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GUARDED ORDER INDEPENDENT TRANSPARENCY 

Lucian PETRESCU1, Florica MOLDOVEANU2, Anca MORAR3, Victor 
ASAVEI4, Alin MOLDOVEANU5 

Order independent transparency represents a class of graphics algorithms 
in which the final result is independent of the order of primitive rasterization. The 
complexity of this class is given by the fact that the fragments generated by the 
rasterized geometry need to be sorted and stored on a per pixel basis - a 
computational and a memory bandwidth problem. In this paper we present a novel 
real time single pass algorithm that uses fragment culling in order to decrease the 
memory usage by an average of 12.5% while still performing virtually correct 
transparency. 
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1. Introduction 

Order independent transparency (OIT) algorithms are necessary to 
correctly render transparent geometry in rasterization based computer graphics. 
The first technique used for OIT was object ordering as proposed by Porter and 
Duff[1]. However, this is unable to correctly render interpenetrating primitives 
like Mobius strips because any pre-sorting stage does not sort at a per-fragment 
level. Thus, correct transparency can only be solved during rendering. 

The only way in which the transparency problem can be solved is saving 
all of the samples which then, composed together, form the final image. One 
important property of this approach is that the scene is divided in a number of 
layers, as pointed out by Everitt [2]. This number is defined as the number of 
intersections between ray that goes from the camera and through the pixel and the 
scene. 
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Depth peeling [2] and dual depth peeling [3] are algorithms which render 
one, respectively, two layers at a time and the composition is done incrementally. 
The main problem of this approach is that there must be a total of N, respectively, 
N/2 rendering passes. This solution is not practical for very complex scenes. 

A fixed number of fragments can be pre-allocated for each pixel, in a 
memory area filled by rendering [4]. The difficulty with this method is that it can 
allocate more than it is required for some pixels and allocate less that it is 
necessary for others. This behavior stems from the fact that the number of layers 
is a per-pixel property and not a general one, therefore generalization is very 
inefficient. 

A dynamic number of fragments per pixels can be used [4], but such an 
approach is limited to Shader Model 5 hardware. A large area of memory is 
allocated per frame and each pixel writes to this area depending on necessity, 
generating a linked list of samples which will then be sorted and composited. In 
this way pixels with many layers will have sufficient memory space to be saved 
and pixels with very few layers will not waste memory. On the other hand this 
technique is very expensive because memory bandwidth is limited on the GPU. 

The size of the buffer used can be computed on a per frame basis [5] but 
this will require a second rendering pass in the algorithm, which, depending on 
the vertex density of the scene, can lead to performance problems. 

Both the per pixel lists method and the pixel pre-allocated memory method 
can be improved from a performance point of view with stochastic algorithms [6] 
that try to compress information when the provided memory budget is not 
sufficient. This is done through methods which define data importance by 
different criteria such as visibility functions. On the other hand statistical methods 
are not exact and are computationally much more expensive than the other 
algorithms. 

2. Background 

In order to obtain the composite value of a pixel (Pi,) each fragment 
intersected by the ray from the eye to Pi is considered as a sample (Si) and all the 
samples are used with a combination function F. This function may or may not 
require visibility [7].  Visibility is defined as a function which is the total 
transmittance between the eye and the sample. The contribution of a sample with 
vis(zi) is: 
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Where zi is the distance from the viewer, ci is the color of the sample and ai is the 
transparency of the sample. The total contribution of all samples on a given ray is: 
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If the visibility function is not to be computed per sample, it can be 

bypassed by sorting the samples and iteratively merging them, thus implicitly 
computing each visibility function for each sample. The equations for sample 
contribution were first given by Porter and Duff [1] and are known as the blending 
equations. In the back to front composition a new sample reduces the visibility of 
the current accumulated color in that pixel: 

 
iiacciacc CaCaC ⋅+⋅−= )1('                                     (3) 

 
In the front to back equations a new fragment has its visibility reduced by 

the accumulated color and visibility: 
 

iiaccaccacc CaaCC ⋅⋅+='                                     (4) 
 

 
 

Fig. 1. The Dabrovic Sponza scene rendered with our algorithm. An approximately 12.5% 
reduction of memory usage is gained compared to the standard OIT algorithm. More than 4 

million fragments were used to generate this image (rendered at 14 frames per second). 
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Both equations use the following symbols: 
 

   - accumulated color in the pixel 
  - accumulated opacity in the pixel 

  - color of sample Si 
 - opacity of sample Si.  

 

The advantage of the latter form of the equations is that the alpha channel 
can saturate quickly, saving computation time by reducing the number of 
processed samples 

3. Linked Lists and OIT Variants 

The linked list OIT on the GPU is the first efficient implementation of 
OIT. It was first published in its current form by J. Hensley, AMD Research [8].  

 

Fig. 2. Example Basic OIT with linked lists: the lists head buffer contains the heads of each 
pixel list, while the element buffer contains all the elements (i.e. samples) from all pixels 

 
The linked list algorithm is a two phase algorithm that can be implemented 

as a single pass algorithm using indirect rendering. It is based on the presented 
theory and is in practice just a GPU implementation of the A-buffer [9]. As can be 
seen in Fig. 2, the algorithm requires two buffers: the lists head buffer, which is 
used to store the first element for each of the per pixels lists and the element 
buffer, which is used to store the rest of the elements for each list. Each element in 
the element buffer list points to another element in the buffer list or to -1, which is 
a convention for the end of the list. 
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During the first phase both buffers are completed with the depth, color and 
transparency of the scene fragments and in the second phase this information is 
extracted as a list from the buffers, it is sorted per pixel using the depth and then it 
is composited using the front to back or the back to front equations. 

There are many variants of the base algorithm: for example the F-
Buffer[10] which employs a multi-pass algorithm that requires a global sort on all 
the fragments. The A-Buffer and F-Buffer are similar algorithms with similar 
memory requirements, but the A-Buffer only needs per pixel sorting while the F-
Buffer requires per framebuffer sorting which results in much better parallelism of 
the former. 

Kbuffer[11], Stencil Routed Kbuffer [12] and Bucket Sort Depth 
Peeling[13] are all variants of depth peeling and all require multi-pass techniques. 
While the A-buffer variant can solve the blending equations in a single rendering 
pass, the depth peeling variants need at least L/M passes where L is the number of 
layers and M is the number of multiple render targets supported. They can be 
considered as advanced variants of a memory limited A-Buffer, but are not as 
efficient in memory usage. 

. Tiled linked list OIT is a method in which the atomic counters required 
for the synchronization process are distributed in tiles, reducing the number of 
accesses per counter, thus distributing the synchronization effort and improving 
performance.  

Another variant was introduced which allocates memory in pages and thus 
eases access to memory.  

The stochastic perspective on transparency adds another dimension to the 
OIT field, for example adaptive transparency by M. Salvi et al[7] uses visibility 
function approximations in order to better determine sample importance, thus 
improving the memory usage. 

4. Algorithm Overview 

Our proposed algorithm is a two phase algorithm. In the first phase the 
lists head buffer and the lists element buffer are filled with information from the 
samples obtained through rasterization. In the second phase of the algorithm the 
samples are extracted from the buffers are then sorted by depth and finally are 
combined through the front to back equations. Using indirect rendering, the 
algorithm runs in a single pass. The algorithm keeps the closest known sample as 
the head of the per pixel list and then, for each of the upcoming samples it tests its 
contribution by considering a list of only the head, the next element in the list (if 
any) and the shaded sample. 
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Fig. 3. The Sample Rendering Pipeline 

As shown in Fig. 3, the pseudo code for the per fragment run algorithm is: 

→ Create sample Si from shaded fragment at xy screen coordinates.  
→ If  head is not empty 

→ If the head Hxy is closer than Si 
→ If importance(Si, Hxy)<T 

→ Exit 
→ If  there is sample Sk closer than Si 

→ If  importance(Si, Hxy,Sk)< T 
→ Exit 

→ Save sample 
→ Else 

→ Introduce new head data and add old head as a new sample to the 
element buffer 

→ Exit 
→ Else  

→ Introduce head data 

The importance function is a comparison between the contribution of the 
fragment to the pixel and a threshold T, as described in Equation 1. 

The guard algorithm is integrated with ease in the normal OIT method, the 
guarded OIT just adds the guard function to the fragment shader in the first phase 
of the OIT technique. 

Even if the algorithm works well for general scenes – more on that in the 
results section – some particular yet common scenarios led to the concept of a 
fragment guard. For example scenes where complex materials are rendered where 
parts of the material are transparent and others are almost opaque can’t be 
rendered efficiently with order independent transparency or sufficiently correct 
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with the opaque pipeline. Materials that are included in this category are mosaics, 
painted glasses or car windows. 

5. Implementation 

While the technique is clearly explained in the algorithm overview section, 
some aspects of order independent transparency need more clarification. Efficient 
implementation is rarely discussed with OIT, and there are a number of pitfalls 
such as correct synchronization, efficient computation, or efficient draw setup. 

Correct synchronization is needed because even if we are using atomic 
operations and are using coherent memory, two threads can possibly access  the 
same area of memory in a very short interval which can create read-write 
conflicts. Thus, a spinlock is required. 

A simple spinlock implementation on the GPU uses an additional state 
buffer, the contents of which will act as the value of the spinlock used to 
synchronize the GPU threads. For example if the value in the buffer is 0 then the 
spinlock is free, if the value is 1 then the spinlock is taken.  

Both the acquire and release spinlock methods can be implemented by 
using atomic operations. For example in GLSL atomicCompSwap might be used 
for conditional comparisons in the acquire method and the atomicSwap for simple 
writes in the release method. 

Even though a single spinlock can successfully service a large number of 
threads with the help of the latency hiding mechanisms in modern GPUs, the 
usage of a single spinlock is not sufficient to prevent starvation, thus many need 
to be used for efficient running. 

Efficient synchronization can be obtained through tile based OIT, in which 
many spinlocks are employed, each for a single tile in the frame buffer. 
Unfortunately atomic operations performance does vary a lot between the 
different GPUs targeted OIT methods and there is nothing that can be done about 
it. Furthermore many drivers will terminate a shader invocation if it lasts too long, 
therefore extra care must be taken while testing in order to correctly balance the 
synchronization effort. 

Even if in general the visual results may not vary between OIT with 
spinlocks and OIT without them if the scene is not enormous or if the scene uses 
expensive materials which make the potential read-write race rare, spinlocks 
become a necessity when using the guard variant presented in this paper. 

Efficient computation can be achieved through front to back sorting and 
compositing only when the sample is not occluded by an already saturated alpha 
channel. A naive scene object sort can offer a great setup for our algorithm 
because if the objects with the fastest alpha saturation potential are drawn at the 
beginning this will offer more chances for fragment culling. Since any renderer 
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will include such a step, it can’t even be considered as part of the algorithm but 
more of an implementation observation. It is important to note that this algorithm 
is implementable only on Shader Model 5 hardware and that it requires unordered 
reads and writes from the GPU. 

6. Results 

The test GPU was a GTX460M. The guard threshold was set to 0.25% of 
the pixel value. As it can be observed from Fig. 4, the algorithm can offer 
substantial memory and some computational relief, especially to massive scenes 
with lots of fragments. 

Scene name and 
View 

Percent of 
fragments culled 

Fps 
Without 
Guard 

Fps 
With  
Guard 

Fps 
Percent 
Gain 

Crytek -1 7.28 7.12 7.08 -0.56 
Crytek -2 15.81 6.64 6.68 +0.6 
Crytek -3  26.39 7.7 8.41 +9.22 
Dabrovic-1 5.26 20.17 20.74 +2.82 
Dabrovic -2 9.55 13.02 12.53 -3.71 
Dabrovic -3 14.97 12.2 12.88 +5.71 

Fig. 4. Comparison of results between linked list OIT and our implementation. 

 
Rendering of mosaic, like other complex materials in which some parts are 

opaque and others have varying opacity, are very hard to render efficiently. The 
choices for rendering such a material are to render it twice with different material 
and shader states, which can be very costly. The algorithm treats such cases 
culling more than 40% of the fragments, while needing just a single render pass. 
An example of mosaic rendering is shown in Fig. 5. 
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Fig. 5. Rendering mosaic like materials: partially close to opaque, partially transparent. This type 

of material is common for objects which include opaque and transparent components, such as cars. 
In this case the algorithm is significantly faster than other OIT methods while also working in a 

single rendering pass. 

Due to the almost insignificant importance of poorly lit fragments in a 
transparent setup our algorithm offers increased performance in poorly lit scenes. 
Also, even by discarding a large number of fragments our method produces 
virtually the same image as the standard OIT algorithm. An example is offered in 
Fig. 6. 
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Fig.6. Comparison of results between linked list OIT and our implementation. A glass wall has 

stars on each of its sides, but some of the stars are not identical on each side in order to emphasise 
that opacity is obtained through the composition of the front face and back face of the stars on the 

glass. The difference between the images is minimal. 

7. Discussion 

Even though the majority of Shader Model 5 hardware offers better 
performance and notably better atomic operations performance than the 
GTX460M we used as testing hardware, the algorithm still performs at an 
adequate rate from a computational point of view.  

From a memory point of view culling 7-25% of the total number of 
fragments in regular scenes is a lot since the testing scenes generate between 4 
and 10 million of fragments. 

The algorithm is particularly efficient for complex materials which 
combine almost opaque properties with a transparent look, such as painted glass, 
mosaics or dark car windows. In practice such materials are ubiquitous. Moreover 
the same property is valid for volumetric rendering, where the guard test can be 
used to even not ray march the volume, which can lead to excellent performance 
improvements. The performance of our fragment guard culling algorithm ranges 
from 12% to more than 40% for these particular materials. A particularly 
interesting property of the proposed algorithm is that it offers increased 
performance in poorly lit scenes. Furthermore, the algorithm should increase in 
performance with future hardware generations with faster atomic operation. 



Guarded order independent transparency                                                   13 
 

8. Conclusions 

We have presented a memory efficient, technique independent, linked list 
order independent transparency algorithm. By using the 1-guard and the 2-guard 
with parameters that can be easily tweaked, the presented technique is able to cull 
between 7% and 25% of the total number of fragments of general scenes while 
practically outputting the same visual result. 

The algorithm also handles well particular materials such as mosaic, painted 
glass and volumetric with increased efficiency, especially if used together with a 
naive scene object sort, found in almost any renderer. This eases the rendering 
process because fewer rendering passes are necessary and fewer programming 
states needs to be managed. We have proved that the presented algorithm is able 
to integrate with other OIT linked lists algorithms such as the tiled variant. 
Furthermore, integration with other related methods such as the F-Buffer is easy. 

Because of the ever increasing difference between slower memory and faster 
processing units, memory optimizations and lossless color space compression 
algorithms [14][15] should always be the priority for list-based algorithms. 
Efficient implementation of OIT is particularly challenging because there are not 
many opportunities to decrease memory costs, especially when using lists, 
therefore the proposed algorithm adds a useful and novel technique to the OIT 
family. 
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