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A COMPLETELY MONOTONIC FUNCTION RELATED TO THE

q-TRIGAMMA FUNCTION

Feng Qi1

In the paper, a function related to the q-trigamma function is proved to
be completely monotonic. In order to prove this main result, two functions related
to the logarithmic function are found to be completely monotonic.
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1. Introduction

The classical Euler gamma function Γ(x) may be defined for x > 0 by

Γ(x) =

∫ ∞

0
tx−1e−t dt =

1

x

∞∏
n=1

{(
1 +

1

n

)x(
1 +

x

n

)−1}
(1.1)

The logarithmic derivative of Γ(x), denoted by ψ(x) = Γ′(x)
Γ(x) , is called the psi or

digamma function, and the derivatives ψ(i)(x) for i ∈ N, the set of all positive inte-
gers, are respectively called the polygamma functions. In particular, the functions
ψ′(x) and ψ′′(x) are called the trigamma and tetragamma functions.

The q-analogue Γq(x) of the gamma function Γ(x) may be defined for x > 0
by

Γq(x) = (1− q)1−x
∞∏
i=0

1− qi+1

1− qi+x
(1.2)

when 0 < q < 1, and by

Γq(x) = (q − 1)1−xq(
x
2)

∞∏
i=0

1− q−(i+1)

1− q−(i+x)
(1.3)
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when q > 1. The q-psi function ψq(x), the q-analogue of the psi function ψ(x), may
be defined by

ψq(x) =
Γ′
q(x)

Γq(x)
= − ln(1− q) + ln q

∞∑
k=0

qk+x

1− qk+x

= − ln(1− q) + ln q

∞∑
k=1

qkx

1− qk

(1.4)

for 0 < q < 1 and x > 0, and by

ψq(x) = − ln(q − 1) + ln q

(
x− 1

2
−
∑
n≥0

q−n−x

1− q−n−x

)
(1.5)

for q > 1 and x > 0. The functions ψ
(k)
q (x), the q-analogues of the polygamma

functions ψ(k)(x), for k ∈ N are called the q-polygamma functions. For detailed
information about the above formulas, see [2, 5, 6, 8, 11] and closely related references
therein.

The above mentioned functions satisfy the following relations

lim
q→1±

Γq(z) = Γ(z), Γq(x) = q(
x−1
2 )Γ1/q(x), lim

q→1±
ψq(x) = ψ(x). (1.6)

For more information, please refer to [2, pp. 493–496].
We recall from [7, Chapter XIII] and [16, Chapter IV] that a function f is

said to be completely monotonic on an interval I if f has derivatives of all orders
on I and (−1)nf (n)(x) ≥ 0 for x ∈ I and n ≥ 0. In [16, p. 161, Theorem 12b], it
was stated that a necessary and sufficient condition that f(x) should be completely
monotonic for 0 < x <∞ is that f(x) =

∫∞
0 e−xt dα(t), where α(t) is non-decreasing

and the integral converges for 0 < x < ∞. In other words, a function is completely
monotonic on (0,∞) if and only if it is a Laplace transform.

For x > 0, let

f(x) = ψ′(x)− 1

x
− 1

2x2
. (1.7)

For x > 0 and 0 < q < 1, let

fq(x) = ψ′
q(x)−

(1− q)qx

1− qx
− 1

2

[
(1− q)qx

1− qx

]2
. (1.8)

It is clear that limq→1− fq(x) = f(x). So, we may regard fq(x) as the q-analogue of
the function f(x).

In recent years, the complete monotonicity of the function (1.7) was proved,
generalized, and applied in [1, 3, 5, 6, 8, 11], [9, Theorem 1.1], [12, Theorem 1.3], [13,
pp. 1977–1978], [14, Theorem 2]. For more information on this topic, please refer to
related texts in the survey articles [10, 15] and closely related references therein.

The goal of this paper is to prove the complete monotonicity of fq(x) for
0 < q < 1 on (0,∞). Our main result may be stated as the following theorem.

Theorem 1.1. For 0 < q < 1, the function fq(x) defined by (1.8) is completely
monotonic on (0,∞).
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2. Lemmas

To prove our main result, we need the following lemmas.

Lemma 2.1. For i ∈ N and q ∈ (0, 1), we have

ψ(i)
q (x) = (ln q)i+1

∞∑
k=1

kiqkx

1− qk
. (2.1)

Proof. This follows from the definition of ψq(x) by (1.4), direct differentiation, and
the induction. �

Lemma 2.2. For q ∈ (0, 1) and x ∈ (0,∞), we have

∞∑
k=1

kq(k+1)x =
q2x

(1− qx)2
. (2.2)

Proof. This can be deduced from the series expansion

1

(1− x)2
=

∞∑
i=0

(i+ 1)xi (2.3)

for x ∈ (0, 1) and replacement of x by qx in (2.3). �

Lemma 2.3. For 0 < q < 1 and x ∈ (0,∞), we have

ψ′
q(x)− ψ′

q(x+ 1) = (ln q)2
∞∑
k=1

kqkx. (2.4)

Proof. By Lemma 2.1 for i = 1, we have

ψ′
q(x)− ψ′

q(x+ 1) = (ln q)2
∞∑
k=1

kqkx

1− qk
− (ln q)2

∞∑
k=1

kqkqkx

1− qk

= (ln q)2
∞∑
k=1

kqkx(1− qk)

1− qk
= (ln q)2

∞∑
k=1

kqkx.

Lemma 2.3 is thus proved. �

Remark 2.1. In [4, p. 1245, Theorem 4.4], the identity

ψ(k−1)
q (x+ 1)− ψ(k−1)

q (x) = − dk−1

dxk−1

(
qx

1− qx

)
ln q (2.5)

for x ∈ (0,∞) and k ∈ N was deduced. It is not difficult to see that the identity (2.4)
is a special case of (2.5).

Lemma 2.4. For 0 < q < 1 and i ∈ N, the limit limx→∞[fq(x)]
(i−1) = 0 is valid,

where fq(x) is defined by (1.8).

Proof. It is apparent that limx→∞ fq(x) = 0.
Differentiating and making use of (2.1) and (2.2) result in

[fq(x)]
(i) = ψ(i+1)

q (x)−
[
(1− q)qx

1− qx

](i)
−
[
(1− q)2q2x

2(1− qx)2

](i)
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= ψ(i+1)
q (x)− (1− q)

[ ∞∑
ℓ=0

qx(ℓ+1)

](i)
− (1− q)2

2

[ ∞∑
ℓ=0

(ℓ+ 1)qx(ℓ+2)

](i)

= ψ(i+1)
q (x)− (1− q)(ln q)i

∞∑
ℓ=0

(ℓ+ 1)iqx(ℓ+1)

− (1− q)2

2
(ln q)i

∞∑
ℓ=0

(ℓ+ 1)(ℓ+ 2)iqx(ℓ+2) → 0

as x→ ∞ for 0 < q < 1. The proof of Lemma 2.4 is complete. �

Lemma 2.5. The function h(t) = (ln t)2+ t(t−1)(t−2) ln t+ 1
2(t−1)3 is completely

monotonic on (0, 1].

Proof. A straightforward computation yields

[
(ln t)2

](i)
=

(−1)i−12(i− 1)! ln t

ti
+

i−1∑
k=1

(−1)ii!

k(i− k)

1

ti

=
(−1)i−12(i− 1)! ln t

ti
+

(−1)i2(i− 1)!

ti

i−1∑
k=1

1

k

=
(−1)i2(i− 1)!

ti

[
i−1∑
k=1

1

k
− ln t

]
,

[t(t− 1)(t− 2) ln t]′ = t2 − 3t+ 2 +
(
3t2 − 6t+ 2

)
ln t,

[t(t− 1)(t− 2) ln t]′′ = 6(t− 1) ln t+ 5t+
2

t
− 9,

[t(t− 1)(t− 2) ln t](3) = 11− 2

t2
− 6

t
+ 6 ln t,

[t(t− 1)(t− 2) ln t](i+3) =
(−1)i+12(i+ 1)!

ti+2
+

(−1)i+16i!

ti+1
+

(−1)i−16(i− 1)!

ti

=
(−1)i+12(i− 1)![i(i+ 1) + 3it+ 3t2]

ti+2
.

Accordingly,

h′(t) =
5t2

2
− 6t+

7

2
+

(
3t2 − 6t+

2

t
+ 2

)
ln t,

h′′(t) =
8t3 − 12t2 + 2t+ 2 + 2

(
3t3 − 3t2 − 1

)
ln t

t2
,

h(3)(t) =
14t3 − 6t2 − 2t− 6 +

(
6t3 + 4

)
ln t

t3
,

h(i+3)(t) =
(−1)i+12(i+ 2)!

ti+3

[
i+2∑
k=1

1

k
− ln t

]

+
(−1)i+12(i− 1)![i(i+ 1) + 3it+ 3t2]

ti+2
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=
(−1)i+12(i+ 2)!

ti+3

[
i+2∑
k=1

1

k
− ln t+

i(i+ 1)t+ 3it2 + 3t3

i(i+ 1)(i+ 2)

]
for i ∈ N. It is clear that

(−1)i+3h(i+3)(t) =
2(i+ 2)!

ti+3

[
i+2∑
k=1

1

k
− ln t+

i(i+ 1)t+ 3it2 + 3t3

i(i+ 1)(i+ 2)

]
> 0 (2.6)

on the interval (0, 1] for i ∈ N. This implies that h(3)(t) is strictly increasing on

(0, 1]. From h(3)(1) = h′′(1) = h′(1) = h(1) = 0, we obtain h(3)(t) ≤ 0, h′′(t) ≥ 0,
h′(t) ≤ 0, and h(t) ≥ 0 on (0, 1]. In conclusion, the function h(t) is completely
monotonic on (0, 1]. Lemma 2.5 is proved. �
Lemma 2.6. The function p(t) = (ln t)2 + (t − 2)(t − 1)2 is completely monotonic
on (0, 1].

Proof. Direct differentiation gives p′(t) = 5− 8t+ 3t2 + 2 ln t
t ,

p′′(t) =
2

t2
+ 6t− 8− 2 ln t

t2
, p(3)(t) = 6− 6

t3
+

4 ln t

t3
,

and

p(i+3)(t) =
[
(ln t)2

](i+3)
=

(−1)i+12(i+ 2)!

ti+3

[
i+2∑
k=1

1

k
− ln t

]
for i ∈ N. For t ∈ (0, 1], it is obvious that

(−1)i+3p(i+3)(t) =
2(i+ 2)!

ti+3

[
i+2∑
k=1

1

k
− ln t

]
> 0, i ∈ N.

This implies that p(3)(t) is strictly increasing on (0, 1]. From p(3)(1) = p′′(1) =

p′(1) = p(1) = 0, it is derived that p(3)(t) ≤ 0, p′′(t) ≥ 0, p′(t) ≤ 0, and p(t) ≥ 0 on
(0, 1]. In a word, the function p(t) is completely monotonic on (0, 1]. The proof of
Lemma 2.6 is complete. �

3. Proof of Theorem 1.1

Now it is time to supply a proof of Theorem 1.1.
Direct calculation and utilization of Lemmas 2.2 and 2.3 yield

fq(x)− fq(x+ 1) = ψ′
q(x)− ψ′

q(x+ 1)− (1− q)qx

1− qx
− 1

2

[
(1− q)qx

1− qx

]2
+

(1− q)qx+1

1− qx+1
+

1

2

[
(1− q)qx+1

1− qx+1

]2
= (ln q)2

∞∑
k=1

kqkx + (1− q)qx
(

q

1− qx+1
− 1

1− qx

)
+

1

2
(1− q)2q2x

[
q2

(1− qx+1)2
− 1

(1− qx)2

]
= (ln q)2

∞∑
k=1

kqkx + (1− q)qx

[ ∞∑
k=0

qk(x+1)+1 −
∞∑
k=0

qkx

]
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+
1

2
(1− q)2q2x

[ ∞∑
k=0

(k + 1)qk(x+1)+2 −
∞∑
k=0

(k + 1)qkx

]

= (ln q)2
∞∑
k=1

kqkx + (1− q)

∞∑
k=0

(
qk+1 − 1

)
q(k+1)x

+
1

2
(1− q)2

∞∑
k=0

(k + 1)
(
qk+2 − 1

)
q(k+2)x

=
∞∑
k=1

{[
1

2
(1− q)k + 1

]
(1− q)

(
qk+1 − 1

)
+ (ln q)2(k + 1)

}
q(k+1)x +

[
(ln q)2 − (1− q)2

]
qx.

Let gq(t) = 1
2(1 − q)[(1 − q)(t + 1) + 2]

(
qt − 1

)
+ (ln q)2t for 0 < q < 1 and

t ∈ (0,∞). Then

g′q(t) = (ln q)2 +
1

2
(ln q)(q − 1)qt[q(t− 1) + q − 3] +

1

2
(qt − 1)(1− q)2,

g′′q (t) =
1

2
(q − 1)qt(ln q)[(q − 1)t ln q + 2q + q ln q − 3 ln q − 2]

, 1

2
(q − 1)qt(ln q)φ(t, q),

φ(1, q) = 2[q − 1 + (q − 2) ln q],
dφ(1, q)

dq
= 2

[
2

(
1− 1

q

)
+ ln q

]
< 0.

Since φ(1, q) is decreasing with respect to q ∈ (0, 1) and φ(1, 1) = 0, so φ(1, q) > 0
for q ∈ (0, 1). It is obvious that φ(t, q) is increasing with respect to t, so φ(t, q) >
0 for (t, q) ∈ [1,∞) × (0, 1). Hence, the second derivative g′′q (t) is positive for
(t, q) ∈ [1,∞) × (0, 1) and g′q(t) is increasing with respect to t ∈ [1,∞). From

Lemma 2.5, we have g′q(1) = (ln q)2 + q
(
q2 − 3q + 2

)
ln q + 1

2(q − 1)3 > 0, hence
g′q(t) > 0 for (t, q) ∈ (1,∞) × (0, 1), equivalently, the function gq(t) for 0 < q < 1
is increasing with respect to t ∈ [1,∞). By virtue of Lemma 2.6, we have gq(1) =
(q − 2)(q − 1)2 + (ln q)2 > 0 for q ∈ (0, 1). Thus, the function gq(t) is positive for
(t, q) ∈ [1,∞)× (0, 1). Consequently,

[fq(x)− fq(x+ 1)](i−1) = (ln q)i−1

{[
(ln q)2 − (1− q)2

]
qx

+

∞∑
k=1

(k + 1)i−1
[
gq(k + 1) + (1− q)2

(
1− qk+1

)]
q(k+1)x

}
for i ∈ N. This means that

(−1)i−1[fq(x)− fq(x+ 1)](i−1) = (−1)i−1(ln q)i−1

{[
(ln q)2 − (1− q)2

]
qx

+
∞∑
k=1

(k + 1)i−1
[
gq(k + 1) + (1− q)2

(
1− qk+1

)]
q(k+1)x

}
> 0
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which can be rearranged as (−1)i−1[fq(x)]
(i−1) > (−1)i−1[fq(x+ 1)](i−1). By induc-

tion and Lemma 2.4, it follows that

(−1)i−1[fq(x)]
(i−1) > (−1)i−1[fq(x+ 1)](i−1) > (−1)i−1[fq(x+ 2)](i−1)

> · · · > (−1)i−1[fq(x+ k)](i−1) ≥ (−1)i−1 lim
k→∞

[fq(x+ k)](i−1) = 0

for (i, k) ∈ N2. So the function fq(x) for 0 < q < 1 is completely monotonic on
(0,∞). The proof of Theorem 1.1 is complete.

4. Conclusions

The main result in this paper generalizes a conclusion applied extensively in
many literature on the gamma function and polygamma functions.
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