

## A GENERALIZED DISTANCE IN A CONE METRIC SPACE AND NEW COMMON FIXED POINT RESULTS

Hamidreza Rahimi<sup>1</sup>, G. Soleimani Rad<sup>2</sup>, P. Kumam<sup>3</sup>

*In this paper we prove some common fixed point theorems by using the generalized distance in a cone metric space. Our theorems extend some recent results of Wang and Guo [Appl. Math. Lett. 24 (2011) 1735-1739] and Abbas and Jungck [J. Math. Anal. Appl. 341 (2008) 416-420].*

**MSC2010:** 47H10, 54H25, 47H09

**Keywords:** Common fixed point; C-distance; Cone metric space; Normal cone.

### 1. Introduction

Following Banach [5], if  $(X, d)$  is a complete metric space and  $f$  is a map of  $X$  satisfies  $d(fx, fy) \leq \lambda d(x, y)$  for all  $x, y \in X$  where  $\lambda \in [0, 1)$ , then  $f$  has a unique fixed point. Afterward, several fixed point theorems were considered by other authors [8, 11, 14, 17, 27]. The cone metric space was initiated in 2007 by Huang and Zhang [12] and several fixed and common fixed point results in cone metric spaces were introduced in [2, 3, 19, 20, 24, 26, 30, 31] and references were mentioned therein.

In 1996, Kada et al. [15] defined the concept of w-distance in complete metric spaces. Later, many authors proved some fixed point theorems in complete metric spaces (see [1, 18, 25]). Also, note that Saadati et al. [28] introduced a probabilistic version of the w-distance of Kada et al. [15] in a Menger probabilistic metric space. In the sequel, Cho et al. [7] and Wang and Guo [31] defined the concept of the c-distance in a cone metric space, which is a cone version of the w-distance of Kada et al. [15]. Recently, also, other authors proved some fixed and common fixed point theorems in cone metric spaces and tvs-cone metric spaces (see [6, 10, 13, 21, 22, 23, 29]).

---

<sup>1</sup>Department of Mathematics, Faculty of Science, Central Tehran Branch, Islamic Azad University, P. O. Box 13185/768, Tehran, Iran. Email: [rahimi@iauctb.ac.ir](mailto:rahimi@iauctb.ac.ir)

<sup>2</sup>Corresponding author, Department of Mathematics, Faculty of Science, Central Tehran Branch, Islamic Azad University, P. O. Box 13185/768, Tehran, Iran, Young Researchers and Elite club, Central Tehran Branch, Islamic Azad University, Tehran, Iran. Email: [gha.soleimani.sci@iauctb.ac.ir](mailto:gha.soleimani.sci@iauctb.ac.ir), [gh.soleimani2008@gmail.com](mailto:gh.soleimani2008@gmail.com)

<sup>3</sup>Department of Mathematics, Faculty of Science, King Mongkut's University of Technology Thonburi (KMUTT), Bang Mod, Bangkok 10140, Thailand. Email: [poom.kum@kmutt.ac.th](mailto:poom.kum@kmutt.ac.th)

In this paper, we extend and develop the Banach's contraction theorem on  $c$ -distance in a cone metric space. Our results extend and improve some Wang and Guo's works and Abbas and Jungck's results.

Important note: It has been shown in [4] that, by renorming an ordered Banach space, every cone can be converted to a normal cone with constant  $K = 1$ , and every normal cone metric space can be renormed to be equivalent to a metric space. But, the  $c$ -distance is a generalization of the  $w$ -distance. Thus, our results are new. On the other hand, the results have not been proved under  $w$ -distance in metric spaces. Therefore, our fixed point theorems under  $c$ -distance are the most complete theorems in this field. Consequently, the obtained results extend, unify and generalize several well known comparable results in the existing literature (see [2, 19, 30, 31]).

## 2. Preliminaries

We begin with some important definitions.

**Definition 2.1.** ([9, 12]). Let  $E$  be a real Banach space and  $P$  a subset of  $E$ . Then  $P$  is called a cone if and only if

- (a)  $P$  is closed, non-empty and  $P \neq \{\theta\}$ ;
- (b)  $a, b \in \mathbf{R}$ ,  $a, b \geq 0$ ,  $x, y \in P$  implies  $ax + by \in P$ ;
- (c) if  $x \in P$  and  $-x \in P$ , then  $x = \theta$ .

Given a cone  $P \subset E$ , a partial ordering  $\preceq$  with respect to  $P$  is defined by

$$x \preceq y \iff y - x \in P.$$

We shall write  $x \prec y$  to indicate that  $x \preceq y$  but  $x \neq y$ . Also, we write  $x \ll y$  if and only if  $y - x \in \text{int}P$  (where  $\text{int}P$  is the interior of  $P$ ). If  $\text{int}P \neq \emptyset$ , the cone  $P$  is called solid. A cone  $P$  is called normal if there exists a number  $K > 0$  such that, for all  $x, y \in E$ ,

$$\theta \preceq x \preceq y \implies \|x\| \leq K\|y\|.$$

The least positive number satisfying the above inequality is called the normal constant of  $P$ .

**Definition 2.2.** ([12]). Let  $X$  be a nonempty set. Suppose that the mapping  $d : X \times X \rightarrow E$  satisfies

- (d1)  $\theta \preceq d(x, y)$  for all  $x, y \in X$  and  $d(x, y) = \theta$  if and only if  $x = y$ ;
- (d2)  $d(x, y) = d(y, x)$  for all  $x, y \in X$ ;
- (d3)  $d(x, z) \preceq d(x, y) + d(y, z)$  for all  $x, y, z \in X$ .

Then,  $d$  is called a cone metric on  $X$  and  $(X, d)$  is called a cone metric space.

**Definition 2.3.** ([12]). Let  $(X, d)$  be a cone metric space,  $\{x_n\}$  a sequence in  $X$  and  $x \in X$ . Then

- (S1)  $\{x_n\}$  converges to  $x$  if, for every  $c \in E$  with  $\theta \ll c$  there exists an  $n_0 \in \mathbf{N}$  such that  $d(x_n, x) \ll c$  for all  $n > n_0$ . We denote this by  $\lim_{n \rightarrow \infty} d(x_n, x) = \theta$ .

(S2)  $\{x_n\}$  is called a Cauchy sequence if, for every  $c \in E$  with  $\theta \ll c$  there exists an  $n_0 \in \mathbf{N}$  such that  $d(x_n, x_m) \ll c$  for all  $m, n > n_0$ . We denote this by  $\lim_{n, m \rightarrow \infty} d(x_n, x_m) = \theta$ .

**Lemma 2.4.** ([12, 26]). Let  $(X, d)$  be a cone metric space and  $P$  be a normal cone with normal constant  $K$ . Also, let  $\{x_n\}$  and  $\{y_n\}$  be sequences in  $X$  and  $x, y \in X$ . Then the following hold:

- (c<sub>1</sub>)  $\{x_n\}$  converges to  $x$  if and only if  $d(x_n, x) \rightarrow \theta$  as  $n \rightarrow \infty$ .
- (c<sub>2</sub>) If  $\{x_n\}$  converges to  $x$  and  $\{x_n\}$  converges to  $y$ , then  $x = y$ .
- (c<sub>3</sub>) If  $\{x_n\}$  converges to  $x$ , then  $\{x_n\}$  is a Cauchy sequence.
- (c<sub>4</sub>) If  $x_n \rightarrow x$  and  $y_n \rightarrow y$  as  $n \rightarrow \infty$ , then  $d(x_n, y_n) \rightarrow d(x, y)$  as  $n \rightarrow \infty$ .
- (c<sub>5</sub>)  $\{x_n\}$  is a Cauchy sequence if and only if  $d(x_n, x_m) \rightarrow \theta$  as  $n, m \rightarrow \infty$ .

**Lemma 2.5.** ([7, 24]). Let  $E$  be a real Banach space with a cone  $P$  in  $E$ . Then, for all  $u, v, w, c \in E$ , the following hold:

- (p<sub>1</sub>) If  $u \preceq v$  and  $v \ll w$ , then  $u \ll w$ .
- (p<sub>2</sub>) If  $\theta \preceq u \ll c$  for each  $c \in \text{int}P$ , then  $u = \theta$ .
- (p<sub>3</sub>) If  $u \preceq \lambda u$  where  $u \in P$  and  $0 < \lambda < 1$ , then  $u = \theta$ .
- (p<sub>4</sub>) Let  $x_n \rightarrow \theta$  in  $E$ ,  $\theta \preceq x_n$  and  $\theta \ll c$ . Then there exists positive integer  $n_0$  such that  $x_n \ll c$  for each  $n > n_0$ .
- (p<sub>5</sub>) If  $\theta \preceq u \preceq v$  and  $k$  is a nonnegative real number, then  $\theta \preceq ku \preceq kv$ .
- (p<sub>6</sub>) If  $\theta \preceq u_n \preceq v_n$  for all  $n \in \mathbf{N}$  and  $u_n \rightarrow u$ ,  $v_n \rightarrow v$  as  $n \rightarrow \infty$ , then  $\theta \preceq u \preceq v$ .

**Definition 2.6.** ([29, 31]). Let  $(X, d)$  be a cone metric space. A function  $q : X \times X \rightarrow E$  is called a c-distance on  $X$  if the following are satisfied:

- (q<sub>1</sub>)  $\theta \preceq q(x, y)$  for all  $x, y \in X$ ;
- (q<sub>2</sub>)  $q(x, z) \preceq q(x, y) + q(y, z)$  for all  $x, y, z \in X$ ;
- (q<sub>3</sub>) for all  $n \geq 1$  and  $x \in X$ , if  $q(x, y_n) \preceq u$  for some  $u = u_x$ , then  $q(x, y) \preceq u$  whenever  $\{y_n\}$  is a sequence in  $X$  converging to a point  $y \in X$ ;
- (q<sub>4</sub>) for all  $c \in E$  with  $\theta \ll c$ , there exists  $e \in E$  with  $\theta \ll e$  such that  $q(z, x) \ll e$  and  $q(z, y) \ll e$  imply  $d(x, y) \ll c$ .

**Example 2.7.** ([7, 29, 31]).

- (1) Let  $(X, d)$  be a cone metric space and  $P$  be a normal cone. Put  $q(x, y) = d(x, y)$  for all  $x, y \in X$ . Then  $q$  is a c-distance.
- (2) Let  $E = \mathbf{R}$ ,  $P = \{x \in E : x \geq 0\}$  and  $X = [0, \infty)$ . Define a mapping  $d : X \times X \rightarrow E$  by  $d(x, y) = |x - y|$  for all  $x, y \in X$ . Then  $(X, d)$  is a cone metric space. Define a mapping  $q : X \times X \rightarrow E$  by  $q(x, y) = y$  for all  $x, y \in X$ . Then  $q$  is a c-distance.
- (3) Let  $E = C_{\mathbf{R}}^1[0, 1]$  with the norm  $\|x\| = \|x\|_{\infty} + \|x'\|_{\infty}$  and consider the cone  $P = \{x \in E : x(t) \geq 0 \text{ on } [0, 1]\}$ . Also, let  $X = [0, \infty)$  and define a mapping  $d : X \times X \rightarrow E$  by  $d(x, y) = |x - y|\psi$  for all  $x, y \in X$ , where  $\psi : [0, 1] \rightarrow \mathbf{R}$  such that  $\psi(t) = 2^t$ . Then  $(X, d)$  is a cone metric space. Define a mapping  $q : X \times X \rightarrow E$  by  $q(x, y) = (x + y)\psi$  for all  $x, y \in X$ . Then  $q$  is c-distance.

(4) Let  $(X, d)$  be a cone metric space and  $P$  be a normal cone. Put  $q(x, y) = d(w, y)$  for all  $x, y \in X$ , where  $w \in X$  is a fixed point. Then  $q$  is a c-distance.

**Remark 2.8.** For c-distance  $q$ ,  $q(x, y) = \theta$  is not necessarily equivalent to  $x = y$  and  $q(x, y) = q(y, x)$  does not necessarily hold for all  $x, y \in X$ .

Also, each w-distance  $q$  in a metric space  $(X, d)$  is a c-distance with  $E = \mathbf{R}^+$  and  $P = [0, \infty)$ . But the converse does not hold. Thus, the c-distance is a generalization of the w-distance.

**Lemma 2.9.** Let  $(X, d)$  be a cone metric space and let  $q$  be a c-distance on  $X$ . Also, let  $\{x_n\}$  and  $\{y_n\}$  be sequences in  $X$  and  $x, y, z \in X$ . Suppose that  $\{u_n\}$  and  $\{v_n\}$  are two sequences in  $P$  converging to  $\theta$ . Then the following hold:

- (qp<sub>1</sub>) If  $q(x_n, y) \preceq u_n$  and  $q(x_n, z) \preceq v_n$  for  $n \in \mathbf{N}$ , then  $y = z$ . Specifically, if  $q(x, y) = \theta$  and  $q(x, z) = \theta$ , then  $y = z$ .
- (qp<sub>2</sub>) If  $q(x_n, y_n) \preceq u_n$  and  $q(x_n, z) \preceq v_n$  for  $n \in \mathbf{N}$ , then  $\{y_n\}$  converges to  $z$ .
- (qp<sub>3</sub>) If  $q(x_n, x_m) \preceq u_n$  for  $m > n$ , then  $\{x_n\}$  is a Cauchy sequence in  $X$ .
- (qp<sub>4</sub>) If  $q(y, x_n) \preceq u_n$  for  $n \in \mathbf{N}$ , then  $\{x_n\}$  is a Cauchy sequence in  $X$ .

*Proof.* See [16, 29, 31]. □

### 3. Fixed point results

The following is the main theorem of this paper. We prove a common fixed point theorem by using c-distance. Our theorem extends the contractive condition from constant real numbers to some control functions (also, see [7, 16, 29]).

**Theorem 3.1.** Let  $(X, d)$  be a cone metric space,  $P$  be a normal cone with constant  $K$  and  $q$  be a c-distance. Also, let  $f, g : X \rightarrow X$  be two mappings with  $f(X) \subseteq g(X)$  and let  $g(X)$  be a complete subspace of  $X$ . Suppose that there exist mappings  $\alpha_i : X \rightarrow [0, 1)$  for  $i = 1, 2, \dots, 5$  such that the following conditions hold:

- (i)  $\alpha_i(fx) \leq \alpha_i(gx)$  for all  $x \in X$ ;
- (ii)  $(\alpha_1 + \alpha_2 + \alpha_3 + 2\alpha_4 + 2\alpha_5)(x) < 1$  for all  $x \in X$ ;
- (iii)  $q(fx, fy) \preceq \alpha_1(gx)q(gx, gy) + \alpha_2(gx)q(gx, fx) + \alpha_3(gx)q(gy, fy) + \alpha_4(gx)q(gx, fy) + \alpha_5(gx)q(gy, fx)$  for all  $x, y \in X$ ;
- (iv)  $q(fy, fx) \preceq \alpha_1(gx)q(gy, gx) + \alpha_2(gx)q(fx, gx) + \alpha_3(gx)q(fy, gy) + \alpha_4(gx)q(fy, gx) + \alpha_5(gx)q(fx, gy)$  for all  $x, y \in X$ ;

If  $f$  and  $g$  satisfy

$$\inf\{\|q(fx, y)\| + \|q(gx, y)\| + \|q(gx, fx)\| : x \in X\} > 0$$

for all  $y \in X$  with  $y \neq fy$  or  $y \neq gy$ , then  $f$  and  $g$  have a common fixed point in  $X$ .

*Proof.* Let  $x_0 \in X$  be an arbitrary point. Since the range of  $g$  contains the range of  $f$ , there exists an  $x_1 \in X$  such that  $fx_0 = gx_1$ . By induction, a sequence  $\{x_n\}$  can be chosen such that  $fx_n = gx_{n+1}$  for  $n = 0, 1, 2, \dots$ . Now, set  $x = x_{n-1}$  and  $y = x_n$

in (iii). Thus, by (q<sub>2</sub>), for  $n \geq 1$ , we get

$$\begin{aligned}
q(gx_n, gx_{n+1}) &= q(fx_{n-1}, fx_n) \\
(1) \preceq & \alpha_1(gx_{n-1})q(gx_{n-1}, gx_n) + \alpha_2(gx_{n-1})q(gx_{n-1}, fx_{n-1}) + \alpha_3(gx_{n-1})q(gx_n, fx_n) \\
&+ \alpha_4(gx_{n-1})q(gx_{n-1}, fx_n) + \alpha_5(gx_{n-1})q(gx_n, fx_{n-1}) \\
= & \alpha_1(fx_{n-2})q(gx_{n-1}, gx_n) + \alpha_2(fx_{n-2})q(gx_{n-1}, gx_n) + \alpha_3(fx_{n-2})q(gx_n, gx_{n+1}) \\
&+ \alpha_4(fx_{n-2})q(gx_{n-1}, gx_{n+1}) + \alpha_5(fx_{n-2})q(gx_n, gx_n) \\
\preceq & \alpha_1(gx_{n-2})q(gx_{n-1}, gx_n) + \alpha_2(gx_{n-2})q(gx_{n-1}, gx_n) + \alpha_3(gx_{n-2})q(gx_n, gx_{n+1}) \\
&+ \alpha_4(gx_{n-2})q(gx_{n-1}, gx_{n+1}) + \alpha_5(gx_{n-2})q(gx_n, gx_n) \\
&\vdots \\
\preceq & \alpha_1(gx_0)q(gx_{n-1}, gx_n) + \alpha_2(gx_0)q(gx_{n-1}, gx_n) + \alpha_3(gx_0)q(gx_n, gx_{n+1}) \\
&+ \alpha_4(gx_0)q(gx_{n-1}, gx_{n+1}) + \alpha_5(gx_0)q(gx_n, gx_n) \\
\preceq & \alpha_1(gx_0)q(gx_{n-1}, gx_n) + \alpha_2(gx_0)q(gx_{n-1}, gx_n) + \alpha_3(gx_0)q(gx_n, gx_{n+1}) \\
&+ \alpha_4(gx_0)[q(gx_{n-1}, gx_n) + q(gx_n, gx_{n+1})] \\
&+ \alpha_5(gx_0)[q(gx_n, gx_{n+1}) + q(gx_{n+1}, gx_n)].
\end{aligned}$$

Similarly, set  $x = x_{n-1}$  and  $y = x_n$  in (iv). Thus, by (q<sub>2</sub>), for  $n \geq 1$ , we get

$$\begin{aligned}
q(gx_n, gx_n) &= q(fx_n, fx_{n-1}) \\
\preceq & \alpha_1(gx_n)q(gx_n, gx_{n-1}) + \alpha_2(gx_n)q(gx_n, gx_{n-1}) + \alpha_3(gx_n)q(gx_{n+1}, gx_n) \\
&+ \alpha_4(gx_n)[q(gx_{n+1}, gx_n) + q(gx_n, gx_{n-1})] \\
&+ \alpha_5(gx_n)[q(gx_n, gx_{n+1}) + q(gx_{n+1}, gx_n)] \\
\preceq & \alpha_1(gx_0)q(gx_n, gx_{n-1}) + \alpha_2(gx_0)q(gx_n, gx_{n-1}) + \alpha_3(gx_0)q(gx_{n+1}, gx_n) \\
&+ \alpha_4(gx_0)[q(gx_{n+1}, gx_n) + q(gx_n, gx_{n-1})] \\
&+ \alpha_5(gx_0)[q(gx_n, gx_{n+1}) + q(gx_{n+1}, gx_n)].
\end{aligned}$$

Adding up (1) and (2), we have

$$q(gx_n, gx_{n+1}) + q(gx_{n+1}, gx_n) \preceq (\alpha_1(gx_0) + \alpha_2(gx_0) + \alpha_4(gx_0))[q(gx_{n-1}, gx_n) + q(gx_n, gx_{n-1})] \\
(3) \quad + (\alpha_3(gx_0) + \alpha_4(gx_0) + 2\alpha_5(gx_0))[q(gx_n, gx_{n+1}) + q(gx_{n+1}, gx_n)].$$

Now, set  $v_n = q(gx_n, gx_{n+1}) + q(gx_{n+1}, gx_n)$  in (3). Thus, we have

$$v_n \preceq (\alpha_1(gx_0) + \alpha_2(gx_0) + \alpha_4(gx_0))v_{n-1} + (\alpha_3(gx_0) + \alpha_4(gx_0) + 2\alpha_5(gx_0))v_n.$$

So,  $v_n \preceq hv_{n-1}$  for all  $n \geq 1$  with

$$h = \frac{\alpha_1(gx_0) + \alpha_2(gx_0) + \alpha_4(gx_0)}{1 - (\alpha_3(gx_0) + \alpha_4(gx_0) + 2\alpha_5(gx_0))} < 1,$$

since  $(\alpha_1 + \alpha_2 + \alpha_3 + 2\alpha_4 + 2\alpha_5)(x) < 1$  for all  $x \in X$ . Repeating this process, we get  $v_n \preceq h^n v_0$  for  $n = 0, 1, 2, \dots$ . Thus,

$$(4) \quad q(gx_n, gx_{n+1}) \preceq v_n \preceq h^n (q(gx_0, gx_1) + q(gx_1, gx_0))$$

for all  $n = 0, 1, 2, \dots$ . Now, for positive integer  $m$  and  $n$  with  $m > n \geq 1$ , it follows from (4) and  $h < 1$  that

$$\begin{aligned} q(gx_n, gx_m) &\preceq q(gx_n, gx_{n+1}) + q(gx_{n+1}, gx_{n+2}) + \dots + q(gx_{m-1}, gx_m) \\ &\preceq (h^n + h^{n+1} + \dots + h^{m-1}) (q(gx_0, gx_1) + q(gx_1, gx_0)) \\ (5) \quad &\preceq \frac{h^n}{1-h} (q(gx_0, gx_1) + q(gx_1, gx_0)). \end{aligned}$$

Lemma 2.9 implies that  $\{gx_n\}$  is a Cauchy sequence in  $X$ . Since  $g(X)$  is a complete subspace of  $X$ , there exists a point  $x' \in g(X)$  such that  $gx_n \rightarrow x'$  as  $n \rightarrow \infty$ . By (5) and  $(q_3)$

$$q(gx_n, x') \preceq \frac{h^n}{1-h} (q(gx_0, gx_1) + q(gx_1, gx_0)), \quad n = 0, 1, 2, \dots$$

Since  $P$  is a normal cone with normal constant  $K$ , we have

$$(6) \quad \|q(gx_n, x')\| \leq K \left( \frac{h^n}{1-h} \right) \|q(gx_0, gx_1) + q(gx_1, gx_0)\|, \quad n = 0, 1, 2, \dots$$

and

$$(7) \quad \|q(gx_n, gx_m)\| \leq K \left( \frac{h^n}{1-h} \right) \|q(gx_0, gx_1) + q(gx_1, gx_0)\|,$$

for all  $m > n \geq 1$ . If  $fx' \neq x'$  or  $gx' \neq x'$ , then, by the hypothesis, (6) and (7) with  $m = n + 1$ , we have

$$\begin{aligned} 0 &< \inf \{ \|q(fx, x')\| + \|q(gx, x')\| + \|q(gx, fx)\| : x \in X \} \\ &\leq \inf \{ \|q(fx_n, x')\| + \|q(gx_n, x')\| + \|q(gx_n, fx_n)\| : n \geq 1 \} \\ &= \inf \{ \|q(gx_{n+1}, x')\| + \|q(gx_n, x')\| + \|q(gx_n, gx_{n+1})\| : n \geq 1 \} \\ &\leq \inf \left\{ K \left( \frac{h^{n+1}}{1-h} \right) \|q(gx_0, gx_1) + q(gx_1, gx_0)\| + K \left( \frac{h^n}{1-h} \right) \|q(gx_0, gx_1) + q(gx_1, gx_0)\| \right. \\ &\quad \left. + K \left( \frac{h^n}{1-h} \right) \|q(gx_0, gx_1) + q(gx_1, gx_0)\| : n \geq 1 \right\} = 0. \end{aligned}$$

which is a contradiction. Hence  $x' = fx' = gx'$ . This completes the proof.  $\square$

The following corollaries are obtained from Theorem 3.1.

**Corollary 3.2.** Let  $(X, d)$  be a cone metric space,  $P$  be a normal cone with constant  $K$  and  $q$  be a  $c$ -distance on  $X$ . Suppose that the mappings  $f, g : X \rightarrow X$  satisfy the following two contractive conditions:

$$\begin{aligned} q(fx, fy) &\preceq \alpha_1 q(gx, gy) + \alpha_2 q(gx, fx) + \alpha_3 q(gy, fy) \\ &\quad + \alpha_4 q(gx, fy) + \alpha_5 q(gy, fx), \\ q(fy, fx) &\preceq \alpha_1 q(gy, gx) + \alpha_2 q(fx, gx) + \alpha_3 q(fy, gy) \\ &\quad + \alpha_4 q(fy, gx) + \alpha_5 q(fx, gy) \end{aligned}$$

for all  $x, y \in X$ , where  $\alpha_i$  for  $i = 1, 2, \dots, 5$  are nonnegative constants such that

$$\alpha_1 + \alpha_2 + \alpha_3 + 2(\alpha_4 + \alpha_5) < 1.$$

If the range of  $g$  contains the range of  $f$ ,  $g(X)$  is a complete subspace of  $X$ ,  $f$  and  $g$  satisfy

$$\inf\{\|q(fx, y)\| + \|q(gx, y)\| + \|q(gx, fx)\| : x \in X\} > 0$$

for all  $y \in X$  with  $y \neq fy$  or  $y \neq gy$ , then  $f$  and  $g$  have a common fixed point in  $X$ .

*Proof.* We can prove this result by applying Theorem 3.1 with  $\alpha_i(x) = \alpha_i$  for  $i = 1, 2, \dots, 5$ .  $\square$

**Corollary 3.3.** Let  $(X, d)$  be a cone metric space,  $P$  a normal cone with constant  $K$  and  $q$  be a c-distance. Also, let  $f, g : X \rightarrow X$  be two mappings with  $f(X) \subseteq g(X)$  and  $g(X)$  be a complete subspace of  $X$ . Suppose that there exist mappings  $\alpha_i : X \rightarrow [0, 1)$  for  $i = 1, \dots, 4$  such that the following conditions hold:

- (i)  $\alpha_i(fx) \leq \alpha_i(gx)$  for all  $x \in X$ ;
- (ii)  $(\alpha_1 + \alpha_2 + \alpha_3 + 2\alpha_4)(x) < 1$  for all  $x \in X$ ;
- (iii)  $q(fx, fy) \preceq \alpha_1(gx)q(gx, gy) + \alpha_2(gx)q(gx, fx) + \alpha_3(gx)q(gy, fy) + \alpha_4(gx)q(gx, fy)$  for all  $x, y \in X$ ;

If  $f$  and  $g$  satisfy

$$\inf\{\|q(fx, y)\| + \|q(gx, y)\| + \|q(gx, fx)\| : x \in X\} > 0$$

for all  $y \in X$  with  $y \neq fy$  or  $y \neq gy$ , then  $f$  and  $g$  have a common fixed point in  $X$ .

*Proof.* In Theorem 3.1, consider  $\alpha_5(x) = 0$ . Note that we only need to accuracy the relation (iii) in Corollary 3.3.  $\square$

**Corollary 3.4.** Let  $(X, d)$  be a cone metric space,  $P$  be a normal cone with constant  $K$  and  $q$  be a c-distance on  $X$ . Suppose that the mappings  $f, g : X \rightarrow X$  satisfy the following condition:

$$q(fx, fy) \preceq \alpha_1 q(gx, gy) + \alpha_2 q(gx, fx) + \alpha_3 q(gy, fy) + \alpha_4 q(gx, fy)$$

for all  $x, y \in X$ , where  $\alpha_i$  for  $i = 1, \dots, 4$  are nonnegative constants such that

$$\alpha_1 + \alpha_2 + \alpha_3 + 2\alpha_4 < 1.$$

If the range of  $g$  contains the range of  $f$ ,  $g(X)$  is a complete subspace of  $X$ ,  $f$  and  $g$  satisfy

$$\inf\{\|q(fx, y)\| + \|q(gx, y)\| + \|q(gx, fx)\| : x \in X\} > 0$$

for all  $y \in X$  with  $y \neq fy$  or  $y \neq gy$ , then  $f$  and  $g$  have a common fixed point in  $X$ .

*Proof.* We can prove this result by applying Corollary 3.3 with  $\alpha_i(x) = \alpha_i$  for  $i = 1, 2, 3, 4$ .  $\square$

In Theorem 3.1, if  $g = i_X$  is the identity map on  $X$ , then we get the following theorem of Hardy-Rogers type on c-distance in a cone metric space.

**Theorem 3.5.** Let  $(X, d)$  be a complete cone metric space and  $P$  be a normal cone with constant  $K$ . Also, let  $q$  be a c-distance and  $f : X \rightarrow X$  be a mapping. Suppose that there exist mappings  $\alpha_i : X \rightarrow [0, 1)$  such that the following conditions hold:

- (i)  $\alpha_i(fx) \leq \alpha_i(x)$  for all  $x \in X$ ;
- (ii)  $(\alpha_1 + \alpha_2 + \alpha_3 + 2\alpha_4 + 2\alpha_5)(x) < 1$  for all  $x \in X$ ;
- (iii)  $q(fx, fy) \leq \alpha_1(x)q(x, y) + \alpha_2(x)q(x, fx) + \alpha_3(x)q(y, fy) + \alpha_4(x)q(x, fy) + \alpha_5(x)q(y, fx)$  for all  $x, y \in X$ ;
- (iv)  $q(fy, fx) \leq \alpha_1(x)q(y, x) + \alpha_2(x)q(fx, x) + \alpha_3(x)q(fy, y) + \alpha_4(x)q(fy, x) + \alpha_5(x)q(fx, y)$  for all  $x, y \in X$ ;

If  $f$  satisfies

$$\inf\{\|q(fx, y)\| + \|q(x, y)\| + \|q(x, fx)\| : x \in X\} > 0$$

for all  $y \in X$  with  $y \neq fy$ , then  $f$  has a fixed point in  $X$ .

**Corollary 3.6.** Let  $(X, d)$  be a cone metric space,  $P$  be a normal cone with constant  $K$  and  $q$  be a c-distance on  $X$ . Suppose that the mapping  $f : X \rightarrow X$  satisfies the following two contractive conditions:

$$\begin{aligned} q(fx, fy) &\leq \alpha_1 q(x, y) + \alpha_2 q(x, fx) + \alpha_3 q(y, fy) \\ &\quad + \alpha_4 q(x, fy) + \alpha_5 q(y, fx), \\ q(fy, fx) &\leq \alpha_1 q(y, x) + \alpha_2 q(fx, x) + \alpha_3 q(fy, y) \\ &\quad + \alpha_4 q(fy, x) + \alpha_5 q(fx, y) \end{aligned}$$

for all  $x, y \in X$ , where  $\alpha_i$  for  $i = 1, 2, \dots, 5$  are nonnegative constants such that

$$\alpha_1 + \alpha_2 + \alpha_3 + 2(\alpha_4 + \alpha_5) < 1.$$

If  $f$  satisfies

$$\inf\{\|q(fx, y)\| + \|q(x, y)\| + \|q(x, fx)\| : x \in X\} > 0$$

for all  $y \in X$  with  $y \neq fy$ , then  $f$  has a fixed point in  $X$ .

*Proof.* We can prove this result by applying Theorem 3.5 with  $\alpha_i(x) = \alpha_i$  for  $i = 1, 2, \dots, 5$ .  $\square$

**Corollary 3.7.** Let  $(X, d)$  be a complete cone metric space and  $P$  be a normal cone with constant  $K$ . Also, let  $q$  be a c-distance and  $f : X \rightarrow X$  be a mapping. Suppose that there exist mappings  $\alpha_i : X \rightarrow [0, 1)$  such that the following conditions hold:

- (i)  $\alpha_i(fx) \leq \alpha_i(x)$  for all  $x \in X$ ;
- (ii)  $(\alpha_1 + \alpha_2 + \alpha_3 + 2\alpha_4)(x) < 1$  for all  $x \in X$ ;
- (iii)  $q(fx, fy) \leq \alpha_1(x)q(x, y) + \alpha_2(x)q(x, fx) + \alpha_3(x)q(y, fy) + \alpha_4(x)q(x, fy)$  for all  $x, y \in X$ ;

If  $f$  satisfies

$$\inf\{\|q(fx, y)\| + \|q(x, y)\| + \|q(x, fx)\| : x \in X\} > 0$$

for all  $y \in X$  with  $y \neq fy$ , then  $f$  has a fixed point in  $X$ .

*Proof.* In Theorem 3.5, consider  $\alpha_5(x) = 0$ . Note that we only need to accuracy the relation (iii) in Corollary 3.7.  $\square$

**Remark 3.8.**

(i) Sometimes the constant numbers which satisfy Corollaries 3.2 and 3.6 are difficult to find. Thus, it is better to define such mappings  $\alpha_i(x)$  as another auxiliary tool of the cone metric.

(ii) Theorems 2.1 and 2.3 of [2] cannot be applied to some examples, but by the following conditions

$$q(fx, fy) \preceq kq(gx, gy), \quad k \in [0, 1],$$

$$q(fx, fy) \preceq k(q(gx, fx) + q(gy, fy)), \quad k \in [0, \frac{1}{2})$$

for all  $x, y \in X$  of Corollary 3.2,  $f$  and  $g$  have a common fixed point theorem. Thus, our Corollary 3.2 has generalized the main results of Abbas and Jungck's work [2] on  $c$ -distance in a cone metric space.

**Example 3.9.** Let  $E = \mathbf{R}$  and  $P = \{x \in E : x \geq 0\}$ . Let  $X = [0, 1)$  and define a mapping  $d : X \times X \rightarrow E$  by  $d(x, y) = |x - y|$  for all  $x, y \in X$ . Then  $(X, d)$  is a cone metric space. Define a function  $q : X \times X \rightarrow E$  by  $q(x, y) = d(x, y)$  for all  $x, y \in X$ . Then  $q$  is a  $c$ -distance. Also, let the mapping  $f : X \rightarrow X$  defined by  $f(x) = \frac{x^2}{4}$  for all  $x \in X$ . Define the mappings  $\alpha_1(x) = \frac{x+1}{4}$ ,  $\alpha_5(x) = \frac{x}{8}$  and  $\alpha_2 = \alpha_3 = \alpha_4 = 0$  for all  $x \in X$ . Observe that:

- (1)  $\alpha_1(fx) = \frac{1}{4}\left(\frac{x^2}{4} + 1\right) \leq \frac{1}{4}(x^2 + 1) \leq \frac{x+1}{4} = \alpha(x)$  for all  $x \in X$ .
- (2)  $\alpha_5(fx) = \frac{x^2}{32} \leq \frac{x^2}{8} \leq \frac{x}{8} = \alpha_5(x)$  for all  $x \in X$ .
- (3)  $\alpha_i(fx) = 0 \leq 0 = \alpha_i(x)$  for all  $x \in X$  and  $i = 2, 3, 4$ .
- (4)  $(\alpha_1 + \alpha_2 + \alpha_3 + 2\alpha_4 + 2\alpha_5)(x) = \frac{x+1}{4} + \frac{2x}{8} = \frac{2x+1}{4} < 1$  for all  $x \in X$ .
- (5) For all comparable  $x, y \in X$ , we get

$$\begin{aligned} q(fx, fy) &= \left| \frac{x^2}{4} - \frac{y^2}{4} \right| \preceq \frac{|x+y||x-y|}{4} \\ &= \left( \frac{x+y}{4} \right) |x-y| \preceq \left( \frac{x+1}{4} \right) |x-y| \\ &\preceq \alpha_1(x)q(x, y) + \alpha_2(x)q(x, fx) + \alpha_3(x)q(y, fy) \\ &\quad + \alpha_4(x)q(x, fy) + \alpha_5(x)q(y, fx). \end{aligned}$$

- (6) Similarly, we have

$$\begin{aligned} q(fy, fx) &\preceq \alpha_1(x)q(y, x) + \alpha_2(x)q(fx, x) + \alpha_3(x)q(fy, y) \\ &\quad + \alpha_4(x)q(fy, x) + \alpha_5(x)q(fx, y) \end{aligned}$$

for all comparable  $x, y \in X$ .

- (7) For any  $x, y \in X$  with  $y \neq Ty$ , i.e.,  $y > 0$ , we get

$$\inf\{\|q(fx, y)\| + \|q(x, y)\| + \|q(x, fx)\| : x \in X\} = 2\left|y - \frac{y^2}{4}\right| > 0.$$

Hence all the conditions of Theorem 3.5 are satisfied. Thus  $f$  has a fixed point  $x = 0$ .

**Remark 3.10.** For more details about fixed point results under  $c$ -distance in a cone metric space, see [6, 7, 10, 16, 29].

**Remark 3.11.** (i) Corollary 3.3 and Corollary 3.7 are same Theorem 3.1 and Corollary 3.1 of Kaewkhao et al. [16];

(ii) Corollary 3.4 is same Theorem 2.2 of Wang and Guo [31];

(iii) Corollary 3.6 is same Corollary 3.4 of Rahimi and Soleimani Rad [23].

**Acknowledgments.** The authors are grateful to the editor and referees for their accurate reading and their helpful suggestions. Also, the second author would like to thank the Young Researchers and Elite club, Central Tehran Branch of Islamic Azad University for financial support. Moreover, the third author would like to thank the Higher Education Research Promotion and National Research University Project of Thailand's Office of the Higher Education Commission for financial support (under NRU-CSEC Project No.NRU56000508).

## REFERENCES

- [1] M. Abbas, D. Ilić, M. Ali Khan, Coupled coincidence point and coupled common fixed point theorems in partially ordered metric spaces with  $w$ -distance. *Fixed Point Theory Appl* 2010, (Article ID 134897) 11 (2010).
- [2] M. Abbas, G. Jungck, Common fixed point results for noncommuting mappings without continuity in cone metric spaces, *J. Math. Anal. Appl.* 341 (2008) 416-420.
- [3] M. Abbas, B.E. Rhoades, Fixed and periodic point results in cone metric spaces, *Appl. Math. Lett.* 22 (2009) 511-515.
- [4] M. Asadi, S.M. Vaezpour, B.E. Rhoades, H. Soleimani, Metrizability of cone metric spaces via renorming the Banach spaces, *Nonlinear Anal. Appl.*, 2012, Article ID jnaa-00160.
- [5] S. Banach, Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales, *Fund. Math.* 3 (1922) 133-181.
- [6] Y.J. Cho, Z. Kadelburg, R. Saadati, W. Shatanawi, Coupled fixed point theorems under weak contractions, *Discrete Dynamics in Nature and Society* 2012, doi:10.1155/2012/184534.
- [7] Y.J. Cho, R. Saadati, S.H. Wang, Common fixed point theorems on generalized distance in ordered cone metric spaces, *Comput. Math. Appl.* 61 (2011) 1254-1260.
- [8] L.B. Ćirić, A generalization of Banach's contraction principle, *Proc. Amer. Math. Soc.* 45 (1974) 267-273.
- [9] K. Deimling, *Nonlinear Functional Analysis*, Springer-Verlag, 1985.
- [10] M. Dordević, D. Dorić, Z. Kadelburg, Stojan Radenović, D. Spasić, Fixed point results under  $c$ -distance in tvs-cone metric spaces, *Fixed Point Theory Appl.* (2011) 29, doi:10.1186/1687-1812-2011-29.
- [11] G.E. Hardy, T.D. Rogers, A generalization of a fixed point theorem of Reich, *Canad. Math. Bull.* 16 (1973) 201-206.

- [12] L.G. Huang, X. Zhang, Cone metric spaces and fixed point theorems of contractive mappings, *J. Math. Anal. Appl.* 332 (2007) 1467-1475.
- [13] L. Čirić, H. Lakzian, V. Rakočević, Fixed point theorems for w-cone distance contraction mappings in tvs-cone metric spaces.
- [14] G. Jungck, Commuting maps and fixed points, *Amer. Math. Monthly* 83 (1976) 261-263.
- [15] O. Kada, T. Suzuki, W. Takahashi, Nonconvex minimization theorems and fixed point theorems in complete metric spaces, *Math. Japon.* 44 (1996) 381-391.
- [16] A. Kaewkhao, W. Sintunavarat, P. Kumam, Common fixed point theorems of c-distance on cone metric spaces, *Journal of Nonlinear Analysis and Application*, Volume 2012 (2012), Article ID jnaa-00137, 11 Pages. doi:10.5899/2012/jnaa-00137.
- [17] R. Kannan, Some results on fixed points, *Bull. Calcutta Math. Soc.* 60 (1968), 71-76.
- [18] H. Lakzian, F. Arabyani, Some fixed point theorems in cone metric spaces with w-distance, *Inter J. Math. Anal.* 3 (22) (2009) 1081-1086.
- [19] S. Radojević, L.J. Paunović, S. Radenović, Abstract metric spaces and Hardy-Rogers type theorems, *Appl. Math. Lett.* 24 (2011) 553-558.
- [20] H. Rahimi, B.E. Rhoades, S. Radenović, G. Soleimani Rad, Fixed and periodic point theorems for T-contractions on cone metric spaces, *Filomat.* 27 (5) (2013) 881-888 (DOI 10.2298/FIL1305881R).
- [21] H. Rahimi, G. Soleimani Rad, Common fixed point theorems and c-distance in ordered cone metric spaces, *Ukrainian Mathematical Journal*, (2014) to appear.
- [22] H. Rahimi, G. Soleimani Rad, Fixed point theorems under c-distance in ordered cone metric space, *Int. J. Industrial Mathematics.* 6 (2) (2014) 97-105 (Article ID IJIM-00253).
- [23] H. Rahimi, G. Soleimani Rad, Note on “Common fixed point results for noncommuting mappings without continuity in cone metric spaces, *Thai. J. Math.* 11 (3) (2013) 589-599.
- [24] H. Rahimi, P. Vetro, G. Soleimani Rad, Some common fixed point results for weakly compatible mappings in cone metric type space, *Miskolc Mathematical Notes.* 14 (1) (2013) 233-243.
- [25] A. Razani, Z.M. Nezhad, M. Boujary, A fixed point theorem for w-distance. *Appl Sci.* 11 (2009) 114-117.
- [26] S. Rezapour, R. Hambarani, Some note on the paper cone metric spaces and fixed point theorems of contractive mappings, *J. Math. Anal. Appl.* 345 (2008) 719-724.
- [27] B.E. Rhoades, A comparison of various definition of contractive mappings, *Trans. Amer. Math. Soc.* 266 (1977) 257-290.
- [28] R. Saadati, D. O'Regan, S.M. Vaezpour, J.K. Kim, Generalized distance and common fixed point theorems in Menger probabilistic metric spaces, *Bull. Iranian Math. Soc.* 35 (2009) 97-117.
- [29] W. Sintunavarat, Y.J. Cho, P. Kumam, Common fixed point theorems for c-distance in ordered cone metric spaces, *Comput. Math. Appl.* 62 (2011) 1969-1978.
- [30] G. Song, X. Sun, Y. Zhao, G. Wang, New common fixed point theorems for maps on cone metric spaces, *Appl. Math. Lett.* 23 (2010) 1033-1037.

[31] S. Wang, B. Guo, Distance in cone metric spaces and common fixed point theorems, *Appl. Math. Lett.* 24 (2011) 1735-1739.