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COMPUTING EDGE IRREGULARITY STRENGTH OF 

COMPLETE M-ARY TREES USING ALGORITHMIC 

APPROACH 

A. AHMAD1, M. A. ASIM1,3, M. BAČA2, R. HASNI3 

Algorithms help in solving many problems, where other mathematical 

solutions are very complex or impossible. Computations help in tackling numerous 

issues, where other numerical arrangements are extremely perplexing or 

incomprehensible. In this paper, the edge irregularity strength of a complete binary 

tree (T2,h), complete ternary tree (T3,h) and generalized for complete m-ary tree are 

computed using the algorithmic approach.  
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1. Introduction 

A graph G(V,E) with vertex set V and edge set E is connected, if there 

exists a relationship between any pair of vertices in G. For a graph G, the degree 

of a vertex v is the number of edges incident with v and denoted by d(v). A graph 

can be represented by a numeric number, a polynomial, a sequence of numbers or 

a matrix that represents the entire graph, and these representations are aimed to be 

uniquely defined for that graph.  

A tree is also a type of graph and can be defined in terms of edges and 

vertices. To be precise a rooted tree is a Directed Acyclic Graph (DAG) [11]. Tree 

structures are concretely complacent in computer science and are used in copious 

range of algorithms. For instance, trees are habituated to construct efficient 

algorithms for storing and locating items from a list. Considering the examples of 

B trees and B+ trees that may have many children because of “branching factor” 

but can locate any data efficiently in (lg )O n time. Another prominent use of trees 

is Huffman coding, that construct efficient codes for data transmission and 

storage. Apart from these applications, trees are being used in traversing of sorted 

data, workflow for compositing digital images for visual effects and path 

determination algorithms in networks. 
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To enhance the usability of trees in interdisciplinary research, vertices of 

tree can be labeled using mathematical definitions, in similar way of graph 

labeling. On graph labeling lot of work has been done and related scripts are 

covering the research gaps. 

Chartrand et al. in [10] introduced an edge k-labeling  of a graph G such 

that ( ) ( )w x w y  for all vertices , ( )x y V G with x y where weight of a vertex 

( )x V G is ( ) ( )w x xy = and the sum is over all vertices y adjacent to x. Such 

labelings were called irregular assignments and the irregularity strength s(G) of a 

graph G is known as the minimum k for which G has an irregular assignment 

using labels at most k. This parameter has attracted much attention [5,6,9,12]. 

In 2007, Bača et al. in [8] started to investigate two modifications of the 

irregularity strength of graphs, namely a total edge irregularity strength, denoted 

by tes(G), and a total vertex irregularity strength, denoted by tvs(G). Some results 

on total edge irregularity strength and total vertex irregularity strength can be 

found in [2-4,7,13,14]. 

Motivated by these papers, Ahmad et al. in [1] introduced the following 

irregular labeling: A vertex k-labeling : {1,2,...., }V k → is defined to be an edge 

irregular k-labeling of the graph G if for every two different edges e and f there is 

( ) ( )w e w f  , where the weight of an edge ( )e xy E G=  is 

( ) ( ) ( )w xy x y  = + . The minimum k for which the graph G has an edge 

irregular k-labeling is called the edge irregularity strength of G, denoted by es(G). 

The following theorem that is proved in [1], establishes lower bound for 

the edge irregularity strength of a graph G. 

Theorem 1. [1] Let ( , )G V E= be a simple graph with maximum degree 

( )G =  . Then 

( ) 1
 max ))

2
( , (

E G
es G G

  + 
  

 




. 

In this paper, Theorem 1 is mapped on complete m ary− trees to compute and 

prove the exact values of the edge irregularity strength using algorithmic 

approach. 

2. Labeling of m-ary trees 

In rooted tree one vertex is designated as the root and every edge is 

directed away from the root. The level of a vertex v in a rooted tree is the length of 

the unique path from the root to this vertex. The level of the root is defined to be 

zero. The height of a rooted tree is the maximum of the levels of vertices. A 

vertex of a rooted tree is called a leaf if it has no children. Vertices that have 
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children are called internal vertices. A rooted tree is called a m ary− tree if every 

internal vertex has no more than m children. The tree is called a full m ary− tree if 

every internal vertex has exactly m children [15]. 

A full m ary− tree is a complete m ary− tree where all leaf vertices are at 

the same level. A complete m ary− tree with 2m= is called Complete Binary 

Tree 2,hT [15], and similarly a complete m ary− tree with 3m = is called Complete 

Ternary Tree 3,hT . Due to symmetrical arrangements of vertices at each level in 

complete m ary− tree, many mathematical properties have been devised. In this 

article some of those properties are used to formulate some new properties and 

their proofs are given on 2,hT  and 3,hT  and later by generalizing those properties 

on complete m ary− tree. In complete m ary− tree the number of vertices at each 

level is equal to
levelm . Hence in complete m ary− tree of height h, the number of 

vertices in V can be calculated using the formula 
1( 1)

( 1)

hm

m

+ −

−
 and the number of 

edges in E is exactly one less than the number of vertices. 

 Structure of 3,hT is shown in Fig. 1 and it can be observed that root vertex 

has degree m, while 
hm leaf-vertices has degree 1 and 

( )

( 1)

hm m

m

−

−
 vertices are of 

degree 1m+ . 

 

 

 

 

 

Fig. 1: ,m hT = 3,4T : Complete Ternary Tree of height 4 

 

Let ,m hT denote the complete m ary− tree with height h. By considering the 

properties of m ary− tree Theorem 1 can be re-written for 2,hT and 3,hT  as follows: 

 

Theorem 2. For 2,3m = and 2h  , let ,m hT  be a complete binary tree 2,hT and 

complete ternary tree 3,hT , respectively with V set of vertices and E set of edges. 

Then 

,  )
2

( m h

V
es T

 
 
 

=  
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Proof. The number of edges in any tree ,m hT  are 1V − and the maximum 

degree of 2,hT  and 3,hT  are 3 and 4, respectively. According to Theorem 1 

,
2

( )m hes T
V


 
 
 

. For computing upper bound an experiment is performed. 

 

Computer Based Experiment  

Experiment is conducted to prove the claim empirically, for this purpose a 

small code is designed and executed to compute the results. Steps of experiment 

are performed in systematic order [16] like definition, planning, operation, 

analysis and interpretation to follow the rules of quantitative research. In each 

operation two major mathematical factors are covered that are type of m ary− tree 

and its height. For the value of m, 2,hT and 3,hT  are considered as simplest 

structures of m ary− tree whereas height for both trees is increased gradually 

from 2 to 10 in different operations. Brute-force is applied in recursive calls as 

algorithm design strategy. To deal with subsets of 2,hT and 3,hT , pre-order traversal 

is applied to assign the labels of vertices. Weights of edges are changed in 

increasing and decreasing order alternatively in separate operations. During result 

analysis at the end of each operation though primary focus was to identify the 

smallest value of k, but also arrangement of labels was observed that k reside at 

what location and is there any pattern exist? 

Results of Experiment 

After the execution of tiring brute-force experiment, it provided 

impressive results about the best arrangement for 2,( )hes T and 3,( )hes T . Following 

facts are the interpretations for the results of the experiment: 

 

• Minimum value of k is exactly same as given in Theorem 2. 

• Value of k always found at right most child or 
thm child of root vertex. 

• In 2,hT for left sub-tree of the root edge weights in ascending sequence 

whereas for right or 
thm sub-tree, descending sequence led towards correct 

results. 

• Similarly in 3,hT for left and mid sub trees of the root edge weights in 

ascending sequence whereas for the right most or 
thm sub-tree, descending 

sequence led towards correct results. 

 

Results of experiment can be seen as pictorial representation in the Figure 2. 
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For 2,3m =  and 2h  , results of the experiment clearly states ,
2

( )m hes T
V


 
 
 

. 

By combining the results of experiment and Theorem 2 it is concluded that 

,
2

( )m hes T
V

=
 
 
 

, for  2,3m =  and 2h  that completes the proof.          □ 

Experiment proved Theorem 2 and it is a good contribution in 

mathematical domain of graph labeling. But designed code for experiment cannot 

be applied on bigger trees nor in computer applications due to complexity of 

brute-force strategy. To complete this research, efficient algorithms are designed 

by viewing the interesting patterns explored in the experiment. Efficient algorithm 

for 2,hT  and ultimately for m ary− trees labeling for any value of ,m hT algorithms 

cost only O(V). 

 

Algorithm for Complete Binary Tree (CBT) Labeling 

Input: A positive integer h that will be considered as the height of 2,hT .  

Output: Label of vertices TArray [ ] {1,1,2,2,...., }V k→ . 

 

Algorithm 1 CBT-Labeling(h)  

1: V ← 2h+1 – 1 

2: TArray[V] ← 1 

3: Edge-Weight ← 2 

4: CBT-Left-Labeling(2) 

5: CBT-Right-Labeling(3) 

 

TArray[V] is a linear array that holds the labels of vertices as outcome of 

this algorithm. Whereas Edge-Weight is variable that holds the instantaneous 

values of edges in an ascending fashion for left sub-tree and descending fashion 

for right sub-tree in Algorithm 2 and Algorithms 3, respectively. For sake of 

simplicity and efficiency array implementation is used to store the labels of 

vertices. Therefore, to probe the values of Left-Child, Right-Child and Parent in 

the array inline functions are used. Left(i) return index location 2*i , Right(i) 

return index location 2* 1i +  and Parent(i) return index location 
2

V 
 
 

. 

Algorithm 2 CBT-Left-Labeling(i)  

1: if  i NULL  

2:      TArray[i] ← Edge-Weight-TArray[Parent(i)] 

3:      Edge-Weight ← Edge-Weight+1 

4:      CBT-Left-Labeling(Left(i)) 

5:      CBT-Left-Labeling(Right(i))  
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Algorithm 3 CBT-Right-Labeling(i) 

1: if  i NULL  

2:   if i=3 

3:     TArray[i] 
2

V 
  

 
 

4:     Edge-Weight ← V 

5:            CBT-Right-Labeling(Left(i))  

6:            CBT-Right-Labeling(Right(i)) 

7:         else 

8:            TArray[i] ← Edge-Weight-TArray[Parent(i)] 

9:             Edge-Weight ← Edge-Weight-1  

10:           CBT-Right-Labeling(Left(i)) 

11:           CBT-Right-Labeling(Right(i)) 

Collective outcome of above algorithms, is shown in Figure 2, for 2,4T tree 

where label of vertices is computed by algorithms with unique edge weights.   

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2: An edge irregular labeling of complete binary tree 2,4T . 

 

General Algorithm for m-ary Tree Labeling 

Input: A positive integer m as type of tree and a positive integer 1h  as height of 

m ary− tree.  

Output: Label of vertices TArray [ ] {1,1,2,2,...., }V k→ . 

Algorithm 4 m-ary-Labeling(h) 

1:  

1( 1)

( 1)

hm
V

m

+ −


−
  

2:  Assign 1 as label to root 

3:  TArray[1][1] ← 0 
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4:  
2

( 1)

V

d
m

  
  
  

 −
 
  

 

5:  for each child of root j ←  2 to m  

6:       TArray[1][j] ← TArray[1][j - 1] + d 

7:       TArray[2][j] ← TArray[1][j] + 1 

8:  TArray[1][1] ← 1 

9:  TArray[2][1] ← 2  

10: Apply recursive call on 1 to m-1 sub-trees in 2nd level 

11:      Edge-Weights will increase by 1 starting from 3 

12:      Label of vertices will be TArray[j] ← Edge-Weight-TArray[Parent(j)] 

13:      Avoid Edge-Weights that are already used in level 1 

14:  Apply recursive call on mth sub-tree in 2nd level 

15:      Edge-Weights will decrease by 1 starting from V 

16:     Label of vertices will be TArray[j] ←  Edge-Weight-TArray[Parent(j)] 

Figure 3 illustrates the results of m-ary-Labeling(h) algorithm pictorially for 8,2T . 

 

 

 

 

 

Fig. 3: An edge irregular labeling of 8,2T . 

3. Conclusions 

The problem presented in this paper is labeling the vertices of m ary− tree. 

According to mathematical definition used in this paper, labels of vertices may be 

repeating to attain a smallest value of ,
2

( )m hes T
V

=
 
 
 

but weights of edges must 

be unique. Algorithmic solution proved the exact values of the edge irregularity 

strength of ,m hT , even algorithm itself is a new dimension in the field of algorithm 

design and analysis. Given algorithm is valid for any complete m ary− tree as 
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long as resources of computer supports. Labeled trees with unique edge weights 

can be used in words problem, coding theory, and tree structures. 
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