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COMPUTING EDGE IRREGULARITY STRENGTH OF
COMPLETE M-ARY TREES USING ALGORITHMIC
APPROACH

A. AHMAD?, M. A. ASIM*3, M. BACA?, R. HASNI®

Algorithms help in solving many problems, where other mathematical
solutions are very complex or impossible. Computations help in tackling numerous
issues, where other numerical arrangements are extremely perplexing or
incomprehensible. In this paper, the edge irregularity strength of a complete binary
tree (T2n), complete ternary tree (Ts;) and generalized for complete m-ary tree are
computed using the algorithmic approach.
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1. Introduction

A graph G(V,E) with vertex set V and edge set E is connected, if there
exists a relationship between any pair of vertices in G. For a graph G, the degree
of a vertex v is the number of edges incident with v and denoted by d(v). A graph
can be represented by a numeric number, a polynomial, a sequence of numbers or
a matrix that represents the entire graph, and these representations are aimed to be
uniquely defined for that graph.

A tree is also a type of graph and can be defined in terms of edges and
vertices. To be precise a rooted tree is a Directed Acyclic Graph (DAG) [11]. Tree
structures are concretely complacent in computer science and are used in copious
range of algorithms. For instance, trees are habituated to construct efficient
algorithms for storing and locating items from a list. Considering the examples of
B trees and B+ trees that may have many children because of “branching factor”
but can locate any data efficiently in O(Ign) time. Another prominent use of trees

is Huffman coding, that construct efficient codes for data transmission and
storage. Apart from these applications, trees are being used in traversing of sorted
data, workflow for compositing digital images for visual effects and path
determination algorithms in networks.
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To enhance the usability of trees in interdisciplinary research, vertices of
tree can be labeled using mathematical definitions, in similar way of graph
labeling. On graph labeling lot of work has been done and related scripts are
covering the research gaps.

Chartrand et al. in [10] introduced an edge k-labeling ¢ of a graph G such
that w, (x) = w, (y)for all vertices x,y eV (G)with x = y where weight of a vertex

xeV(G)is w,(x)= Zqﬁ(xy) and the sum is over all vertices y adjacent to x. Such

labelings were called irregular assignments and the irregularity strength s(G) of a
graph G is known as the minimum k for which G has an irregular assignment
using labels at most k. This parameter has attracted much attention [5,6,9,12].

In 2007, Baca et al. in [8] started to investigate two modifications of the
irregularity strength of graphs, namely a total edge irregularity strength, denoted
by tes(G), and a total vertex irregularity strength, denoted by tvs(G). Some results
on total edge irregularity strength and total vertex irregularity strength can be
found in [2-4,7,13,14].

Motivated by these papers, Ahmad et al. in [1] introduced the following
irregular labeling: A vertex k-labeling ¢:V —{L,2,....,k}is defined to be an edge

irregular k-labeling of the graph G if for every two different edges e and f there is
w,(e)=w,(f), where the weight of an edge e=xyeE(G)is
W, (xy) =@(X) +¢(y). The minimum k for which the graph G has an edge

irregular k-labeling is called the edge irregularity strength of G, denoted by es(G).
The following theorem that is proved in [1], establishes lower bound for

the edge irregularity strength of a graph G.

Theorem 1. [1] Let G =(V, E) be a simple graph with maximum degree

A=A(G). Then
es(G) > max {{%1 : A(G)}.

In this paper, Theorem 1 is mapped on complete m—ary trees to compute and

prove the exact values of the edge irregularity strength using algorithmic
approach.

2. Labeling of m-ary trees

In rooted tree one vertex is designated as the root and every edge is
directed away from the root. The level of a vertex v in a rooted tree is the length of
the unique path from the root to this vertex. The level of the root is defined to be
zero. The height of a rooted tree is the maximum of the levels of vertices. A
vertex of a rooted tree is called a leaf if it has no children. Vertices that have
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children are called internal vertices. A rooted tree is called a m—ary tree if every
internal vertex has no more than m children. The tree is called a full m—ary tree if

every internal vertex has exactly m children [15].
A full m—ary tree is a complete m—ary tree where all leaf vertices are at

the same level. A complete m—arytree with m=2is called Complete Binary
Tree T,, [15], and similarly a complete m—ary tree with m=3is called Complete
Ternary Tree T,,. Due to symmetrical arrangements of vertices at each level in
complete m—ary tree, many mathematical properties have been devised. In this
article some of those properties are used to formulate some new properties and
their proofs are given on T, and T,, and later by generalizing those properties
on complete m—ary tree. In complete m—ary tree the number of vertices at each
level is equal tom™* . Hence in complete m—ary tree of height h, the number of
(mh+l _1)
(m-1)
edges in E is exactly one less than the number of vertices.
Structure of T, is shown in Fig. 1 and it can be observed that root vertex

)

h
has degree m, while m" leaf-vertices has degree 1 and (r(n——;;]
m—

vertices in V can be calculated using the formula and the number of

vertices are of

degree m+1.

Fig. 1: T, ,= T, ,: Complete Ternary Tree of height 4

Let T, ,denote the complete m—ary tree with height h. By considering the
properties of m—ary tree Theorem 1 can be re-written for T, and T, as follows:

Theorem 2. For m=2,3and h>2, let T, be a complete binary tree T, and
complete ternary tree T, , respectively with V set of vertices and E set of edges.

Then
_|M
es(Tm,h) _lr 2
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Proof. The number of edges in any tree T, , are [V|-1land the maximum
degree of T,, and T,, are 3 and 4, respectively. According to Theorem 1

\Y
es(T,,) [%—l . For computing upper bound an experiment is performed.

Computer Based Experiment

Experiment is conducted to prove the claim empirically, for this purpose a
small code is designed and executed to compute the results. Steps of experiment
are performed in systematic order [16] like definition, planning, operation,
analysis and interpretation to follow the rules of quantitative research. In each
operation two major mathematical factors are covered that are type of m—ary tree

and its height. For the value of m, T, and T,, are considered as simplest

structures of m—ary tree whereas height for both trees is increased gradually

from 2 to 10 in different operations. Brute-force is applied in recursive calls as
algorithm design strategy. To deal with subsets of T, and T, , pre-order traversal

is applied to assign the labels of vertices. Weights of edges are changed in
increasing and decreasing order alternatively in separate operations. During result
analysis at the end of each operation though primary focus was to identify the
smallest value of k, but also arrangement of labels was observed that k reside at
what location and is there any pattern exist?

Results of Experiment

After the execution of tiring brute-force experiment, it provided
impressive results about the best arrangement for es(T,,)andes(T,,) . Following

facts are the interpretations for the results of the experiment:

e Minimum value of k is exactly same as given in Theorem 2.
e Value of k always found at right most child or m" child of root vertex.
e In T,, for left sub-tree of the root edge weights in ascending sequence

whereas for right or m" sub-tree, descending sequence led towards correct
results.
e Similarly in T, for left and mid sub trees of the root edge weights in

ascending sequence whereas for the right most or m" sub-tree, descending
sequence led towards correct results.

Results of experiment can be seen as pictorial representation in the Figure 2.
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\
For m=2,3 and h>2, results of the experiment clearly states es(T, ) < [%1 :

By combining the results of experiment and Theorem 2 it is concluded that

2

Experiment proved Theorem 2 and it is a good contribution in
mathematical domain of graph labeling. But designed code for experiment cannot
be applied on bigger trees nor in computer applications due to complexity of
brute-force strategy. To complete this research, efficient algorithms are designed
by viewing the interesting patterns explored in the experiment. Efficient algorithm
for T,, and ultimately for m—ary trees labeling for any value of T_ algorithms

cost only O(V).

es(T,,) = [Mw , for m=2,3 and h > 2that completes the proof. O

Algorithm for Complete Binary Tree (CBT) Labeling
Input: A positive integer h that will be considered as the height of T, , .

Output: Label of vertices TArray [V]—>{112,2,....,k}.

Algorithm 1 CBT-Labeling(h)
1V e2mt_q

2: TArray[V] < 1

3: Edge-Weight « 2

4: CBT-Left-Labeling(2)

5: CBT-Right-Labeling(3)

TArray[V] is a linear array that holds the labels of vertices as outcome of
this algorithm. Whereas Edge-Weight is variable that holds the instantaneous
values of edges in an ascending fashion for left sub-tree and descending fashion
for right sub-tree in Algorithm 2 and Algorithms 3, respectively. For sake of
simplicity and efficiency array implementation is used to store the labels of
vertices. Therefore, to probe the values of Left-Child, Right-Child and Parent in
the array inline functions are used. Left(i) return index location 2*i, Right(i)

. . . . . . Vv
return index location 2*i+1 and Parent(i) return index location [EJ

Algorithm 2 CBT-Left-Labeling(i)

1:if 1 NULL

: TArray[i] « Edge-Weight-T Array[Parent(i)]
Edge-Weight — Edge-Weight+1
CBT-Left-Labeling(Left(i))
CBT-Left-Labeling(Right(i))

aRwn
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Algorithm 3 CBT-Right-Labeling(i)
1:if 1= NULL
2: if i=3

i V
TArray[i] < [E—‘

Edge-Weight < V
CBT-Right-Labeling(Left(i))
CBT-Right-Labeling(Right(i))

else
TArray[i] < Edge-Weight-TArray[Parent(i)]
Edge-Weight — Edge-Weight-1
CBT-Right-Labeling(Left(i))
CBT-Right-Labeling(Right(i))

w

RBBOoONO RN

= e

Collective outcome of above algorithms, is shown in Figure 2, for T, , tree
where label of vertices is computed by algorithms with unique edge weights.

(D (19

3 10 31 24

O, () (19 (8)
0 0 5 & @ @ ® @
OO ®® 6 ®OGEOOEOE

Fig. 2: An edge irregular labeling of complete binary tree T2,4 .

General Algorithm for m-ary Tree Labeling
Input: A positive integer m as type of tree and a positive integer h >1as height of
m—ary tree.
Output: Label of vertices TArray [V]—>{112,2,....,k}.

Algorithm 4 m-ary-Labeling(h)

(mh+l —l)
(m-1)

2: Assign 1 as label to root

3: TArray[1][1] <0

1: V «
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H

(m-1)

4: d «

. for each child of rootj « 2tom

TArray[1][j] « TArray[1][j - 1] +d

TArray[2][j] < TArray[1][j] + 1

: TArray[1][1] < 1

: TArray[2][1] < 2

10: Apply recursive call on 1 to m-1 sub-trees in 2nd level

11:  Edge-Weights will increase by 1 starting from 3

12:  Label of vertices will be TArray[j] « Edge-Weight-TArray[Parent(j)]
13:  Avoid Edge-Weights that are already used in level 1

14: Apply recursive call on m™ sub-tree in 2nd level

15:  Edge-Weights will decrease by 1 starting from V

16: Label of vertices will be TArray[j] < Edge-Weight-TArray[Parent(j)]

(]

Figure 3 illustrates the results of m-ary-Labeling(h) algorithm pictorially for T, .

@ 9 @ L 9 @ G O

2 346 78 9118 9101213 1415 16 13 1415 16 1819 20 211619 20 2122 24 2526 2122 2324 25 262728 24252627 28 2930 31 2728 2630 3132 3334 2930 3132 3334 35 36

Fig. 3: An edge irregular labeling of T&2 .

3. Conclusions

The problem presented in this paper is labeling the vertices of m—ary tree.
According to mathematical definition used in this paper, labels of vertices may be

V]

repeating to attain a smallest value of es(T,, ) :{?—I but weights of edges must

be unique. Algorithmic solution proved the exact values of the edge irregularity
strength of T ., even algorithm itself is a new dimension in the field of algorithm

design and analysis. Given algorithm is valid for any complete m—ary tree as
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long as resources of computer supports. Labeled trees with unique edge weights
can be used in words problem, coding theory, and tree structures.
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