SVM can effectively solve the over-fitting and local optima issues of
ANNLIt has strong data mining and learning capabilities. In recent years, SVM has
become a focus of international scholars in the field of fault diagnosis[17].

However, the fault diagnosis performance of SVM largely depends on a
few parameters. Numerous experts and scholars have employed the Particle
Swarm Optimization (PSO) algorithm to optimize the selection of crucial
parameters in SVM, thereby enhancing its performance. And this attempt has
been proven to achieve good results[18]. However, the process of finding the
optimal important parameter values in PSO is nonlinear, but the inertia parameter
weights are set to a linearly decreasing method, which cannot truly reflect the real
particle search process. Based on a thorough analysis of existing inertia weight
adjustment methods, this article tends to seek a method that can integrate and
amplify the advantages of these methods while avoiding their disadvantages. The
belief-rule-base (BRB) method proposed by Emam [19-20] can attempt to solve
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these difficulties of insufficient adjustment accuracy and long computation time in
the above methods, and achieve adaptive adjustment of inertia weights.

To overcome these difficulties, the article proposes a new method to solve
the insufficient adjustment accuracy and long computation time due to the linear
decrease of inertia weights cannot truly reflect the actual search process. Firstly,
the EEMD method is utilized to process the vibration information data of rolling
bearings and decompose the information data into several IMFs, and then the root
mean square of the IMFs is feature vector. On the basis of the traditional PSO
optimization model, an improvement plan is proposed to overcome premature
convergence, low search accuracy and long computation time caused by improper
selection of particle inertia weights. BRB is established to infer the estimated
value of the change in inertia weight through belief rule inference, and update the
inertia weight to achieve adaptive adjustment of inertia weight. Subsequently,
based on the updated particle inertia weights, the velocity, position, global optimal
value, and individual optimal value of each particle are adjusted. Based on this
inertia weight, the velocity, position and other parameters of each particle in PSO
algorithm are adjusted and iterated sequentially until the stopping criteria are
satisfied, then the optimization of PSO-SVM model parameters is realized.

The remainder of this paper is organized as follows: Section 2 introduces
the fundamental theory of fault signal processing and feature extraction in rolling
bearings. Section 3 shows the construction process and operational steps of the
proposed fault diagnosis method. Section 4 demonstrates the effectiveness of the
proposed method through two experimental examples and provides a comparative
analysis with other methods. Finally, Section 5 presents the conclusions.

2. Fault signal processing and feature extraction

2.1 Fault signal processing

(1) Firstly, the value of noise amplitude is determined based on the actual
operating conditions, and the number of noise sets are set to M.

(2) In general, fault signal under actual operating conditions contains a lot
of noise, while the original signal obtained through experiments contain less
noise. In order to simulate actual operating conditions more realistically, a new
fault signal is obtained by adding white noise data n(¢) to the original signal data
x().

x,(t)=x(t)+n(t),i=12,..,m (1)
The i-th white noise is represented by ni(¢). xi(f) represents the i-th new fault
signal. ¢ represents the time in the signal data.

(3) The new fault signal is further decomposed into IMF component by the
EEMD algorithm.

OEDWNOEING! ()
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S is the number of IMF components. The final residual, denoted as 7 (¢),
represents the average trend of the signal. ¢, (f) is defined as IMF
(Ci15CiaeesCigneenn €y ), Which represents the component information of signals in

different frequency bands from high to low.
(4) Repeat step (2) M times with different white noise sequences to obtain
a set of IMFs.

L D516 (D 5niey (D)) s =1.2,...,§ 3)

(5) Calculate the average value of the corresponding IMF sets and obtain
the following result:

M
c,(t) =$Zcm(t),i =1,2,..,M;s=12,...,S 4)
i=1

¢, (t) is the IMF component of EEMD decomposition.

2.2 Feature extraction

The feature extraction based on EEMD bearing fault diagnosis mainly
relies on different fault locations and vibration signals generated by different fault
degrees. Therefore, by extracting the features of vibration signals, different faults
can be classified more accurately.

The commonly selected features for bearing fault diagnosis include
kurtosis, margin, variance, root mean square, skewness, energy, etc. Reference
[13] used many feature combinations, while this article only uses a single feature.

The root mean square value of bearing vibration signals mostly has a good
correlation with the waveform of irregular vibrations generated by bearing surface
wear. Therefore, this article summarizes and selects the test results of different
features through testing in Table 1. Here, the results of two additional methods are
presented for summary and comparison: the cuckoo search algorithm optimization
support vector machine(CS-SVM) and the genetic algorithm optimization support
vector machine(GA-SVM).

Table 1
Test of different features
Feature CS-SVM/(%) | PSO-SVM/(%) | GA-SVM/(%)

Kurtosis 87.727 3 87.727 3 79.545 5
Mean value 59.545 5 58.181 8 54.090 9
Variance 91.727 3 91.454 5 79.090 9
Skewness 722727 71.818 2 67.272 7
Root mean square 94.5786 95.636 4 87.272 8
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Table 1 shows that the identification accuracy is highest when selecting root mean
square features. Therefore, this article extracts the index of IMF as a feature for
fault diagnosis. X, is the root mean square of IMF.
N
X — Zi:l xiz (5)
rms N
The i-th sample value is represented by xi. The number of samples is represented
by N.

3. Fault feature classification

3.1 Theoretical derivation process of SVM
The fault classification process of SVM mainly involves constructing a
suitable hyperplane equation /(x) (Eq.6) to distinguish different types of samples.
The training sample data is defined as D={(x1, y1), (x2, ¥2)... (X, y»)}, which
contains several support vectors. A loss function ¢(w, &) is designed to improve
the classification effect of the constructed hyperplane equation. When the value of
the loss function is minimized, solve w and b using Eq.(7).
h(x)=w'x+b (6)

min p(w, &) = @%02" S (7)

sty[g(x)-1]1=20,V, =1,23,...,q
where w is a matrix, b and C are fixed parameters. The number of support vectors
is defined as ¢q. And the relaxation factor of each data point is represented
as& (& > 0).
The solving equation for Eq.(7) is defined as:
h(x):Z;]:laixyixK(xaxi)+b (8)
Due to the high computational complexity of dot product operation in the feature

vector space during the process of solving this equation, a kernel function K(x, x;)
is designed to solve this problem. g, is a Lagrange multiplier.

3.2 Inertial weight estimation of PSO based on BRB

This section specifically explains the process of inertia weight estimation
based on BRB. The following content will provide a detailed introduction to BRB
modeling and inference process from three aspects: BRB construction, BRB
inference, and BRB integration.

3.2.1 BRB construction

(1) Determine the antecedent attribute and its reference value
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In the BRB model for particle inertia weight estimation, the inertia weight
w!' of particle p; and the current performance evaluation index Jih at iteration

times 4 are used as input feature variables fi and f>, respectively. The change in
inertia weight is used as the output of the model. The reference value set
corresponding to input f(m=1,2) is Ap={Am,[i=1,2,....Kn}, and the reference value
set corresponding to the output feature variable is D={D,n=1,2,....N},
Am1<Am2<....<Amkm,D1<D><...<Dy. Ky represents the number of reference levels
for the m-th input feature variable, and N represents the number of reference
levels for the output feature variable.

(2) Construct belief rule base

Based on the antecedent attribute and its reference value determined in
Stepl, and combined with expert experience, construct a belief rule base
containing L rules. The /-th rule R; is defined as:

R:IF (f1is 4/ )and (f2is 4,) THEN {(D,,3,).(D,,5,).L .(Dy,By))}  (9)
A (m=1,2;1=1,...,L) represents the reference level of the m-th antecedent
attribute in rule /, and satisfies 4, € 4 = {4,,10=12,...K,};B,,(n=1,..,N)

represents the belief level assigned to the reference level in rule /.
3.2.2 BRB inference
(3) Calculate matching degree
For the obtained input feature vector X (h,i)=[f,(h,i), f,(h,i)], input

f.,(h,i) can be converted into the form of a reliability distribution, and the
corresponding weight X (4,7) can be calculated:

2 Y
AN (AR
m=1

Z{H,H(a;)("m}

=1

w, =

(10)

Here, activate weight w, €[0,1], S is relative attribute weight, a’ is the

matching level between the input f,(4,i) and its reference value under rule /.

3.2.3 BRB integration

(4) Rule combination

After obtaining the corresponding weights of the rules, the activation rules
with corresponding weights are fused using ER. The belief level of the output
reference value corresponding to the input feature vector X(#, i) can be calculated:

u H(W/ﬂn,[ +1- W/Zﬂ71,l) _H(l - leﬂn,[)
11 n:;‘ -1 N=l (11)

B =
I-ul[ Ja-w)]

I=1
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u= |:ZH(Wlﬂj,l +1_leﬁn,l)_(N_1)H[1_Wk2ﬂn,/j:| (12)

n =1

O(X (h,i)) = (D, B,).,n=1,2,L N} (13)
(5)Estimate particle inertia weight
Calculate the change in inertia weight Aw(/,i) based on the rule fusion

results obtained in Step 4. The inertia weightw!, of particle pj+1 is calculated at
the A-th iteration process:

Aw(h,iy=Y" DB, (14)
W= wl.h +Aw(h,i) (15)

i+l
At this point, the estimation of the inertia weight of particle p;+1 in the A-th
iteration process has been completed.

3.3 The overall process flow of fault diagnosis

An improved plan is proposed based on the traditional PSO model to
address issues of premature convergence, low search accuracy, and extended
computation time, which arise from the improper selection of particle inertia
weights. BRB is established to infer the estimated value of the change in inertia
weight through belief rule inference, and update the inertia weight to achieve
adaptive adjustment of inertia weight. Subsequently, based on the updated particle
inertia weights, the velocity, position, global optimal value, and individual
optimal value of each particle are adjusted. Based on this inertia weight, the
velocity, position and other parameters of each particle in PSO algorithm are
adjusted and iterated sequentially until the stopping criteria are satisfied, then the
optimization of PSO-SVM model parameters is realized. Specifically, input the
actual data x into the model to obtain the output y, The fitness value of particles is
calculated based on model error. The optimal solution is determined based on
fitness values and stopping criteria. Figure 1 shows a detailed flowchart.

The flowchart reveals that the processing primarily comprises three
components: (1) the detailed process of EEMD and SVM; (2) the optimization
process of PSO; and (3) the updated model of inertia weight based on BRB.

(1)The detailed process of EEMD and SVM. The process is primarily
divided into three stages: analyzing and processing fault signal data, selecting and
extracting fault features, and classifying fault types. Initially, the acquired sample
datasets serve as input data for the model. The EEMD method is employed to
decompose the sample data signals and calculate the IMFs. Subsequently, the
calculated and extracted sample datasets are input into the SVM model for
training and testing.
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Fig. 1. The flowchart of the proposed method

(2)The optimization process of PSO. This process is mainly divided into:
the initialization of the model,calculate the fitness value of particles and update
the inertia weight of particles. Firstly, the PSO parameters are initialized based on
empirical values. Secondly, the fitness of the particle swarm is calculated, and
both the individual optimal value and the global optimal value are updated. The
vectors and positions of the particle swarm are then updated using the designed
BRB. If either the number of iterations or the accuracy meets the specified
requirements, the loop process terminates. Otherwise, if both the number of
iterations and accuracy do not meet the requirements, the loop continues to iterate
and train. Finally, the output of the optimal identification parameters is utilized to
optimize the SVM model.

(3)The update model of inertia weight based on BRB. The linear decrease
of inertia weights in PSO cannot adequately reflect the search process required to
find the optimal solution. This process comprises three main stages: construction
of the BRB, reasoning within the BRB, and integration of the BRB. Initially, the
antecedent attributes and their reference values are determined through expert
knowledge, and the BRB is constructed using multiple belief rules. The vectors
and positions of the particles are then input into this belief rule base. Subsequently,
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several belief rules are matched to varying degrees and activated. The activated
rules are calculated using an evidence reasoning fusion algorithm, and the inertia
weights of the particles are subsequently updated based on the fusion results. This
entire process functions as a nested loop.

4. Experiment and analysis

4.1 Experimental condition

The experimental environment and platform of the article are shown in the
figure 2(Case Western Reserve University). The left side of the platform
includes: fan and bearing,induction motor, drive and bearing. The central section
of the platform consists of a coupling and a torque transducer/encoder. The right
section of the platform is a dynamometer. The control electronics are not shown in
the figure.Electric discharge machining technology was used to simulate pitting
faults on bearings from weak to severe. The data from the measuring points were
collected by sensors positioned near the bearings, which were the diagnostic
objects at the motor drive end and the fan end[21].

Fan and bearing Drive and bearing Torque transducer/encoder

Induction Coupling

motor Dynamometer

/s

‘ /

Fig. 2. The experimental environment and platform

This experiment collected a total of 10 types of sample data information,
including normal data, inner ring fault (diameter 0.18mm, 0.36mm,
0.53mm,0.71mm), rolling element fault (diameter 0.18mm), outer ring fault
0.18mm (3-point position, 6-point position, 12 o'clock position), outer ring fault
(diameter 0.36mm, 0.53mm).There are a total of 200 sets of sample data for each
fault type. 104 sets are selected from these 200 sets to train the important
parameters of the model, and the other data is used to test the accuracy of this
model.

4.2 Results and analysis

This study uses the EEMD method for data processing and extracts the
root mean square of 14 transformed IMFs (if less than 14, use 0 padding) as
feature inputs.The three methods(BRB-PSO-SVM, PSO-SVM, GA-SVM) were
iterated 100 times, 200 times, and 500 times respectively.The test comparison
results of average fitness and average accuracy are shown in Table 2.
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Table 2 shows that compared to PSO-SVM and GA-SVM, BRB-PSO-
SVM has certain improvements in convergence speed and diagnostic accuracy.
This is because PSO has fixed inertia weights during the search process, which
makes it difficult to adjust the ability of global and local search well, resulting in
lower identification performance than BRB-PSO. However, GA-SVM shows a
linearly decreasing trend in inertia weight during the identification process.
Although it improves the accuracy of identification to a certain extent, it cannot
adapt well to nonlinear identification problems.

The belief rule in BRB-PSO is developed based on the traditional IF-
THEN rule, and its output is a structure of belief distribution, which has the ability
to model nonlinear uncertain input-output relationships. The input activated rules
are fused and inferred by the Evidence Based Reasoning (ER) algorithm, which
can obtain more refined parameter identification results.

Table 2
Test results of different algorithms

Methods Iterations Avera\lliclauf;lmess 2:\;322%;
100 0.7449 92.5
PSO-SVM 200 0.8636 94.0
500 0.3567 95.0
100 0.9567 87.2
GA-SVM 200 0.9653 87.8
500 0.9346 88.1
100 1.5673E-05 98.9
BRB-PSO-SVM 200 1.5673E-05 99.9
500 1.5673E-05 99.9

To verify the effectiveness of this method, 960 sets of test data are applied to the
above three methods, and Figure 3-5 show the detailed comparative diagnostic
results of the experimental data.The red solid line represents the actual fault type,
while the blue dashed line illustrates the fault type diagnosis results obtained from
the corresponding method.

(1)GA-SVM mistakenly diagnoses non-fault type as fault type, and
misdiagnosis can also occur between faults of different severity levels on the inner
ring, rolling elements at different fault positions, and faults of different severity
levels on the outer ring.
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Fig. 5. Test accuracy of BRB-PSO-SVM
(2)PSO-SVM is very accurate in diagnosing non-fault type, faults at
different positions of rolling elements, and faults of different severity levels on the
outer ring, but it may lead to misdiagnosis between faults of different severity
levels on the inner ring.
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(3)BRB-PSO-SVM is highly accurate in diagnosing faults at different
locations and severity levels.

This article adopted the method of taking the average of 50 experiments
for result comparison. The comparison of different classification methods is
shown in Table 3.

Comparison of diagnostic accuracy and time consumption of different methodsTable ’
Methods Diagnostic accuracy(%) 50 times consumption(s)
PSO-SVM 95.5 16.2
GA-SVM 88.7 23.84
BRB-PSO-SVM 100 23.61

Experiments have shown that although the diagnostic time of BRB-PSO-
SVM is not the shortest, it is within an acceptable range.Under the condition of
not increasing the diagnostic time too much, the diagnostic accuracy of BRB-
PSO-SVM is superior to traditional PSO-SVM and GA-SVM.

4.3 The other experimental platform and its result analysis

This study conducted experiments in other experimental environment and
platform as shown in the figure 6 (Cincinnati University). On the left side of the
figure is accelerometer, the middle part of the figure is radial load, and the right
part of the figure is thermocouples. This data sets are divided into normal data,
inner ring fault, outer ring fault, and rolling fault[22]. The results generated by the

new experimental environment and platform are shown in Table 4.

Radial

Thermocouples
load

Accelerometer

X ot [ o B/
i r rd
. : . o ]
1
| N— B
Bearing 1 Bearing2  Bearing 3 Bearing 4

]:[ ] Motor

Fig. 6. The experimental platform structure

Table 4
Comparison of diagnostic accuracy and time consumption of different methods

Methods Diagnostic accuracy(%) 50 times consumption(s)
PSO-SVM 96.5 18.21
GA-SVM 89.6 26.83

BRB-PSO-SVM 98.97 21.71
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Experiments on bearing data from the Cincinnati University have shown
that BRB-PSO-SVM performs better than PSO-SVM and GA-SVM on different
data platforms.

5. Conclusion

This article uses the EEMD method to decompose signal data and extracts
the root mean square of IMF components as features. On the basis of the
traditional PSO optimization model, an improvement plan is proposed to
overcome premature convergence, low search accuracy and long computation
time caused by improper selection of particle inertia weights. BRB is established
to infer the estimated value of the change in inertia weight through belief rule
inference, and update the inertia weight to achieve adaptive adjustment of inertia
weight. Subsequently, based on the updated particle inertia weights, the velocity,
position, global optimal value, and individual optimal value of each particle are
adjusted. The above process is iterated sequentially until the stopping condition is
met, achieving optimization of the SVM model. Finally, data sets from different
experimental environments and platforms are used for validation, which not only
accurately identified the location of bearing faults, but also outperformed
traditional PSO-SVM and GA-SVM in terms of accuracy.

This paper ends with the following future research ideas: (1)Future
research will use detection data from real complex environments to further test the
robustness of this method. Due to the differences in data distribution and fault
features between detection data in real complex environments and detection data
in experimental simulation environments, the future work will further improve the
overall performance of this method based on these differences. (2)The proposed
method is a meaningful attempt to overcome linear decrease of inertia weights
cannot truly reflect the actual search process required to find the optimal solution.
However, the unbalance of fault data will bring new challenges to this method.
Therefore, the future work will attempt knowledge transfer and reinforcement
learning methods to improve the cross domain adaptability of the model.

(3)This article is a attempt to use expert knowledge to guide data-driven
fault diagnosis method. The next work will explore more ideas that combine
knowledge and data to improve this field technology.
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