

A COMPLETELY MONOTONIC FUNCTION RELATED TO THE q -TRIGAMMA FUNCTION

Feng Qi¹

In the paper, a function related to the q -trigamma function is proved to be completely monotonic. In order to prove this main result, two functions related to the logarithmic function are found to be completely monotonic.

Keywords: completely monotonic function, q -trigamma function, logarithmic function

MSC2010: 26A48, 33D05

1. Introduction

The classical Euler gamma function $\Gamma(x)$ may be defined for $x > 0$ by

$$\Gamma(x) = \int_0^\infty t^{x-1} e^{-t} dt = \frac{1}{x} \prod_{n=1}^{\infty} \left\{ \left(1 + \frac{1}{n} \right)^x \left(1 + \frac{x}{n} \right)^{-1} \right\} \quad (1.1)$$

The logarithmic derivative of $\Gamma(x)$, denoted by $\psi(x) = \frac{\Gamma'(x)}{\Gamma(x)}$, is called the psi or digamma function, and the derivatives $\psi^{(i)}(x)$ for $i \in \mathbb{N}$, the set of all positive integers, are respectively called the polygamma functions. In particular, the functions $\psi'(x)$ and $\psi''(x)$ are called the trigamma and tetragamma functions.

The q -analogue $\Gamma_q(x)$ of the gamma function $\Gamma(x)$ may be defined for $x > 0$ by

$$\Gamma_q(x) = (1-q)^{1-x} \prod_{i=0}^{\infty} \frac{1-q^{i+1}}{1-q^{i+x}} \quad (1.2)$$

when $0 < q < 1$, and by

$$\Gamma_q(x) = (q-1)^{1-x} q^{\binom{x}{2}} \prod_{i=0}^{\infty} \frac{1-q^{-(i+1)}}{1-q^{-(i+x)}} \quad (1.3)$$

¹Professor, Institute of Mathematics, Henan Polytechnic University, Jiaozuo City, Henan Province, 454010, China; E-mail: qifeng618@gmail.com, qifeng618@hotmail.com, qifeng618@qq.com; URL: <http://qifeng618.wordpress.com>.

when $q > 1$. The q -psi function $\psi_q(x)$, the q -analogue of the psi function $\psi(x)$, may be defined by

$$\begin{aligned}\psi_q(x) &= \frac{\Gamma'_q(x)}{\Gamma_q(x)} = -\ln(1-q) + \ln q \sum_{k=0}^{\infty} \frac{q^{k+x}}{1-q^{k+x}} \\ &= -\ln(1-q) + \ln q \sum_{k=1}^{\infty} \frac{q^{kx}}{1-q^k}\end{aligned}\tag{1.4}$$

for $0 < q < 1$ and $x > 0$, and by

$$\psi_q(x) = -\ln(q-1) + \ln q \left(x - \frac{1}{2} - \sum_{n \geq 0} \frac{q^{-n-x}}{1-q^{-n-x}} \right)\tag{1.5}$$

for $q > 1$ and $x > 0$. The functions $\psi_q^{(k)}(x)$, the q -analogues of the polygamma functions $\psi^{(k)}(x)$, for $k \in \mathbb{N}$ are called the q -polygamma functions. For detailed information about the above formulas, see [2, 5, 6, 8, 11] and closely related references therein.

The above mentioned functions satisfy the following relations

$$\lim_{q \rightarrow 1^{\pm}} \Gamma_q(z) = \Gamma(z), \quad \Gamma_q(x) = q^{\left(\frac{x-1}{2}\right)} \Gamma_{1/q}(x), \quad \lim_{q \rightarrow 1^{\pm}} \psi_q(x) = \psi(x).\tag{1.6}$$

For more information, please refer to [2, pp. 493–496].

We recall from [7, Chapter XIII] and [16, Chapter IV] that a function f is said to be completely monotonic on an interval I if f has derivatives of all orders on I and $(-1)^n f^{(n)}(x) \geq 0$ for $x \in I$ and $n \geq 0$. In [16, p. 161, Theorem 12b], it was stated that a necessary and sufficient condition that $f(x)$ should be completely monotonic for $0 < x < \infty$ is that $f(x) = \int_0^\infty e^{-xt} d\alpha(t)$, where $\alpha(t)$ is non-decreasing and the integral converges for $0 < x < \infty$. In other words, a function is completely monotonic on $(0, \infty)$ if and only if it is a Laplace transform.

For $x > 0$, let

$$f(x) = \psi'(x) - \frac{1}{x} - \frac{1}{2x^2}.\tag{1.7}$$

For $x > 0$ and $0 < q < 1$, let

$$f_q(x) = \psi'_q(x) - \frac{(1-q)q^x}{1-q^x} - \frac{1}{2} \left[\frac{(1-q)q^x}{1-q^x} \right]^2.\tag{1.8}$$

It is clear that $\lim_{q \rightarrow 1^-} f_q(x) = f(x)$. So, we may regard $f_q(x)$ as the q -analogue of the function $f(x)$.

In recent years, the complete monotonicity of the function (1.7) was proved, generalized, and applied in [1, 3, 5, 6, 8, 11], [9, Theorem 1.1], [12, Theorem 1.3], [13, pp. 1977–1978], [14, Theorem 2]. For more information on this topic, please refer to related texts in the survey articles [10, 15] and closely related references therein.

The goal of this paper is to prove the complete monotonicity of $f_q(x)$ for $0 < q < 1$ on $(0, \infty)$. Our main result may be stated as the following theorem.

Theorem 1.1. *For $0 < q < 1$, the function $f_q(x)$ defined by (1.8) is completely monotonic on $(0, \infty)$.*

2. Lemmas

To prove our main result, we need the following lemmas.

Lemma 2.1. *For $i \in \mathbb{N}$ and $q \in (0, 1)$, we have*

$$\psi_q^{(i)}(x) = (\ln q)^{i+1} \sum_{k=1}^{\infty} \frac{k^i q^{kx}}{1-q^k}. \quad (2.1)$$

Proof. This follows from the definition of $\psi_q(x)$ by (1.4), direct differentiation, and the induction. \square

Lemma 2.2. *For $q \in (0, 1)$ and $x \in (0, \infty)$, we have*

$$\sum_{k=1}^{\infty} k q^{(k+1)x} = \frac{q^{2x}}{(1-q^x)^2}. \quad (2.2)$$

Proof. This can be deduced from the series expansion

$$\frac{1}{(1-x)^2} = \sum_{i=0}^{\infty} (i+1)x^i \quad (2.3)$$

for $x \in (0, 1)$ and replacement of x by q^x in (2.3). \square

Lemma 2.3. *For $0 < q < 1$ and $x \in (0, \infty)$, we have*

$$\psi_q'(x) - \psi_q'(x+1) = (\ln q)^2 \sum_{k=1}^{\infty} k q^{kx}. \quad (2.4)$$

Proof. By Lemma 2.1 for $i = 1$, we have

$$\begin{aligned} \psi_q'(x) - \psi_q'(x+1) &= (\ln q)^2 \sum_{k=1}^{\infty} \frac{k q^{kx}}{1-q^k} - (\ln q)^2 \sum_{k=1}^{\infty} \frac{k q^k q^{kx}}{1-q^k} \\ &= (\ln q)^2 \sum_{k=1}^{\infty} \frac{k q^{kx} (1-q^k)}{1-q^k} = (\ln q)^2 \sum_{k=1}^{\infty} k q^{kx}. \end{aligned}$$

Lemma 2.3 is thus proved. \square

Remark 2.1. In [4, p. 1245, Theorem 4.4], the identity

$$\psi_q^{(k-1)}(x+1) - \psi_q^{(k-1)}(x) = -\frac{d^{k-1}}{dx^{k-1}} \left(\frac{q^x}{1-q^x} \right) \ln q \quad (2.5)$$

for $x \in (0, \infty)$ and $k \in \mathbb{N}$ was deduced. It is not difficult to see that the identity (2.4) is a special case of (2.5).

Lemma 2.4. *For $0 < q < 1$ and $i \in \mathbb{N}$, the limit $\lim_{x \rightarrow \infty} [f_q(x)]^{(i-1)} = 0$ is valid, where $f_q(x)$ is defined by (1.8).*

Proof. It is apparent that $\lim_{x \rightarrow \infty} f_q(x) = 0$.

Differentiating and making use of (2.1) and (2.2) result in

$$[f_q(x)]^{(i)} = \psi_q^{(i+1)}(x) - \left[\frac{(1-q)q^x}{1-q^x} \right]^{(i)} - \left[\frac{(1-q)^2 q^{2x}}{2(1-q^x)^2} \right]^{(i)}$$

$$\begin{aligned}
&= \psi_q^{(i+1)}(x) - (1-q) \left[\sum_{\ell=0}^{\infty} q^{x(\ell+1)} \right]^{(i)} - \frac{(1-q)^2}{2} \left[\sum_{\ell=0}^{\infty} (\ell+1) q^{x(\ell+2)} \right]^{(i)} \\
&= \psi_q^{(i+1)}(x) - (1-q)(\ln q)^i \sum_{\ell=0}^{\infty} (\ell+1)^i q^{x(\ell+1)} \\
&\quad - \frac{(1-q)^2}{2} (\ln q)^i \sum_{\ell=0}^{\infty} (\ell+1)(\ell+2)^i q^{x(\ell+2)} \rightarrow 0
\end{aligned}$$

as $x \rightarrow \infty$ for $0 < q < 1$. The proof of Lemma 2.4 is complete. \square

Lemma 2.5. *The function $h(t) = (\ln t)^2 + t(t-1)(t-2) \ln t + \frac{1}{2}(t-1)^3$ is completely monotonic on $(0, 1]$.*

Proof. A straightforward computation yields

$$\begin{aligned}
[(\ln t)^2]^{(i)} &= \frac{(-1)^{i-1} 2(i-1)! \ln t}{t^i} + \sum_{k=1}^{i-1} \frac{(-1)^i i!}{k(i-k)} \frac{1}{t^i} \\
&= \frac{(-1)^{i-1} 2(i-1)! \ln t}{t^i} + \frac{(-1)^i 2(i-1)!}{t^i} \sum_{k=1}^{i-1} \frac{1}{k} \\
&= \frac{(-1)^i 2(i-1)!}{t^i} \left[\sum_{k=1}^{i-1} \frac{1}{k} - \ln t \right], \\
[t(t-1)(t-2) \ln t]' &= t^2 - 3t + 2 + (3t^2 - 6t + 2) \ln t, \\
[t(t-1)(t-2) \ln t]'' &= 6(t-1) \ln t + 5t + \frac{2}{t} - 9, \\
[t(t-1)(t-2) \ln t]^{(3)} &= 11 - \frac{2}{t^2} - \frac{6}{t} + 6 \ln t, \\
[t(t-1)(t-2) \ln t]^{(i+3)} &= \frac{(-1)^{i+1} 2(i+1)!}{t^{i+2}} + \frac{(-1)^{i+1} 6i!}{t^{i+1}} + \frac{(-1)^{i-1} 6(i-1)!}{t^i} \\
&= \frac{(-1)^{i+1} 2(i-1)![i(i+1) + 3it + 3t^2]}{t^{i+2}}.
\end{aligned}$$

Accordingly,

$$\begin{aligned}
h'(t) &= \frac{5t^2}{2} - 6t + \frac{7}{2} + \left(3t^2 - 6t + \frac{2}{t} + 2 \right) \ln t, \\
h''(t) &= \frac{8t^3 - 12t^2 + 2t + 2 + 2(3t^3 - 3t^2 - 1) \ln t}{t^2}, \\
h^{(3)}(t) &= \frac{14t^3 - 6t^2 - 2t - 6 + (6t^3 + 4) \ln t}{t^3}, \\
h^{(i+3)}(t) &= \frac{(-1)^{i+1} 2(i+2)!}{t^{i+3}} \left[\sum_{k=1}^{i+2} \frac{1}{k} - \ln t \right] \\
&\quad + \frac{(-1)^{i+1} 2(i-1)![i(i+1) + 3it + 3t^2]}{t^{i+2}}
\end{aligned}$$

$$= \frac{(-1)^{i+1} 2(i+2)!}{t^{i+3}} \left[\sum_{k=1}^{i+2} \frac{1}{k} - \ln t + \frac{i(i+1)t + 3it^2 + 3t^3}{i(i+1)(i+2)} \right]$$

for $i \in \mathbb{N}$. It is clear that

$$(-1)^{i+3} h^{(i+3)}(t) = \frac{2(i+2)!}{t^{i+3}} \left[\sum_{k=1}^{i+2} \frac{1}{k} - \ln t + \frac{i(i+1)t + 3it^2 + 3t^3}{i(i+1)(i+2)} \right] > 0 \quad (2.6)$$

on the interval $(0, 1]$ for $i \in \mathbb{N}$. This implies that $h^{(3)}(t)$ is strictly increasing on $(0, 1]$. From $h^{(3)}(1) = h''(1) = h'(1) = h(1) = 0$, we obtain $h^{(3)}(t) \leq 0$, $h''(t) \geq 0$, $h'(t) \leq 0$, and $h(t) \geq 0$ on $(0, 1]$. In conclusion, the function $h(t)$ is completely monotonic on $(0, 1]$. Lemma 2.5 is proved. \square

Lemma 2.6. *The function $p(t) = (\ln t)^2 + (t-2)(t-1)^2$ is completely monotonic on $(0, 1]$.*

Proof. Direct differentiation gives $p'(t) = 5 - 8t + 3t^2 + \frac{2\ln t}{t}$,

$$p''(t) = \frac{2}{t^2} + 6t - 8 - \frac{2\ln t}{t^2}, \quad p^{(3)}(t) = 6 - \frac{6}{t^3} + \frac{4\ln t}{t^3},$$

and

$$p^{(i+3)}(t) = [(\ln t)^2]^{(i+3)} = \frac{(-1)^{i+1} 2(i+2)!}{t^{i+3}} \left[\sum_{k=1}^{i+2} \frac{1}{k} - \ln t \right]$$

for $i \in \mathbb{N}$. For $t \in (0, 1]$, it is obvious that

$$(-1)^{i+3} p^{(i+3)}(t) = \frac{2(i+2)!}{t^{i+3}} \left[\sum_{k=1}^{i+2} \frac{1}{k} - \ln t \right] > 0, \quad i \in \mathbb{N}.$$

This implies that $p^{(3)}(t)$ is strictly increasing on $(0, 1]$. From $p^{(3)}(1) = p''(1) = p'(1) = p(1) = 0$, it is derived that $p^{(3)}(t) \leq 0$, $p''(t) \geq 0$, $p'(t) \leq 0$, and $p(t) \geq 0$ on $(0, 1]$. In a word, the function $p(t)$ is completely monotonic on $(0, 1]$. The proof of Lemma 2.6 is complete. \square

3. Proof of Theorem 1.1

Now it is time to supply a proof of Theorem 1.1.

Direct calculation and utilization of Lemmas 2.2 and 2.3 yield

$$\begin{aligned} f_q(x) - f_q(x+1) &= \psi'_q(x) - \psi'_q(x+1) - \frac{(1-q)q^x}{1-q^x} - \frac{1}{2} \left[\frac{(1-q)q^x}{1-q^x} \right]^2 \\ &\quad + \frac{(1-q)q^{x+1}}{1-q^{x+1}} + \frac{1}{2} \left[\frac{(1-q)q^{x+1}}{1-q^{x+1}} \right]^2 \\ &= (\ln q)^2 \sum_{k=1}^{\infty} kq^{kx} + (1-q)q^x \left(\frac{q}{1-q^{x+1}} - \frac{1}{1-q^x} \right) \\ &\quad + \frac{1}{2}(1-q)^2 q^{2x} \left[\frac{q^2}{(1-q^{x+1})^2} - \frac{1}{(1-q^x)^2} \right] \\ &= (\ln q)^2 \sum_{k=1}^{\infty} kq^{kx} + (1-q)q^x \left[\sum_{k=0}^{\infty} q^{k(x+1)+1} - \sum_{k=0}^{\infty} q^{kx} \right] \end{aligned}$$

$$\begin{aligned}
& + \frac{1}{2}(1-q)^2 q^{2x} \left[\sum_{k=0}^{\infty} (k+1) q^{k(x+1)+2} - \sum_{k=0}^{\infty} (k+1) q^{kx} \right] \\
& = (\ln q)^2 \sum_{k=1}^{\infty} k q^{kx} + (1-q) \sum_{k=0}^{\infty} (q^{k+1} - 1) q^{(k+1)x} \\
& \quad + \frac{1}{2}(1-q)^2 \sum_{k=0}^{\infty} (k+1) (q^{k+2} - 1) q^{(k+2)x} \\
& = \sum_{k=1}^{\infty} \left\{ \left[\frac{1}{2}(1-q)k + 1 \right] (1-q)(q^{k+1} - 1) \right. \\
& \quad \left. + (\ln q)^2 (k+1) \right\} q^{(k+1)x} + [(\ln q)^2 - (1-q)^2] q^x.
\end{aligned}$$

Let $g_q(t) = \frac{1}{2}(1-q)[(1-q)(t+1) + 2](q^t - 1) + (\ln q)^2 t$ for $0 < q < 1$ and $t \in (0, \infty)$. Then

$$\begin{aligned}
g'_q(t) &= (\ln q)^2 + \frac{1}{2}(\ln q)(q-1)q^t[q(t-1) + q-3] + \frac{1}{2}(q^t - 1)(1-q)^2, \\
g''_q(t) &= \frac{1}{2}(q-1)q^t(\ln q)[(q-1)t \ln q + 2q + q \ln q - 3 \ln q - 2] \\
&\triangleq \frac{1}{2}(q-1)q^t(\ln q)\varphi(t, q), \\
\varphi(1, q) &= 2[q-1 + (q-2)\ln q], \quad \frac{d\varphi(1, q)}{dq} = 2\left[2\left(1 - \frac{1}{q}\right) + \ln q\right] < 0.
\end{aligned}$$

Since $\varphi(1, q)$ is decreasing with respect to $q \in (0, 1)$ and $\varphi(1, 1) = 0$, so $\varphi(1, q) > 0$ for $q \in (0, 1)$. It is obvious that $\varphi(t, q)$ is increasing with respect to t , so $\varphi(t, q) > 0$ for $(t, q) \in [1, \infty) \times (0, 1)$. Hence, the second derivative $g''_q(t)$ is positive for $(t, q) \in [1, \infty) \times (0, 1)$ and $g'_q(t)$ is increasing with respect to $t \in [1, \infty)$. From Lemma 2.5, we have $g'_q(1) = (\ln q)^2 + q(q^2 - 3q + 2) \ln q + \frac{1}{2}(q-1)^3 > 0$, hence $g'_q(t) > 0$ for $(t, q) \in (1, \infty) \times (0, 1)$, equivalently, the function $g_q(t)$ for $0 < q < 1$ is increasing with respect to $t \in [1, \infty)$. By virtue of Lemma 2.6, we have $g_q(1) = (q-2)(q-1)^2 + (\ln q)^2 > 0$ for $q \in (0, 1)$. Thus, the function $g_q(t)$ is positive for $(t, q) \in [1, \infty) \times (0, 1)$. Consequently,

$$\begin{aligned}
[f_q(x) - f_q(x+1)]^{(i-1)} &= (\ln q)^{i-1} \left\{ [(\ln q)^2 - (1-q)^2] q^x \right. \\
&\quad \left. + \sum_{k=1}^{\infty} (k+1)^{i-1} [g_q(k+1) + (1-q)^2(1-q^{k+1})] q^{(k+1)x} \right\}
\end{aligned}$$

for $i \in \mathbb{N}$. This means that

$$\begin{aligned}
(-1)^{i-1} [f_q(x) - f_q(x+1)]^{(i-1)} &= (-1)^{i-1} (\ln q)^{i-1} \left\{ [(\ln q)^2 - (1-q)^2] q^x \right. \\
&\quad \left. + \sum_{k=1}^{\infty} (k+1)^{i-1} [g_q(k+1) + (1-q)^2(1-q^{k+1})] q^{(k+1)x} \right\} > 0
\end{aligned}$$

which can be rearranged as $(-1)^{i-1}[f_q(x)]^{(i-1)} > (-1)^{i-1}[f_q(x+1)]^{(i-1)}$. By induction and Lemma 2.4, it follows that

$$\begin{aligned} (-1)^{i-1}[f_q(x)]^{(i-1)} &> (-1)^{i-1}[f_q(x+1)]^{(i-1)} > (-1)^{i-1}[f_q(x+2)]^{(i-1)} \\ &> \dots > (-1)^{i-1}[f_q(x+k)]^{(i-1)} \geq (-1)^{i-1} \lim_{k \rightarrow \infty} [f_q(x+k)]^{(i-1)} = 0 \end{aligned}$$

for $(i, k) \in \mathbb{N}^2$. So the function $f_q(x)$ for $0 < q < 1$ is completely monotonic on $(0, \infty)$. The proof of Theorem 1.1 is complete.

4. Conclusions

The main result in this paper generalizes a conclusion applied extensively in many literature on the gamma function and polygamma functions.

Acknowledgements

The author would like to express many thanks to the anonymous referees for their helpful comments on and valuable corrections to the original version of this manuscript.

REFERENCES

- [1] G. D. Anderson, R. W. Barnard, K. C. Richards, M. K. Vamanamurthy, and M. Vuorinen, Inequalities for zero-balanced hypergeometric functions, *Trans. Amer. Math. Soc.* **347** (1995), no. 5, 1713–1723; Available online at <http://dx.doi.org/10.1090/S0002-9947-1995-1264800-3>.
- [2] G. E. Andrews, R. A. Askey, and R. Roy, *Special Functions*, Cambridge University Press, Cambridge, 1999.
- [3] C.-P. Chen and F. Qi, Logarithmically completely monotonic functions relating to the gamma function, *J. Math. Anal. Appl.* **321** (2006), no. 1, 405–411; Available online at <http://dx.doi.org/10.1016/j.jmaa.2005.08.056>.
- [4] B.-N. Guo and F. Qi, Properties and applications of a function involving exponential functions, *Commun. Pure Appl. Anal.* **8** (2009), no. 4, 1231–1249; Available online at <http://dx.doi.org/10.3934/cpaa.2009.8.1231>.
- [5] M. E. H. Ismail, L. Lorch, and M. E. Muldoon, Completely monotonic functions associated with the gamma function and its q -analogues, *J. Math. Anal. Appl.* **116** (1986), 1–9; Available online at [http://dx.doi.org/10.1016/0022-247X\(86\)90042-9](http://dx.doi.org/10.1016/0022-247X(86)90042-9).
- [6] M. E. H. Ismail and M. E. Muldoon, Inequalities and monotonicity properties for gamma and q -gamma functions, in: R.V.M. Zahar (Ed.), *Approximation and Computation: A Festschrift in Honour of Walter Gautschi*, ISNM, Vol. **119**, Birkhäuser, Basel, 1994, 309–323.
- [7] D. S. Mitrinović, J. E. Pečarić and A. M. Fink, *Classical and New Inequalities in Analysis*, Kluwer Academic Publishers, Dordrecht-Boston-London, 1993.
- [8] M. E. Muldoon, Some monotonicity properties and characterizations of the gamma function, *Aequationes Math.* **18** (1978), 54–63; Available online at <http://dx.doi.org/10.1007/BF01844067>.
- [9] F. Qi, A completely monotonic function involving the divided difference of the psi function and an equivalent inequality involving sums, *ANZIAM J.* **48** (2007), no. 4, 523–532; Available online at <http://dx.doi.org/10.1017/S1446181100003199>.
- [10] F. Qi, Bounds for the ratio of two gamma functions, *J. Inequal. Appl.* **2010** (2010), Article ID 493058, 84 pages; Available online at <http://dx.doi.org/10.1155/2010/493058>.
- [11] F. Qi, Some completely monotonic functions involving the q -tri- and -tetra-gamma functions and applications, *Sci. China Math.* (2013), in press; Available online at <http://dx.doi.org/10.1007/s11425-012-4562-0>.

- [12] *F. Qi*, Three classes of logarithmically completely monotonic functions involving gamma and psi functions, *Integral Transforms Spec. Funct.* **18** (2007), no. 7, 503–509; Available online at <http://dx.doi.org/10.1080/10652460701358976>.
- [13] *F. Qi and B.-N. Guo*, Completely monotonic functions involving divided differences of the di- and tri-gamma functions and some applications, *Commun. Pure Appl. Anal.* **8** (2009), no. 6, 1975–1989; Available online at <http://dx.doi.org/10.3934/cpaa.2009.8.1975>.
- [14] *F. Qi and B.-N. Guo*, Necessary and sufficient conditions for functions involving the tri- and tetra-gamma functions to be completely monotonic, *Adv. Appl. Math.* **44** (2010), no. 1, 71–83; Available online at <http://dx.doi.org/10.1016/j.aam.2009.03.003>.
- [15] *F. Qi and Q.-M. Luo*, Bounds for the ratio of two gamma functions—From Wendel’s and related inequalities to logarithmically completely monotonic functions, *Banach J. Math. Anal.* **6** (2012), no. 2, 132–158.
- [16] *D. V. Widder*, *The Laplace Transform*, Princeton University Press, Princeton, 1946.