

EVALUATION OF STRUCTURAL CARBOHYDRATE DEGRADING CAPACITY OF PGP BACTERIAL STRAINS USING DIFFERENT METHODS

Annamária BECZE^{1,3}, Éva-Boglárka VINCZE^{2,3}, Szabolcs LÁNYI^{1,3},
Gyöngyvér MARA^{3*}

*Soil bacteria play an important role in carbon cycle due to their ability to decompose plant structural compounds as cellulose and hemicellulose. Structural carbohydrate degrading bacterial strains due to various metabolic activities can promote plant growth. A number of 29 plant growth promoting (PGP) bacterial strains isolated from different types of silages were tested for their cellulolytic and xylanolytic potential using two methods (dinitrosalycilic acid and p-Nitrophenyl substrate) for enzyme assay. No correlation was observed between the enzyme activities obtained for the studied bacterial strains using different methods. Due to its specificity the p-Nitrophenyl substrate method is more precise for enzyme activity determination and cellulolytic strain selection. Both cellulolytic and xylanolytic enzyme activity was observed in the case of *Bacillus simplex* LE101B, *Paenibacillus pabuli* KX101*, *Paenibacillus peoriae* PB2, *Paenibacillus xylanexedens* KC101, *Arthrobacter siccitolerans* KX102, *Weisella paramesenteroides* LC101B* and *Pseudomonas rhodesiae* XK2B101. The above-mentioned PGP and structural carbohydrate degrading bacterial strains have potential in conservative agriculture.*

Keywords: structural carbohydrate, silage bacteria, PGP bacteria, p-Nitrophenyl substrate, DNSA method

1. Introduction

As a result of the climate change, land degradation and biodiversity loss, soils have become very vulnerable all over the world. Soils are a major carbon reservoir containing more carbon than the atmosphere and the terrestrial vegetation combined. Soil organic carbon is part of the global carbon cycle that involves the movement of carbon through the soil, vegetation, ocean and the atmosphere. The remains of plants and animals are the main source of soil organic matter. The plants contain a variety of polysaccharides such as cellulose,

¹ Faculty of Applied Chemistry and Material Sciences, University POLITEHNICA of Bucharest, Romania

² Faculty of Science, Doctoral School of Chemistry, University of Pécs, Hungary

³ Faculty of Economics, Socio-Human Sciences and Engineering, Sapientia Hungarian University of Transylvania, Miercurea Ciuc, Romania, e-mail: maragyongyver@uni.sapientia.ro

hemicellulose and biopolymers (lignin, pectin), which are considered a renewable energy source for living organisms [1, 2].

Cellulose, as plant structural compound is a chemically homogeneous linear polymer of up to 10,000 D-glucose molecules, which are connected by β -1,4 bonds. The structural subunit of cellulose is cellobiose. Cellulose is present in pure state, in most cases and primarily associated with hemicelluloses and lignin [3].

The most abundant structural compound in nature is a hemicellulose (xylan), containing 1,4-glycosidic bonds. Xylan is present in the plant cell wall, representing 30–35% of the total dry weight. The most abundant form of xylan is heteroxylan, which comprises xylose residues in the backbone with acetyl, arabinosyl and glucuronosyl residues as substituents [4]. Hemicelluloses consist of both linear and branched heteropolymers. They mainly contain five monomeric sugars, namely D-glucose, D-mannose, D-galactose, D-xylose and L-arabinose linked together by β -1,4-glycosidic bonds. Covalent bonding between hemicelluloses and lignin provides additional strength to the plant. Xylan is the major hemicellulose of hardwoods that interacts with lignin and cellulose. Softwood hemicelluloses include: galactoglucomannans, arabinoglucuronoxylan, and arabinogalactan [5].

Hemicelluloses degrade more easily than cellulose because of low polymerization and amorphous properties. They are biodegraded to monomeric sugars and acetic acid. Hemicellulases are frequently classified according to their action on distinct substrates [6]. They complete degradation requires the cooperative action of a variety of hydrolytic enzymes like endo-1,4- β -xylanase and xylan 1,4- β -xylosidase. In addition, hemicellulose biodegradation needs accessory enzymes such as xylan esterases, ferulic and p-coumaric esterases, α -L-arabinofuranosidases, and α -4-O-methyl glucuronosidases acting synergistically to efficiently hydrolyze wood (xylans and mannans) [7, 8].

The soil microorganisms have an important role in plant biomass decomposition, because they produce the most of cellulose and hemicellulose degrading enzymes [1]. The degradation of plant cell wall polymers is made by cellulases, hemicellulases, ligninases and pectinases and auxiliary depolymerizing enzymes which fall into the following classes: glycoside hydrolases (GH), glycosyl transferases (GT), polysaccharide lyases (PL), carbohydrate esterases (CE), and auxiliary monooxygenases (AA), all enzymes have carbohydrate-binding modules [6].

Microorganisms such as aerobic bacteria (*Bacillus amyloliquefaciens*, *B. cereus*, *B. licheniformis*, *B. subtilis* and *Lactobacillus plantarum*), fungi, yeast and actinomycetes produce cellulase that degrade cellulose by hydrolysing the β -1,4-glycosidic linkages of cellulose. In contrast to aerobic bacteria, anaerobic bacteria

lack the ability to effectively penetrate into the cellulosic material which leads to the development of complex cellulase systems called cellulosome [3, 9, 10].

The carbohydrate-binding modules of cellulase enzymes contribute to cleaving the β -1,4 bonds in the cellulose chain, however hemicellulases degrade the hemicelluloses (xylans, xyloglucans, arabinoxylans, glucomannans) [1].

The cellulolysis process is controlled by the cellulase enzyme system comprising 1,4- β -endoglucanase, 1,4- β -exoglucanase and β -glucosidase. Endoglucanase randomly cleaves the β -1,4-glycosidic bonds, while exoglucanase splits elementary fibrils from the crystalline cellulose. The third enzyme system (β -glucosidase) hydrolyses cellobiose and water-soluble cellooligosaccharides to glucose. All three enzymes are necessary for the complete cellulose hydrolysis [11].

Hemicelluloses are degraded by the same type of organisms as cellulose, but this degrading method requires different enzymes. Endo-1,4- β -xyylanases, β -D-xylosidases, α -glucuronidases, acetylxyran esterases, and ferulic/coumaric acid esterases are obtained after complete hydrolysis of birch xylan [5].

The mycelial fungi is the major decomposer of organic matter in soil, which is composed by hydrolysis-resistant plant polymers containing cellulose. Some bacterial species can also degrade cellulose, they belong to the genera of *Firmicutes*, *Actinobacteria*, *Proteobacteria* and *Bacteroidetes* [1, 6].

Some of these structural carbohydrates degrading bacterial strains due to different metabolic activities can increase the availability of nutrients promoting the plant growth. These bacterial strains belong to plant growth promoting bacteria (PGPB) genera [12]. Plant growth-promoting (PGP) bacteria can be free-living or rhizobacteria which actively colonize plant roots, exerting beneficial effects on plant development. The PGP bacteria may promote the plant growth: using their own metabolism (solubilizing phosphates, producing hormones or fixing nitrogen) or directly affecting the plant metabolism, enhancing root development, increasing the enzymatic activity of the plant or promote the plant growth [13].

The aim of the present study was the evaluation of structural carbohydrate degrading capacity of PGP bacterial strains. Two types of analysis, a specific one using p-Nitrophenyl substrate and a non-specific one, using DNSA method were used in order to determine the structural carbohydrate degrading capacity.

2. Material and methods

2.1. Bacterial strains

Structural carbohydrate degrading bacterial strains were isolated from four different types of silages on selective agar medium. The bacterial strains were encoded according to their origin and selective media used for isolation. The first letter indicates the origin (SZ-grass, K-corn silage, L-alfalfa silage), the second

letter the used selective media (X-xylan, F-phytate, C-CMC, E-cellulose, P-pectin), and the last character indicates the number of bacterial colony. The * symbol was used for strains isolated under anaerob conditions. These bacterial strains were identified by 16S rDNA sequence analysis [14].

The used 29 bacterial strains are the following: *Bacillus aryabhattachai* KF101*, *Bacillus subtilis* ssp. *subtilis* SZX102, *Bacillus simplex* LE101B and XK1C2101, *Bacillus subtilis* ssp. *inaquosorum* SZE102B*, SZX102A*, SZC102B*, SZF101B2, SZE101A and SZX101A, *Bacillus tequilensis* LE102, *Bacillus licheniformis* SZX101B*, SZC101A, SZC102A, SZE102A and SZF102, *Bacillus methylotrophicus* LC101, *Paenibacillus amylolyticus* KC102, *Paenibacillus pabuli* KX101* and KE101A, *Paenibacillus peoriae* PB2, *Paenibacillus xylanexedens* KC101, *Weissella paramesenteroides* LC101B*, *Arthrobacter nitroguaiacolicus* LX102, *Arthrobacter siccitolerans* KX102, *Paenibacillus barcinonensis* XK1A101, *Stenotrophomonas rhizophila* CK1D101, *Stenotrophomonas acidaminiphilia* CK1E101 and *Pseudomonas rhodesiae* XK2B101.

2.2. Analysis of structural carbohydrate degradation

2.2.1. Culture condition and sampling

The bacterial strains were grown overnight in Nutrient liquid medium, 150 rpm at 28 °C. An amount of 20 mL of Bushnell Haas (BHM, MgSO₄*7H₂O 0.2 g/L, KH₂PO₄ 1 g/L, NH₄NO₃ 1 g/L, FeCl₃*6H₂O 0.05 g/L, CaCl₂ 0.02 g/L, pH=7) selective liquid medium was inoculated with 0.4 mL bacterial suspension (OD₅₉₅=0.3) containing 5 g/L structural carbohydrate (cellulose, CMC, xylan). This step was followed by incubation at 28 °C for 14 days at 150 rpm.

At the end of the incubation period samples were taken from the culture media for both enzymatic hydrolysis and enzyme assay. For the DNSA method 1 mL bacterial suspension was obtained and centrifuged at 10000 rpm, 4 °C for 10 minutes. The supernatant was used for further analyses. For the enzyme assay, using p-Nitrophenyl substrate, 10 mL of bacterial suspension was sonicated (3x10 s, on 50 Hz and 70 amplitude) and centrifuged for 10000 rpm, at 4 °C for 10 minutes for sonicated samples. The rest of the bacterial suspension (9 mL) was centrifuged only, and further analysed for enzymatic activity.

2.2.2. Estimation of enzymatic hydrolysis by dinitrosalicylic acid (DNSA) method

The amount of reducing sugar from both activated and inactivated samples was determined using DNSA method. In the case of activated samples 0.25 mL of supernatant and 0.25 mL of substrate buffer was pipetted into an Eppendorf tube and incubated for 10 min at 40 °C, followed by the addition of 1 mL of DNSA

reagent and the incubation for 10 min at 100 °C, during which colour reaction took place. Inactivated samples were obtained adding 0.25 mL of supernatant, the same amount of substrate buffer and 1 mL DNSA reagent into an Eppendorf tube, then incubated for 10 minutes at 100 °C. The samples were cooled to room temperature, centrifuged at 10000 rpm for 3 minutes. The absorbance was measured at 540 nm using ZUZI Spectrophotometer Model 4201/50. The enzyme activity was calculated using the method described by Rastogi et al. (2010) [15].

2.2.3. Enzyme assay using p-Nitrophenyl substrate

Glucosidase enzyme assay in cellulose and carboxymethyl cellulose containing broth

In the microtiter plate were pipetted the following amounts of solutions: 50 µL supernatant, 50 µL substrate (p-Nitrophenyl β -glucopyranoside) and 100 µL phosphate buffer. For the control sample the supernatant was replaced by the same quantity of sterilized water (50 µL). The absorbance was measured at the start point on BMG LABTECH's FLUOstar OPTIMA microplate reader at 405 nm. The microplates were incubated at 37 °C for 30 minutes, then the reaction was stopped adding 5 µL 1 M NaOH to each sample. The absorbance reading was repeated at 405 nm, and the enzyme activities were calculated following the Jackson et al. (2013) [16] protocol.

Xylanase enzyme assay in xylan containing broth

We used p-Nitrophenyl β -D-xylopyranoside as substrate. The enzyme assay was performed using the same protocol as described above.

3. Results and discussion

3.1. Cellulose degrading capacity of bacterial strains

3.1.1. Estimation of enzymatic hydrolysis on cellulose substrate by DNSA method

In selective broth that contained cellulose, glucose production was observed in all bacterial strains. The mean value of cellulase activity varied between 0.163-0.25 U/mL (see Fig. 1.). The cellulase activity values were lower than those observed in the case of CMCase. In their study Rastogi et al. (2010) detected cellulase activity (0.03 U/mL) at the end of exponential growth phase for *Bacillus* sp. [15].

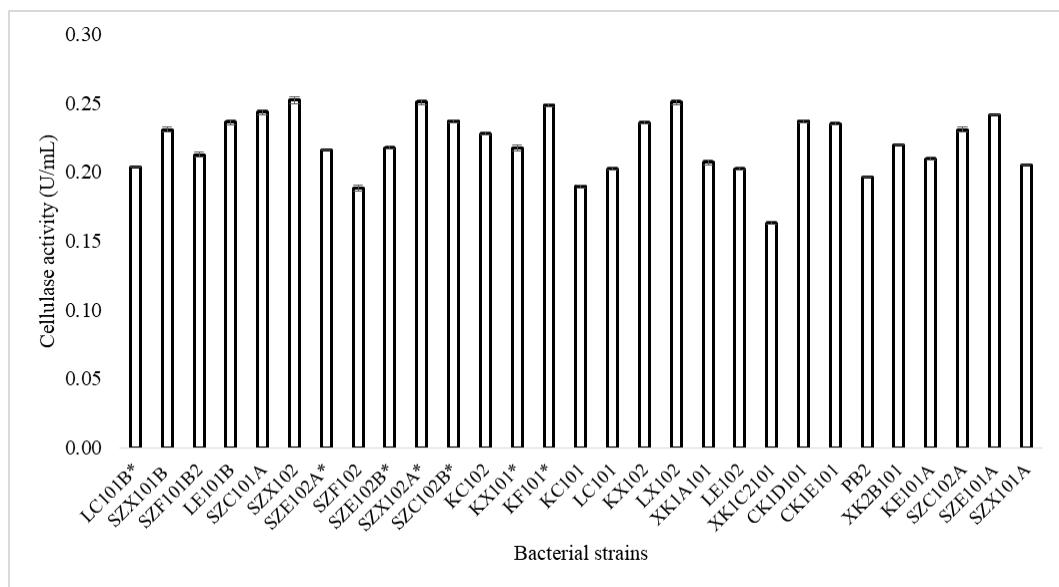


Fig. 1. Cellulase activity in a selective broth containing cellulose

3.1.2. Glucosidase enzyme assay in cellulose containing broth

A total number of 29 bacterial strains were tested for enzyme activity. From the selected bacterial strains 7 showed enzyme activity for glucosidase enzyme. The mean value of enzyme activity varied between 0.0012-7.51 U/mL (see Table 1.) in the case of sonicated samples, whereas the values from only centrifuged samples ranged between 0.0128-1.88 U/mL. The higher values for sonicated samples may be explained by the presence of both type of extra- and intracellular enzymes in supernatant. The lowest glucosidase enzyme activity was observed for *Bacillus licheniformis* SZX101B bacterial strain (sonicated sample). The highest glucosidase activity was showed by *Paenibacillus amylolyticus* KC102 strain in both cases (sonicated and only centrifuged samples). Seo et al. (2013) studied the β -glucosidase activity (0.63 U/mL) of *Bacillus licheniformis* using salicin (2-hydroxymethyl-phenyl- β -D-glucopyranoside) as substrate [17].

Based on literature data the *Bacillus aryabhattachai*, *Bacillus licheniformis*, *Paenibacillus amylolyticus*, *Paenibacillus peoriae*, *Paenibacillus xylanexedens*, *Stenotrophomonas rhizophila*, *Bacillus subtilis*, and *Bacillus methylotrophicus* bacterial strains showed cellulase activity [17-24]. The present study is the first report of cellulase activity for the following bacterial strains: *Bacillus simplex* LE101B, *Bacillus tequilensis* LE102, *Paenibacillus pabuli* KX101* and KE101A, *Arthrobacter nitroguaiacolicus* LX102 and *Pseudomonas rhodesiae* XK2B101.

Table 1

The glucosidase enzyme activity in selective broth containing cellulose

Bacterial strain	Glucosidase activity (U/mL)	
	Sonicated sample	Only centrifuged sample
LC101B*	0.1785 ± 0.0474	0.5586 ± 0.0359
SZX101B	0.0012 ± 0.0354	0.0231 ± 0.0203
LE101B	0.0219 ± 0.2114	0
SZC101A	0.0631 ± 0.0772	0
SZX102	0.0959 ± 0.0344	0
SZE102A*	0.1081 ± 0.0930	0
SZF102	0	0.0971 ± 0.0264
SZE102B*	0.0631 ± 0.0369	0.0741 ± 0.0131
SZX102A*	0.0668 ± 0.0712	0
KC102	7.5179 ± 0.7370	1.8871 ± 0.1309
KX101*	1.3260 ± 0.0255	0.6254 ± 0.0310
KC101	0.0206 ± 0.0855	0
LC101	0	0.0899 ± 0.0164
LX102	0	1.1536 ± 0.0237
XK1A101	0.7590 ± 0.0128	1.2410 ± 0.0379
LE102	0.1761 ± 0	0
XK1C2101	0	0.0389 ± 0.0612
CK1D101	0.0364 ± 0.0728	0.2149 ± 0.0310
PB2	0.0170 ± 0.0445	0.0522 ± 0.0386
XK2B101	0.0704 ± 0.0518	0
KE101A	0.5695 ± 0.1392	0.9059 ± 0.0740
SZE101A	0.1166 ± 0.0159	0
SZX101A	0.0401 ± 0.1971	0

Examining the two datasets, no correlation was found between the enzyme activities obtained using the two methods ($r=0.009$ for centrifuged samples, $r=0.035$ for sonicated samples).

3.2. CMC degrading capacity of bacterial strains

3.2.1. Estimation of enzymatic hydrolysis on CMC substrate by DNSA method

From the 29 bacterial strains selected and cultured on selective broth containing CMC, all were able to produce glucose. The mean value of CMCase (endoglucanase) activity varied between 0.16-0.42 U/mL (see Fig. 2.). The

highest amount was observed in the case of the *Stenotrophomonas acidaminiphila* CK1D101 bacterial strain. Based on the research of Gupta et al. (2012) the *Acinetobacter anitratus* and *Branhamella sp.* bacterial strains showed 0.48 U/mL, respectively 2.56 U/mL enzyme activity for CMC [11]. Mihajlovska et al. (2016) observed the highest CMCase activity (0.197 ± 0.019 U/ml) of *Paenibacillus sp.* bacterial strain on the third day of incubation [25]. The research of Moni et al. (2018) remarked CMCase activity of *Bacillus sp.* bacterial strains as varying between 0.075-0.262 U/mL [26].

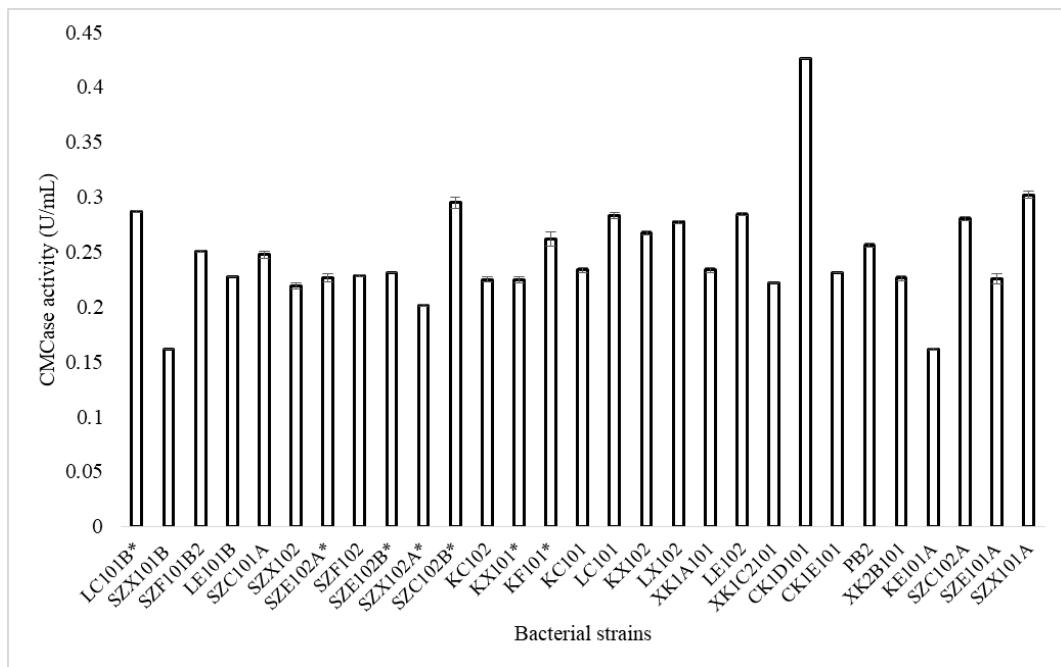


Fig. 2. CMCase activity in selective broth containing CMC

3.2.2. Glucosidase enzyme assay in CMC containing broth

More than 70% (21 out of 29) of the bacterial strains showed glucosidase enzyme activity (see Table. 2.). The observed values varied between 0.017-1.66 U/mL in sonicated samples and showed similar values for only centrifuged ones (0.048-1.34 U/mL). The lowest glucosidase enzyme activities were showed in sonicated samples by *Bacillus aryabhattachai* KF101* and in centrifuged samples by *Bacillus subtilis subs. inaquosorum* SZE101A. *Bacillus subtilis* bacterial strain studied by Kim et al. (2012) [21] showed a much higher value of CMCase activity (1.2 U/mL) in early stage of cultivation (after 24 h). In our study *Arthrobacter nitroquaiacolicus* LX102 and *Paenibacillus pabuli* KX101* strains showed the highest glucosidase activity in centrifuged and in sonicated samples.

Scientific literature reports CMCase activity in case of *Bacillus subtilis* [21], *Bacillus licheniformis* [17], *Bacillus tequilensis* [27], *Paenibacillus amylolyticus* [25, 18], *Paenibacillus barcinonensis* [28] and *Bacillus methylotrophicus* [22]. Beside other *Bacillus* sp. and *Paenibacillus* sp. strains (*Bacillus simplex* LE101B and XK1C2101, *Paenibacillus pabuli* KX101* and KE101A, *Paenibacillus peoriae* PB2) our research reports for the first time CMCase enzyme activity for *Weissella paramesenteroides* LC101B*, *Arthrobacter nitroguaiacolicus* LX102, *Arthrobacter siccitolerans* KX102 and *Pseudomonas rhodesiae* XK2B101.

Table 2

The Glucosidase enzyme activity in selective broth containing CMC

Bacterial strain	Glucosidase activity (U/mL)	
	Sonicated sample	Only centrifuged sample
LC101B*	0.1044 ± 0.0111	0.0267 ± 0.0138
SZX101B	0.0170 ± 0.0834	0.0680 ± 0.0193
SZF101B2	0.0814 ± 0.1117	0.1311 ± 0.0138
LE101B	0	0.0231 ± 0.0485
SZC101A	0	0.0607 ± 0.0348
SZX102	0.0899 ± 0.0695	0.0801 ± 0.0438
SZE102A*	0.0631 ± 0.0765	0.1979 ± 0.0512
SZF102	0.0850 ± 0.0187	0
SZE102B*	0.1809 ± 0.1113	0.0279 ± 0.0758
SZX102A*	0.1226 ± 0.1450	0.0413 ± 0.0421
SZC102B*	0.0850 ± 0.0327	0.0389 ± 0.0501
KC102	0.3886 ± 0.0393	0.3084 ± 0.0895
KX101*	1.6685 ± 0.2367	0.7723 ± 0.0656
KC101	0.0182 ± 0.0359	0.1214 ± 0.0331
LC101	0.1858 ± 0.0602	0.0814 ± 0.0231
KX102	0.1336 ± 0.0331	0.0826 ± 0.0690
LX102	0	1.3479 ± 0.3194
XK1A101	0.3291 ± 0.1501	0.2939 ± 0.0692
LE102	0	0.0571 ± 0.1322
CK1D101	0.3012 ± 0.0220	0.2200 ± 0.0800
PB2	0	0
XK2B101	0	0.0692 ± 0.0445
KE101A	0.8209 ± 0.2062	0.7152 ± 0.0865
SZC102A	0	0.0486 ± 0.0406

It is difficult to compare our data with others described in scientific literature, because the cellulolytic activity of the bacterial strains is influenced by the type and amount of substrate and also the growth conditions (pH and temperature) [29].

No correlation was observed between the enzyme activities obtained for the studied bacterial strains using the two methods ($r=0.049$ for centrifuged samples, $r=0.15$ for sonicated samples).

3.3. Xylan degrading capacity of bacterial strains

3.3.1. Estimation of enzymatic hydrolysis on xylan substrate by DNSA method

The mean value of xylanase activity showed by bacterial strains in xylan containing media varied between 0.22-0.99 U/mL (see Fig. 3.).

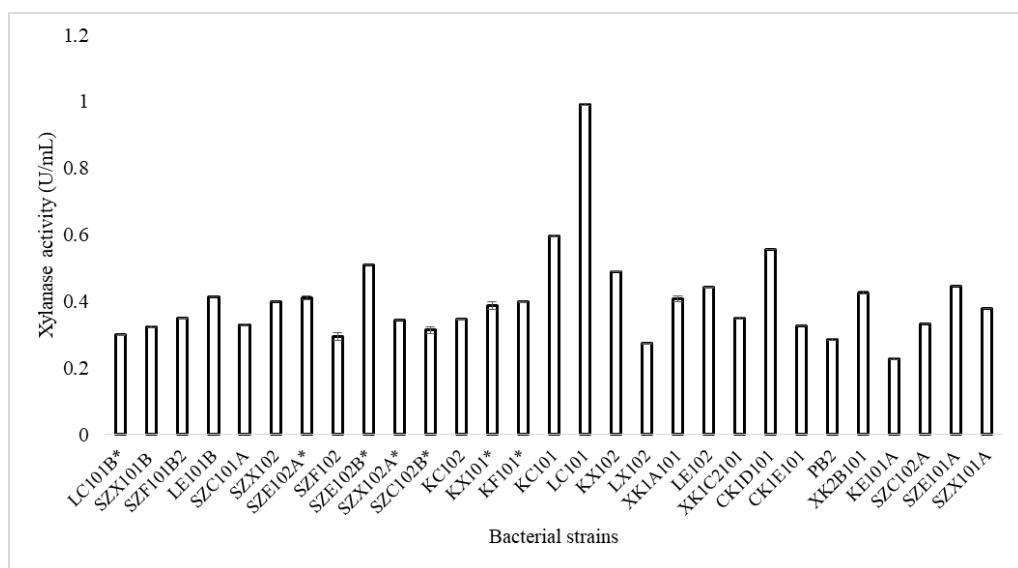


Fig. 3. Xylanase activity in a selective broth containing xylan

Two bacterial strains were outstanding, *Bacillus aryabhattachai* KF101* and *Stenotrophomonas acidaminiphila* LC101, they producing the highest xylanase activity, 0.55 U/mL respectively 0.99 U/mL. After Gupta and Kar (2009) results the *Bacillus* sp. synthesized high xylanase on wheat bran medium (16.13 U/mL), but their protocol differed in the used medium (contained yeast extract peptone, YEP) and fermentation methods (SSF-solid-state fermentation, SmF-submerged fermentation) [30]. Raj et al. (2013) observed high xylanase activity values for *Stenotrophomonas maltophilia* bacterial strain on different substrates: wheat bran (26.4 ± 0.6 U/mL), birchwood xylan (23.2 ± 0.5 U/mL), rice bran (20.0 ± 0.4 U/mL) and beechwood xylan (19.2 ± 0.4 U/mL) [30]. Extremely high

values of xylanase activity were reported in a study of Subramaniyan and Prema (2000) for *Bacillus* sp. bacterial strains on 9 and 7.2 pH respectively (120 U/mL and 11.5 U/mL) [32].

3.3.2. Xylanase enzyme assay in xylan containing broth

From the selected 29 bacterial strains 13 showed enzyme activity for xylanase enzyme (see Table 3.).

Table 3
The xylanase enzyme activity in selective broth containing xylan

Bacterial strain	Glucosidase activity (U/mL)	
	Sonicated sample	Only centrifuged sample
LC101B*	0	0.0267 ± 0.0228
SZX101B	0.5064 ± 0.6685	0.1931 ± 0.0770
SZF101B2	2.4408 ± 0.1797	1.0237 ± 0.0697
LE101B	0.1093 ± 0.0887	0.0984 ± 0.1368
SZX102	5.6563 ± 0.1707	9.2107 ± 0.1339
SZE102A*	22.2380 ± 0.1719	21.2508 ± 0.1217
SZF102	0.1651 ± 0.0971	0.1069 ± 0.0159
SZE102B*	1.6357 ± 0.0589	1.6636 ± 0.1794
SZX102A*	10.4942 ± 0.2435	9.3770 ± 0.3325
SZC102B*	0.0219 ± 0.0652	0.0559 ± 0.1962
KC102	0.0984 ± 0.0187	0.1105 ± 0.1333
KX101*	0.2210 ± 0.0131	0.1384 ± 0.0553
KC101	4.9277 ± 0.3680	5.6600 ± 0.2036
LC101	0.5076 ± 0.0677	0.3728 ± 0.0929
KX102	1.6308 ± 0.1675	1.0795 ± 0.1115
XK1A101	0.0644 ± 0.0728	0.0498 ± 0.0231
LE102	2.7055 ± 0.0566	1.6648 ± 0.0258
PB2	0.0656 ± 0.0138	0.0194 ± 0.0222
XK2B101	0.9314 ± 0.5190	1.7353 ± 0.1530
SZE101A	8.9192 ± 0.0812	8.5234 ± 0.2354
SZX101A	0.9654 ± 0.0278	1.1755 ± 0.0386

The mean value of enzyme activity in sonicated samples varied between 0.021-22.23 U/mL, and for only centrifuged samples the value range was between 0.0109-21.25 U/mL. The lowest xylanase enzyme activity was observed for *Bacillus subtilis* ssp. *inaquosorum* SZC102B* (sonicated samples) and *Bacillus simplex* XK1C2101 (only centrifuged samples) bacterial strains. The highest

xylanase activity was observed for *Bacillus licheniformis* SZE102A* in both cases (sonicated and only centrifuged samples). Hassan (2017) examined similar bacterial strains (*Bacillus* sp.) by growing the endophytic isolates on media supplemented with 1% of soluble xylan, observing a low activity of xylanase *Bacillus subtilis* strain [33]. Raj et al. (2018) observed high xylanase activity in case of *Bacillus licheniformis* strain using beechwood xylan (26.4 ± 0.5 U/mL) and birchwood xylan (23.8 ± 0.6 U/mL). In the study by Bajaj and Manhas (2012) the *Bacillus licheniformis* bacterial strain produced the highest amount of xylanase activity (30 U/mL) when xylan was used as carbon source, whereas the xylanase activity observed was lower when wheat bran (28 U/mL) and rice bran (26 U/mL) substrates were used [35].

Xylanase activity was detected earlier for *Bacillus aryabhattai*, *Bacillus subtilis* [21], *Bacillus licheniformis* [17], *Bacillus tequilensis* [36], *Paenibacillus amylolyticus* [18], *Bacillus methylotrophicus* [22], *Paenibacillus xylanexedens* [20], and *Paenibacillus barcinonensis* [37] bacterial strains. No evidence of xylanase activity for *Bacillus simplex*, *Paenibacillus pabuli*, *Paenibacillus peoriae*, *Arthrobacter siccitolerans* and *Pseudomonas rhodesiae* was found in the scientific literature, therefore this is the first study highlighting this.

We compared the xylanase enzyme activities obtained with different methods, but no correlation was found ($r=0.086$ for centrifuged and $r=0.078$ for sonicated samples).

4. Conclusions

The structural carbohydrate degrading capacity using dinitrosalicylic acid method was the highest in the case of *Bacillus subtilis* ssp. *inaquosorum* SZX102A* on cellulose substrate, *Bacillus methylotrophicus* LC101 on xylan substrate and *Stenotrophomonas acidaminiphila* CK1D101 on CMC substrate.

Paenibacillus amylolyticus KC102 (cellulose substrate), *Paenibacillus pabuli* KX101* (CMC substrate, sonicated samples) and *Arthrobacter nitroquaiacolicus* LX102 (CMC substrate, only centrifuged samples) showed the highest glucosidase activity, while the highest xylanase activity was observed in the case of *Bacillus licheniformis* SZE102A* (xylane substrate).

No correlation was observed between the enzyme activities obtained using different methods. Due to the non-specificity of DNSA method the specific method using p-Nitrophenyl substrate is more precise for enzyme activity determination and cellulolytic strain selection.

Co-production of cellulolytic and xylanolytic enzymes was observed in the case of *Bacillus simplex* LE101B, *Paenibacillus pabuli* KX101*, *Paenibacillus peoriae* PB2, *Paenibacillus xylanexedens* KC101, *Arthrobacter siccitolerans* KX102, *Weisella paramesenteroides* LC101B* and *Pseudomonas rhodesiae*

XK2B101. The above-mentioned PGP bacterial strains are capable of cellulosic biomass decomposition, having potential in conservative agriculture.

Acknowledgement

The authors are grateful to the Sapientia Hungarian University of Transylvania, Faculty of Economics, Socio- Human Sciences and Engineering, and Corax Bioneer CEU SA for making available their lab equipment. We wish to acknowledge the University POLITEHNICA of Bucharest, Faculty of Applied Chemistry and Material Sciences and the University of Pécs, Faculty of Science, Doctoral School of Chemistry. This work was supported financially by the Collegium Talentum Programme of Hungary.

R E F E R E N C E S

- [1]. *R. López-Mondéjar, D. Zühlke, D. Becher, K. Riedel and P. Baldrian*, Cellulose and hemicellulose decomposition by forest soil bacteria proceeds by the action of structurally variable enzymatic systems, *Nature, Scientific Reports*, **Vol. 6**, 2016;
- [2]. *C. Lefèvre, F. Rekik, V. Alcantara and L. Wiese*, Soil Organic Carbon hidden potential, *Food and Agriculture Organization of the United Nations*, 2017;
- [3]. *B. C. Behera, B. K. Sethi, R. R. Mishra, S. K. Dutta, H. N. Thatoi*, Microbial cellulases – Diversity & biotechnology with reference to mangrove environment: A review, *Journal of Genetic Engineering and Biotechnology*, **Vol. 15**, Issue 1, 2016, pp. 197-210;
- [4]. *J. S. van Dyk, M. Sakka, K. Sakka and B. I. Pletschke*, Characterisation of the multi-enzyme complex xylanase activity from *Bacillus licheniformis* SVD1, *Enzyme and Microbial technology*, **Vol. 47**, 2010, pp. 174-177;
- [5]. *A. Chirom, M. V. Arasu and P. Agastian*, Lignin degradation: A microbial approach, *South Indian Journal of Biological Sciences*, **Vol. 3**, Issue 1, 2015, pp. 119-127;
- [6]. *A. Balabanova, I. Y. Bakumina, L. V. Slepchenko, N. N. Kirichuk, Y. V. Khudyakova, O. M. Son, M. V. Pivkin and V. A. Rasskazov*, Polysaccharide-Degrading Activity in Marine and Terrestrial Strains of Mycelial Fungi, *Russian Journal of Bioorganic Chemistry*, **Vol. 44**, Issue 4, 2018, pp. 431-437;
- [7]. *J. Pérez, J. Muñoz-Dorado, T. de la Rubia and J. M. Martínez*, Biodegradation and biological treatments of cellulose, hemicellulose and lignin: an overview, *International Microbiology*, **Vol. 5**, 2002, pp. 53-63;
- [8]. *H. Chakdar, M. Kumar, K. Pandiyan, A. Singh, K. Nanjappan, P. L. Kashyap and A. K. Srivastava*, Bacterial xylanases: biology to biotechnology, *3 Biotech*, **Vol. 6**, Issue 150, 2016;
- [9]. *T. Ning, H. Wang, M. Zheng, D. Niu, S. Zuo and C. Xu*, Effects of microbial enzymes on starch and hemicellulose degradation in total mixed ration silages, *Asian-Australasian Journal of Animal Sciences*, **Vol. 30**, Issue 2, 2017, pp. 171-180;

[10]. *S. Wang, G. Guo, J. Li, L. Chen, Z. Dong and T. Shao*, Improvement of fermentation profile and structural carbohydrate compositions in mixed silages ensiled with fibrolytic enzymes, molasses and *Lactobacillus plantarum* MTD-1, in *Italian Journal of Animal Science*, **Vol. 18**, Issue 1, 2019, pp. 328-335;

[11]. *P. Gupta, K. Samant and A. Sahu*, Isolation of Cellulose-Degrading Bacteria and Determination of Their Cellulolytic Potential, *International Journal of Microbiology*, 2012;

[12]. *É. Abod, É. Laslo, S. Szentes, S. Lányi and G. Mara*, Plant Growth-Promoting Bacteria: Strategies to Improve Wheat Growth and Development Under Sustainable Agriculture, *Plant Growth Promoting Rhizobacteria for Agricultural Sustainability*, Springer, Singapore, 2019;

[13]. *C. Pérez-Montaño, R. A. Alías-Villegas, P. Del Cerro Bellogín, M. R. Espuny, I. Jiménez-Guerrero, F. J. López-Baena, F. J. Ollero, and T. Cubo*. Plant Growth Promotion in Cereal and Leguminous Agricultural Important Plants: From Microorganism Capacities to Crop Production, *Microbiological Research*, **Vol. 169**, Issue 5-6, 2014, pp. 325–336.

[14]. *G. Mara, A. Becze, O. Varga, É. Laslo and F. Oancea*, Screening of multifunctional bacterial inoculants with lignocellulose degradation ability for agricultural applications, *Studia Universitatis "Vasile Goldiș"*, Seria Științele vieții, **Vol. 26**, Issue 2, 2016, pp. 225-233;

[15]. *G. Rastogi, A. Bhalla, A. Adhikari, K. M. Bischoff, S. R. Hughes, L. P. Christopher and R. K. Sani*, Characterization of thermostable cellulases produced by *Bacillus* and *Geobacillus* strains, *Bioresource Technology*, **Vol. 101**, 2010, pp. 8798-8806;

[16]. *C. R. Jackson, H. L. Tyler and J. J. Millar*, Determination of Microbial Extracellular Enzyme Activity in Waters, Soils, and Sediments using High Throughput Microplate Assays, *Journal of Visualised Experiments*, 2013;

[17]. *K. Seo, T. S. Park, I. H. Kwon, M. Y. Piao, C. H. Lee and J. K. Ha*, Characterization of Cellulolytic and Xylanolytic Enzymes of *Bacillus licheniformis* JK7 Isolated from the Rumen of a Native Korean Goat, *Asian-Australasian Journal of Animal Sciences*, **Vol. 26**, Issue 1, 2013, pp. 50-58;

[18]. *P. Lee, G.-W. Seo, S.-D. An and H. Kim*, A cold-active acidophilic endoglucanase of *Paenibacillus* sp. Y2 isolated from soil in an alpine region, *Journal of Applied Biological Chemistry*, **Vol. 60**, Issue 3, 2017, pp. 257-263;

[19]. *É. Laslo, M. Koncz, S. Toró, S. Lányi and B. Ábrahám*, Bacterial strains with cellulolytic and xylanolytic activity originated from different isolation sources, in *Applied Science Reports*, **Vol. 17**, Issue 3, 2017, pp. 86-91;

[20]. *M. Madhaiyan, S. Poonguzhali, V. S. Saravanan, V. Duraipandiyan, N. A. Al-Dhabi, S.-W. Kwon and W. B. Whitman*, *Paenibacillus polysaccharolyticus* sp. nov., a xylanolytic and cellulolytic bacteria isolated from leaves of Bamboo *Phyllostachys aureosulcata*, *International Journal of Systematic and Evolutionary Microbiology*, **Vol. 67**, 2017, pp. 2127-2133;

[21]. *Y.-K. Kim, S.-C. Lee, Y.-Y. Cho, H.-J. Oh and Y. H. Ko*, Isolation of Cellulolytic *Bacillus subtilis* Strains from Agricultural Environments, *International Scholarly Research network, ISRN Microbiology*, 2012;

[22]. *A. Chantarasiri*, Novel Halotolerant Cellulolytic *Bacillus methylotrophicus* RYC01101 Isolated from Ruminant Feces in Thailand and its Application for Bioethanol Production, *International Journal of Applied Science and Technology*, **Vol. 7**, Issue 3, 2014, pp. 63-68;

[23]. *Y. Siu-Rodas, M. de los A. Calixto-Romo, K. Gullén-Navarro, J. E. Sánchez, J. A. Zamora-Briseño and L. Amaya-Delgado*, *Bacillus subtilis* with endocellulase and exocellulase

activities isolated in the thermophilic phase from composting with coffee residues, *Revista Argentina de Microbiología*, **Vol. 50**, Issue 3, 2018, pp. 234-243;

- [24]. *L. Ma, Y. Lu, H. Yan, X. Wang, Y. Yi, Y. Shan, B. Liu, Y. Zhou and X. Lü*, Screening of cellulolytic bacteria from rotten wood of Qinling (China) for biomass degradation and cloning of cellulases from *Bacillus methylotrophicus*, *BMC Biotechnology*, **Vol. 20**, Issue 2, 2020;
- [25]. *R. Mihajlovski, S. Z. Davidović, M. B. Carević, N. R. Radovanović, S. S. Šiler-Marinković, M. D. Rajilić-Stojanović and S. I. Dimitrijević-Branković*, Carboxymethyl cellulose production from a *Paenibacillus* sp., *Hemispa Industrija*, **Vol. 70**, Issue 3, 2016, pp. 329-338;
- [26]. *P. Moni, S. S. Protim, N. P. Kumar, G. Sakshi, S. Sabtharishi, K. Devid and G. D. Kumar*, Optimization and characterization of extracellular cellulose produced by *Bacillus pumilus* MGB05 isolated from midgut of muga silkworm (*Antherea assamensis* Helfer), *Journal of Asia-Pacific Entomology*, **Vol. 21**, Issue 4, 2018;
- [27]. *A. Sharma, R. Tewari and S. K. Soni*, Application of Statistical Approach for Optimizing CMCase Production by *Bacillus tequilensis* S28 Strain via Submerged Fermentation Using Wheat Bran as Carbon Source, *Engineering and Technology International Journal of Biotechnology and Bioengineering*, *World Academy of Science*, **Vol. 9**, Issue 1, 2015;
- [28]. *A. I. Chiriac, E. M. Cadena, T. Vidal, A. L. Torres, P. Diaz and F. I. J. Pastor*, Engineering a family 9 processive endoglucanase from *Paenibacillus barcinonensis* displaying a novel architecture, *Applied Microbiology and Biotechnology*, **Vol. 86**, 2010, pp. 1125-1134;
- [29]. *F. Islam and N. Roy*, Screening, purification and characterization of cellulase from cellulase producing bacteria in molasses, *BMC Research Notes*, **Vol. 11**, Article 445, 2018;
- [30]. *U. Gupta and R. Kar*, Xylanase Production by a Thermo-tolerant *Bacillus* Species under Solid-state and Submerged Fermentation, *Brazilian Archives of Biology and Technology*, **Vol. 52**, 2009, pp. 1363-1371;
- [31]. *A. Raj, S. Kumar and S. K. Singh*, A Highly Thermostable Xylanase from *Stenotrophomonas maltophilia*: Purification and Partial Characterization, in *Hindawi Publishing Corporation Enzyme Research*, 2013;
- [32]. *S. Subramaniyan and P. Prema*, Cellulase-free xylanases from *Bacillus* and other microorganisms, *FEMS Microbiology Letters*, **Vol. 183**, 2000, pp. 1-7;
- [33]. *S. E.-D. Hassan*, Plant growth-promoting activities for bacterial and fungal endophytes isolated from medicinal plant of *Teucrium polium* L., *Journal of Advanced Research*, **Vol. 8**, 2017, pp. 687-695;
- [34]. *A. Raj, S. Kumar, S. K. Singh and J. Prakash*, Production and purification of xylanase from alkaliophilic *Bacillus licheniformis* and its pretreatment of eucalyptus kraft pulp, *Biocatalysis and Agricultural Biotechnology*, **Vol. 15**, 2018, pp. 199-209;
- [35]. *K. Bajaj and K. Manhas*, Production and characterization of xylanase from *Bacillus licheniformis* P11(C) with potential for fruit juice and bakery industry, *Biocatalysis and Agricultural Biotechnology*, **Vol. 1**, 2012, pp. 330-337;
- [36]. *A. Khusro, B. K. Kaliyan, N. A. Al-Dhabi, M. V. Arasu and P. Agastian*, Statistical optimization of thermo-alkali stable xylanase production from *Bacillus tequilensis* strain ARMATI, in *Electronic Journal of Biotechnology*, **Vol. 22**, 2016, pp. 16-25;

[37]. *S. V. Valenzuela, S. Lopez, P. Biely, J. Sanz-Aparicio and F. I. J. Pastor*, The GH8 Reducing End Xylose-releasing Exo-oligoxyylanase Rex8A from *Paenibacillus barcinonensis* BP-23 is active on branched xylooligosaccharides, *Applied and Environmental Microbiology*, 2016.