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ENTROPY GENERATION ANALYSIS OF A REACTIVE 
HYDROMAGNETIC FLUID FLOW THROUGH A CHANNEL 

Anthony Rotimi HASSAN1*and Jacob Abiodun GBADEYAN2 
 

This research investigates the entropy generation analysis of a reactive 
hydromagnetic fluid flow through a channel with isothermal wall temperature, 
under various chemical kinetics namely: Sensitized, Arrhenius and Bimolecular 
kinetics.  

The analytical solutions of the nonlinear dimensionless equations governing 
the fluid flow are obtained using Adomian Decomposition Method (ADM). Effects of 
all – important flow properties on the fluid flow are presented and discussed. 
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1. Introduction 

In a reacting material undergoing an exothermic reaction, in which 
reactant consumption is neglected, heat is being produced in accordance with 
chemical kinetics.  That has been of great concern in the study of any reactive 
hydromagnetic flows, which is important in many engineering applications. 

During the last few decades, many insightful studies have been done on 
reactive hydromagnetic fluid flow [1] – [4]. For example, [1] studied the inherent 
and thermal stability in a reactive electrically conducting fluid flowing steadily, 
through a channel with isothermal walls, under the influence of a transversely 
imposed magnetic field. Also, [2] conducted detailed numerical analysis of 
unsteady hydromagnetic generalized Couette flow of a reactive third – grade fluid 
with asymmetric convective cooling.   

In addition, [5] pointed out that hydromagnetic reactive flows are often 
accompanied with heat transfer which is an integral part of natural convection 
flow and belongs to the class of problems in boundary layer theory. This occurs in 
various physical phenomena such as fire engineering, combustion modelling, 
nuclear reactor, heat exchangers, etc.  

Meanwhile, extensive research studies in [6] – [8] have been carried out 
on the properties and importance of fluid flow under Arrhenius kinetics. However, 
little attention has been given to hydromagnetic fluid flow under other chemical 
kinetics such as sensitized and bimolecular kinetics.  
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Therefore, the aim of this study is to respectively obtain and compare the 
temperature profiles and entropy generation rate of Sensitized, Arrhenius and 
Bimolecular kinetics with a numerical exponent (m) such that { 2,0,0.5}m∈ −  and 
to investigate other effects of all – important flow property on the fluid flow due 
to its importance in several applications such metallurgical and petro – chemical 
engineering. The problem is strongly nonlinear involving exponential 
nonlinearity. Hence, analytical solution shall be obtained using Adomian 
Decomposition Method (ADM). The rest of the paper is organized as follows: the 
problem is formulated in section 2; in section 3 the problem is solved together 
with other properties. Section 4 gives the results while section 5 concludes the 
research work. 

2. Problem Formulation 

We considered the steady flow of a reactive, incompressible and 
electrically conducting fluid; flowing through a channel, between two parallel 
plates, with isothermal wall temperature, under the influence of a transverse 
magnetic field strength B0. When the consumption of the reactant is neglected, the 
continuity, momentum and energy equations governing the flow in a non 
dimensionless form can be written as: 
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with the following boundary conditions 

 0du dT
d y d y

= =  on 0y =  and 0, 0u T= =  on y a=   (4) 

where the bar on each variable represents the non dimensionless form.  
 However, the additional chemical kinetics term in the energy equation (3) 
is due to [9]. Also, in equations (1) – (4), u is axial velocity, v is normal velocity, 
T represent the fluid temperature, a is channel half width, Co is reactant species 
initial concentration, E is activation energy, R is the universal gas constant, A is 
reaction rate constant, k thermal conductivity coefficient, μ is fluid viscosity, Q is 
the heat of reaction term, P is the modified pressure, l is the Planck’s number, v is 
the vibration frequency, σ0 represents electrical conductivity and m is a numerical 
constant such that { 2,0,0.5}m∈ − . The three values taken by the parameter m 
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represent the numerical exponent for Sensitized, Arrhenius and Bimolecular 
kinetics.  
 Introducing the following dimensionless variables into equations (1) – (4) 

 yy
a

= , xx
a

= ,  uu
U

= , vv
U

= , 
( )0

2
0

E T T
T

RT

−
= , aPP

Uμ
= , 0RT

E
δ = ,  

,dPG
dx

= −
2

2
0

E UBr
kRT
μ

= , 
2 2

2 0B aHa σ
μ

= , 0

2
0 0

2
0

Em
RTQEAa C kT e

kRT vl
λ

−⎛ ⎞= ⎜ ⎟
⎝ ⎠

  (5) 

and obtain the following dimensionless governing equations: 
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satisfying the following boundary conditions. 

 0du dT
dy dy

= =  on 0y =  and 0, 0u T= =  on 1y =    (9) 

where G is constant axial pressure gradient, Ha represents Hartmann number, Br 
is Brinkman number, λ is Frank – Kamenettski parameter and δ is the activation 
energy parameter. 

3. Method of solution 

 Solving (7) with the appropriate boundary conditions, one obtains  
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 (a) Case 1: when m = – 2 (Sensitized Kinetics) 
 Substituting (10) and making m = –2 in equation (8), we have: 
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Hence,  
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Where (0)B T= and is to be determined using the boundary conditions (9). 
We now introduce a series solution of the form  
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 We let the nonlinear term be represented by  
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such that  
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The few Adomian polynomials of (15) are given as follows: 

 

0

0

(
(
)

1 )

0 2
0

e
(1 ))(

T y
T y

C
T y

δ

δ

+

=
+

      (17) 

 

0

0

)
1 ) 2

0 1
1 4

0

(
(e (1 2 2 )) )

(1 ))
( (

(

T y
T y T y T yC

T y

δ δ δ
δ

+ − −
=

+
    (18) 



Entropy generation analysis of a reactive hydromagnetic fluid flow through a channel       289 

( )
( )( )

0

0

)
2 2 4 2 21 )

0 0 1
2 6 2 2

0

(

0 0 2

( 1 6 6 6 1 2 ) 6 ) )e
2 1 ) 2(1 )) ( 1 2 2 ))

( ( (

( ( )( (

T y
T y T y T y T y

C
T y T y T y T y

δ δ δ δ δ δ

δ δ δ δ

+ − + + − + +
=

+ − +

⎡ ⎤
⎢

+⎣ −⎢ +
⎥
⎥⎦
  (19) 

Then, the zeroth component of (16) can be written following the new modification 
in [7], [10] and [11] as follows: 
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(b) Case 2: when m = 0 (Arrhenius Kinetics) 
In a similar way, substituting (10) and making m = 0 in (8), we have  
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where D = T (0) and is to be determined using the boundary conditions (9). 
 We let the nonlinear term be represented by  
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The few Adomian polynomials of (26) are given as follows: 
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In a similar way as in case 1, we have, 
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(c) Case 3: when m = 0.5 (Bimolecular Kinetics) 
In a similar way, substituting (10) and making m = 0.5 in (8), we have  
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Where F = T (0) and is to be determined using the boundary conditions (9). 
We let the nonlinear term be represented by  
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The few Adomian polynomials of (37) are given as follows: 
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Therefore, we have  
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 Equations (23), (34) and (44) are the respective solutions for temperature 
under Sensitized, Arrhenius and Bimolecular Kinetics. 

 
 3.2. Entropy Generation Analysis 
 Inherent irreversibility in a channel flow arises due to exchange of energy 
and momentum within the fluid and the solid boundaries. The entropy production 
is due to heat transfer and the combined effects of fluid friction and Joules 
dissipation. Following [12], the general equation for the entropy generation per 
unit volume in the presence of a magnetic field is given by:  
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    The first term in (45) is the irreversibility due to heat transfer, the second 
term is the entropy generation due to viscous dissipation and the third term is the 
local entropy generation due to the effect of the magnetic field. 
    We express the entropy generation number in dimensionless form using 
the existing non – dimensional variables and parameter in (5) as: 
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as the irreversibility distribution ratio.  Relation (47) shows that heat transfer 
dominates when 10 <≤φ and fluid friction dominates when φ  > 1. This is used to 
determine the contribution of heat transfer in many engineering designs.  
     As an alternative to irreversibility parameter, the Bejan number (Be) is 
defined as  

 .10
1

11 ≤≤
+

== Bewhere
N
NBe

s φ
   (48) 

 
 4. Discussion of results 

 In this section, we compare the temperature profiles and entropy 
generation rates for various chemical kinetics and the effects of all – important 
flow properties were discussed. 
 Table 1 shows that the heat transfer dominates at both the upper and lower 
regions of the plate surfaces as 10 <≤φ  and that the fluid friction dominates at 
the core region of the flow where φ  > 1. Also, the Bejan numbers lie between 0 
and 1 for various chemical kinetics.  
 

Table 1: Computation of the Entropy Analysis for Various Chemical Kinetics. 
Ha = 1, G = 1, λ = 0.1, δ = 0.1 Br = 0.1, Br Ω –1= 0.1 
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-1 0.1200 0.1214 0.1218 0.0580026 0.4835 0.4777 0.4762 0.6741 0.6767 0.6774 
-0.75 0.0456 0.0464 0.0466 0.0309902 0.6802 0.6685 0.6655 0.5951 0.5993 0.6004 
-0.5 0.0160 0.0164 0.0165 0.0186529 1.1631 1.1382 1.1320 0.4623 0.4677 0.4690 
-0.25 0.0036 0.0037 0.0037 0.0136751 3.8263 3.7352 3.7126 0.2072 0.2112 0.2122 

0 0 0 0 0.0123866 ∞ ∞ ∞ 0 0 0 
0.25 0.0036 0.0037 0.0037 0.0136751 3.8263 3.7352 3.7126 0.2072 0.2112 0.2122 
0.5 0.0160 0.0164 0.0165 0.0186529 1.1631 1.1382 1.1320 0.4623 0.4677 0.4690 
0.75 0.0456 0.0464 0.0466 0.0309902 0.6802 0.6685 0.6655 0.5951 0.5993 0.6004 

1 0.1200 0.1214 0.1218 0.0580026 0.4835 0.4777 0.4762 0.6741 0.6767 0.6774 
 
 In Fig. 1, the maximum temperature increases as the numerical exponents 
(m) increases from – 2 to 0.5. It is generally noticed that the fluid temperature is 
zero at both the upper and lower stationary surfaces of the channel while the 
maximum temperature occurred at the central line of the channel. 
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The result in Fig. 2 showed that the fluid temperature increases as the magnetic 
intensity (Ha) decreases; this is due to the presence of magnetic forces which have 
retarding effects on the fluid flow. The reverse is the case in Figs. 3 and 4 where 
an increase in the values of Brinkman number (Br) and Frank – Kamenettski 
parameter (λ) give a rise in the temperature profiles which is due to the initial 
concentration of the reactant. 
 

 
Fig. 1: Comparison of Temperature Profiles for Various Kinetics 
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Fig. 2: Effects of Hartmann Number for Various Kinetics 
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Fig. 3: Effects of Brinkman number for various kinetics. 

 
 The effect of entropy generation rate is shown in Fig. 5. On a general note, 
the entropy generation rate is at minimum around the core region of the channel 
and rises to its maximum values at the plate surfaces. This is clearly observed in 
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Fig. 5 where an increase in the numerical exponents (m) gives an increase in the 
entropy generation rate.   
 Fig. 6 displays the Bejan number versus the channel width. It is clearly 
observed that the heat transfer irreversibility dominates at both the upper and 
lower plate surfaces while the fluid friction irreversibility dominates around the 
central line of the channel. 
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Fig. 4: Effects of Frank – Kamenettski Parameter for Various Kinetics. 
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Fig. 5: Entropy Generation Rates for Various Kinetics 
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Fig. 6: Bejan number for various kinetics 
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5. Conclusion 

A review of the diverse roles of entropy and the second law analysis in 
computational thermo fluids has been investigated for Sensitized, Arrhenius and 
Bimolecular kinetics. The result shows that the temperature increases as the 
numerical exponents { 2,0,0.5}m∈ − increases respectively. Also, the entropy 
generation rate is at minimum around the core region of the channel and rises to 
its maximum values at the plate surfaces and that an increase in the numerical 
exponents (m) gives an increase in the entropy generation rate.  

Our results will also be of interest to lubrication companies in improving 
the efficiency and effectiveness of hydromagnetic lubricants used in engineering 
systems as mentioned in [1] using appropriate chemical kinetics. 
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