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EXPLICIT SOLUTION OF THE POSITION-DEPENDENT MASS

SCHRÖDINGER EQUATION WITH GORA-WILLIAMS KINETIC 
ENERGY OPERATOR: CONFINED HARMONIC OSCILLATOR MODEL

by E.I. Jafarov1, S.M. Nagiyev2 and A.M. Seyidova3

Exactly-solvable confined model of the non-relativistic quantum harmonic os-

cillator is proposed. Free Hamiltonian of the system under study has a form of the

Gora-Williams kinetic energy operator. Explicit solution of this confined harmonic os-
cillator Schrödinger equation in the canonical approach has achieved thanks to effective

mass changing with position. Confinement effect also appears as a result of certain be-
haviour of the position-dependent effective mass depending from confinement parameter

a. It is shown that the discrete energy spectrum of the confined harmonic oscillator

with position-dependent mass also depends from confinement parameter and has a non-
equidistant form. Wavefunctions of the stationary states of the confined oscillator with

position-dependent mass are expressed in terms of the Gegenbauer polynomials. At limit

a → ∞, both energy spectrum and wavefunctions recover well-known equidistant en-
ergy spectrum and wavefunctions of the stationary non-relativistic harmonic oscillator

expressed by Hermite polynomials. Position-dependent effective mass also becomes ho-

mogeneous under this limit.
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1. Introduction

Quantum harmonic oscillator probably is most attracted exactly solvable problem of
the non-relativistic quantum theory due to existence of its elegant and simpler mathemat-
ical solutions and enormous applications in the different branches of the modern physics
and technologies [1]. Usually, when we talk about quantum harmonic oscillator problem,
we mean non-relativistic harmonic oscillator in the canonical approach with discrete energy
spectrum having equidistant levels and wavefunctions of the stationary states in terms of the
Hermite polynomials, obtained through explicit solution of the corresponding Schrödinger
equation [2]. Before solving this second order differential equation, one assumes that wave-
functions of the stationary states vanish to zero at positive and negative infinity values of
the position as well as effective mass that appears in both kinetic and potential energy parts
of the non-relativistic quantum harmonic oscillator Hamiltonian is homogeneous, i.e. it does
not depend from position. Of course, we also do all calculations in configuration space that
is continuous. What happens, if we drop one or more listed above conditions or special cases
leading to harmonic oscillator wavefunctions expressed by the Hermite polynomials? For ex-
ample, if we drop canonical commutation relation between non-relativistic momentum and
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position operators, then explicit solution of the harmonic oscillator Schrödinger equation
corresponding to non-canonical case leads to the wavefunctions of the stationary harmonic
oscillator states expressed by the generalized Laguerre polynomials [3]. If we assume that
the problem is relativistic, then, an exactly solvable oscillator model also can be constructed
and its wavefunctions are going to be expressed by the Meixner-Pollaczek polynomials [4].
Number of exactly solvable harmonic oscillator models in the discrete or hybrid configura-
tion spaces also exist and their wavefunctions are expressed by the Charlier, Krawtchouk,
Meixner and Hahn polynomials [5–9]. Discrete harmonic oscillator models, which wavefunc-
tions are expressed by Krawtchouk or Hahn polynomials have one more attractive property,
because, these models are also finite, i.e. in fact they are confined on the discrete position
or momentum configuration space. It is necessary to note that the study of the explicitly
solvable quantum harmonic oscillator model in the finite-continuous configuration space is
of great interest due to recent huge development and changes in the field of nanostructures
and low dimensional systems [10]. Interesting approach here is construction of the explic-
itly solvable quantum harmonic oscillator model being confined by two infinite high walls
at values of position x = ±a, a > 0. This problem is similar to infinite quantum well
problem in the non-relativistic approach. The difference is only behaviour of the potential
within infinite well. Stationary Schrödinger equation for case V (x) = 0 at −a < x < a is
exactly solvable. Expressions of both energy spectrum and wavefunctions of the stationary
states are well known. Explicit solution of the stationary Schrödinger equation for the case
V (x) = Mω2x2/2 at −a < x < a still is open for research despite that first attempts to
solve such a problem explicitly can be traced back to 40-es [11, 12]. Up today, enormous
number of papers have been devoted to similar solutions of the confined harmonic oscillator
model using different approaches for approximate solutions. In fact, this problem can be
solved explicitly in terms of the orthogonal polynomials under the approach that effective
mass of the quantum system under study is position-dependent rather than homogeneous.
Present work is devoted to obtaining such an explicit solution of the confined quantum har-
monic oscillator Shrödinger equation with Gora-Williams kinetic energy term. This kinetic
energy term is introduced in [19] within the theory of the electronic minority-carrier trans-
port for semiconductors slowly graded in composition, which allowed to discuss the local
radiative-recombination lifetime, local density of states as well as some other phenomena
specific only for inhomogeneous semiconductors. Further, quantum dynamical systems with
Gora-Williams kinetic energy term free Hamiltonian have been developed in various research
directions leading to attractive results. For example, possibility of the position-dependent
effective mass as well as band parameters concept to the description of the motion of car-
riers in graded mixed semiconductors is examined in [13]. Effective Hamiltonian describing
the motion of electrons in compositionally graded crystals have been constructed in [15].
The dependence of the band-offset ratio of a GaAs−AlxGa1−xAs quantum well in case of
Hermitian Hamiltonian with Gora-Williams kinetic energy term is illustrated in [14] and it
is found that the Hamiltonian dependence of the band-offset ratio is significant for accurate
models of heterojunctions. [16] constructed a class of η-weak-pseudo-Hermitian position-
dependent mass Hamiltonians and used some of Scarf II models as examples for subsequent
computations. [17] proposes general form of the kinetic energy with position-dependent mass
that includes well-known van Roos kinetic energy operator as a special case.

We are going to solve confined quantum harmonic oscillator Shrödinger equation
with Gora-Williams kinetic energy term explicitly under the exact position dependence of
the effective mass as M(x) = ma2/(a2−x2). Feature of such a dependence of the mass from
position is that at values of position x = ±a, harmonic oscillator potential behaves itself as
applied infinite wall as well as position dependence of the effective mass disappears under
the limit a→∞. We are going to discuss all these issues in the rest of present work.
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The paper is structured as follows: Section 2 is devoted to the confinement model of
the non-relativistic one-dimensional quantum harmonic oscillator, whose wavefunctions of
the stationary states and energy spectrum of the model are obtained through the solution of
the corresponding Schrödinger equation with Gora-Williams kinetic energy operator under
assumption that the mass of the quantum system under confinement varies with position.
First, we present basic review of the non-relativistic one-dimensional quantum harmonic
oscillator in the canonical approach with vanishing wavefunctions at infinity. Then, we have
shown that the wavefunctions of the stationary states are expressed through the Gegenbauer
polynomials. We also present explicit expression of the discrete non-equidistant energy
spectrum. Discussions and conclusions are given in Section 3.

2. Schrödinger equation with the Gora-Williams kinetic energy operator:
confined harmonic oscillator with a position-dependent effective mass

Before going to solve confined quantum harmonic oscillator Shrödinger equation with
Gora-Williams kinetic energy operator, we present basic review on the non-relativistic one-
dimensional quantum harmonic oscillator in the canonical approach with vanishing wave-
functions at infinity. It is known that the following stationary Schrödinger equation in the
position representation with the non-relativistic harmonic oscillator potential[

p̂2
x

2m
+
mω2x2

2

]
ψ(x) = Eψ(x), (2.1)

should be solved explicitly for the non-relativistic harmonic oscillator in order to obtain
vanishing wavefunctions at infinity. Here m and ω are the position-independent mass and
angular frequency of the non-relativistic quantum harmonic oscillator. Definition of the
one-dimensional momentum operator as follows

p̂x = −i~ d

dx
, (2.2)

means that Schrödinger equation (2.1) is written in the canonical approach. Taking into
account the definition of the momentum operator (2.2) in eq. (2.1) one easily obtain the
following second order differential equation:

d2ψ

dx2
+

2m

~2

(
E − mω2x2

2

)
ψ = 0. (2.3)

Its analytical solution to the explicit expression of the discrete equidistant energy
spectrum

E ≡ En = ~ω
(
n+ 1

2

)
, n = 0, 1, 2, . . . , (2.4)

and wavefunctions of the stationary states in the position representation

ψ ≡ ψn(x) =
1√

2nn!

(mω
π~

) 1
4
e−

mωx2

2~ Hn

(√
mω

~
x

)
, (2.5)

where, Hn(x) are Hermite polynomials defined in terms of 2F0 hypergeometric functions as
follows [18]:

Hn(x) = (2x)n 2F0

(
−n/2,−(n− 1)/2

− ; − 1
x2

)
. (2.6)

Due to known orthogonality relation for the Hermite polynomials [18], the normalized
wavefunctions (2.5) satisfy similar orthogonality relation:
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∞∫
−∞

ψ∗m(x)ψn(x)dx = δmn. (2.7)

Gora-Williams kinetic energy operator introduced in [19] for case of effective mass
varying with position has a following general form:

ĤGW
0 = −~2

4

{
M−1(x),

d2

dx2

}
. (2.8)

Here, {·, ·}means anticommutation relation and it appears due to that unlike constant
effective mass case, momentum operator p̂x (2.2) and M−1(x) now do not commute. Taking
into account that{

M−1(x),
d2

dx2

}
=

2

M

[
d2

dx2
− M ′

M

d

dx
− 1

2

M ′′

M
+

(
M ′

M

)2
]
,

and introducing confined harmonic oscillator potential as

V (x) =

{
M(x)ω2x2

2 , −a < x < a,
∞, x = ±a,

(2.9)

one can rewrite full Hamiltonian describing non-relativistic harmonic ocsillator with position-
dependent effective mass as follows:

ĤGW = − ~2

2M

[
d2

dx2
− M ′

M

d

dx
− 1

2

M ′′

M
+

(
M ′

M

)2
]

+
Mω2x2

2
. (2.10)

Now, we have to define position-dependent effective mass thanks to that confine-
ment effect of the harmonic oscillator potential (2.9) will be satisfied. It has the following
analytical expression:

M ≡M(x) =
a2m

a2 − x2
. (2.11)

One can easily check that position-dependent effective mass M(x) (2.11) recovers
homogeneous mass m under the simple limit

lim
a→∞

a2m

a2 − x2
= m (2.12)

as well as quantum harmonic oscillator potential (2.9) with position-dependent effective
mass M(x) (2.11) satisfies the correct boundary conditions

V (−a) = V (a) =∞. (2.13)

Next, taking into account that

M ′

M
=

2x

a2 − x2

as well as
M ′′

M
=

2

a2 − x2
+

8x2

(a2 − x2)
2 ,

one needs to solve explicitly the following Schrödinger equation:[
d2

dx2
− 2x

a2 − x2

d

dx
− 1

a2 − x2

]
ψ +

(
2ma2E

~2(a2 − x2)
− m2ω2a4x2

~2(a2 − x2)2

)
ψ = 0. (2.14)
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Introduction of the new dimensionless variable ξ as

ξ =
x

a
,

d

dx
=

1

a

d

dξ
,

d2

dx2
=

1

a2

d2

dξ2

will change eq. (2.14) to the following second order differential equation form:

ψ′′ − 2ξ

1− ξ2
ψ′ +

c0 − 1 + (1− c0 − c2) ξ2

(1− ξ2)
2 ψ = 0, (2.15)

where

c0 =
2ma2E

~2
, c2 =

m2ω2a4

~2
.

We are going to apply Nikiforov-Uvarov method [20] to solve this equation explicitly.
This method is applicable to the second order differential equations of type

ψ′′ +
τ̃

σ
ψ′ +

σ̃

σ2
ψ = 0,

where, it is assumed that σ and σ̃ are arbitrary polynomials of at most second degree and
τ̃ is an arbitrary polynomial of at most first degree. In our case

τ̃ = −2ξ, σ = 1− ξ2, σ̃ = c0 − 1 + (1− c0 − c2) ξ2,

that completely satisfies above listed requirements of the applicability of Nikiforov-Uvarov
method to explicit solution of eq. (2.15). We look for expression of ψ as

ψ = ϕ (ξ) y,

where, ϕ (ξ) should be defined in terms of σ and another arbitrary polynomial of at most
first degree π as follows:

ϕ (ξ) = e
∫ π(ξ)
σ(ξ)

dξ.

Further simple computations lead to the following second order differential equation
for y:

y′′ +
2π + τ̃

σ
y′ +

σ̃ + π2 + π (τ̃ − σ′) + π′σ

σ2
y = 0. (2.16)

Let’s do now the following substitutions in (2.16):

τ = 2π + τ̃ , σ̄ = σ̃ + π2 + π (τ̃ − σ′) + π′σ.

Then, eq.(2.16) will be written in the following more compact form:

y′′ +
τ

σ
y′ +

σ̄

σ2
y = 0. (2.17)

Due to that each term in the definition of σ̄ is a polynomial at most of second degree,
one can require here that σ̄ = λσ with λ = const. If also to introduce new notation
µ = λ− π′, then, we will need to solve the following quadratic equation for π(ξ):

π2 + (τ̃ − σ′)π + σ̃ − µσ = 0. (2.18)

Now, taking into account that σ′ = −2ξ and as a consequence of τ̃ −σ′ = 0, eq.(2.18)
will be completely simplified as follows:

π2 + σ̃ − µσ = 0. (2.19)

From eq.(2.19) it is easy to observe that
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π = ε
√
µσ − σ̃ = ε

√
µ− c0 + 1 + (c0 + c2 − µ− 1) ξ2, ε = ±1. (2.20)

We already defined π (ξ) as a polynomial at most of first degree. Now parameter
µ should be chosen by such a manner that the expression under the square root will have
multiple root, i.e. discriminant of the square root expression should equal to zero as follows:

D = −4 (c0 + c2 − 1− µ) (µ− c0 + 1) = 0. (2.21)

Then, we obtain the following possible expressions for π (ξ):

π (ξ) =

{
ε
√
c2ξ, µ = c0 − 1,

ε
√
c2, µ = c0 + c2 − 1.

(2.22)

We obtain ϕ (ξ) =
(
1− ξ2

)− 1
2 ε
√
c2

for case µ = c0 − 1 and ϕ (ξ) =
(

1+ξ
1−ξ

) 1
2 ε
√
c2

for

case µ = c0 + c2 − 1. Due to the finiteness property of the wavefunction at points ξ = ±1
(or x = ±a) lim

ξ→±1
ψ (ξ) = 0, one observes the condition ε = −1 should be satisfied, and the

case µ = c0 − 1 should be chosen for ϕ (ξ), which leads to the following final expressions of
π (ξ) and ϕ (ξ):

π (ξ) = −
√
c2ξ, ϕ (ξ) =

(
1− ξ2

) 1
2

√
c2
. (2.23)

Also, as a consequence, we find that

λ = c0 − 1−
√
c2, τ (ξ) = −2 (

√
c2 + 1) ξ. (2.24)

Then, eq.(2.17) will have the more compact form as follows:

σy′′ + τy′ + λy = 0. (2.25)

Function y(ξ) should be finite at values ξ = ±1. Therefore, we have to find its poly-
nomial solutions. For this reason, we compare it with the following second order differential
equation for the Gegenbauer polynomials [18]

(
1− x2

)
ȳ′′ −

(
2λ̄+ 1

)
xȳ′ + n

(
n+ 2λ̄

)
ȳ = 0, ȳ = C

(λ̄)
n (x) ,

leads us to the following non-equidistant energy spectrum

E ≡ EGWn = ~ω
(
n+

1

2

)
+

~2

2ma2

(
n2 + n+ 1

)
, (2.26)

and wavefunctions of the stationary states

ψ ≡ ψGWn (x) = cGWn

(
1− x2

a2

)mωa2

2~

C

(
mωa2

~ + 1
2

)
n

(x
a

)
, (2.27)

where, C
(λ̄)
n (x) are Gegenbauer polynomials defined in terms of the 2F1 hypergeometric

functions as follows:

C(λ̄)
n (x) =

(
2λ̄
)
n

n!
2F1

(
−n, n+ 2λ̄
λ̄+ 1/2

; 1−x
2

)
, λ̄ 6= 0 (2.28)

and the normalization factor cGWn being equal to

cGWn = 2
mωa2

~ Γ

(
mωa2

~
+ 1

2

)√ (
n+ mωa2

~ + 1
2

)
n!

πaΓ
(
n+ 2mωa2

~ + 1
) , (2.29)
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is defined from the orthogonality relation for Gegenbauer polynomials C
(λ̄)
n (x) of the follow-

ing form

1∫
−1

(
1− x2

)λ̄− 1
2 C

(λ̄)
m (x)C

(λ̄)
n (x)dx =

πΓ
(
n+ 2λ̄

)
21−2λ̄{

Γ
(
λ̄
)}2 (n+ λ̄

)
n!
δmn (2.30)

under conditions λ̄ > − 1
2 and λ̄ 6= 0. Therefore, wavefunctions of the stationary states in

the position representation (2.27) are also orthogonal in the finite region −a < x < a:

a∫
−a

[
ψGWm (x)

]∗
ψGWn (x)dx = δmn. (2.31)

We are going to discuss impact of non-equidistant behaviour of the energy spectrum
appeared due to confinement effect as well as possible special cases and correct limit expres-
sions of both (2.26) and (2.27) in final section.

3. Discussions and Conclusion

Taking into account that explicit expressions of the wavefunctions of the stationary
states and discrete energy spectrum are obtained by solving the Schrödinger equation with
Gora-Williams kinetic energy operator for the confined harmonic oscillator model (2.14), now
let’s explore what kind of primary differences appear in properties of wavefunctions and en-
ergy spectrum of the oscillator under the confinement effect and mass varying with position.
First of all, let’s note that oscillator model with wavefunctions expressed by Gegenbauer
polynomials is not new. We have to note [21] that proposes quantum non-linear oscillator
model with wavefunctions expressed by Gegenbauer polynomials and non-equidistant en-
ergy spectrum. If one compares energy spectrum (2.26) with energy spectrum from [21]
and other papers, which developed later proposed non-linear oscillator model, then, one
observes that unlike non-linear oscillator energy spectrum, ground state energy level in our
case substantially differs from the ground state energy level of the non-relativistic harmonic
oscillator E0 = ~ω/2 and it depends from the confinement parameter a.

In Fig.1, we present behaviour of the confined quantum harmonic oscillator poten-
tial (2.9) and its corresponding non-equidistant energy levels (2.26) as well as probability

densities
∣∣ψGWn (x)

∣∣2 computed from wavefunctions of the stationary states (2.27) for the
ground and excited states for different values of the confinement parameter a (m = ω =

~ = 1). For simplicity, we depicted probability densities
∣∣ψGWn (x)

∣∣2 on the corresponding
energy level. In each of these four pictures, we observe form of the harmonic oscillator po-
tential that varies due to its indirect dependence from the confinement parameter a. We also
observe how non-equidistant energy spectrum discrete levels fill corresponding confined har-
monic oscillator potential (2.9). Moreover, we observe that in the tendention of confinement
parameter a to ∞, non-equidistant energy levels become more equidistant-like.

In Fig.2, we also present dependence of the non-equidistant energy levels (2.26) from
the confinement parameter a for the ground and 10 excited states (m = ω = ~ = 1). Main
goal of the presentation such a depicting is to exhibit sharp increase energy values, including
ground state energy level to infinity upon the reduce of confinement parameter a to zero.
It is possible to discuss obtained results more from different aspects, but, we think that
main added value of these results to existed ones and their importance is their explicit
expressions. Therefore, below we simply want to show briefly, how all these results recover
their non-relativistic analogues.

Limit from non-equidistant energy spectrum of the non-relativistic confined oscillator
model with position-dependent effective mass to its unbounded analogue is simple. It is
obvious that
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Figure 1. Confined quantum harmonic oscillator potential (2.9) and be-
haviour of the corresponding non-equidistant energy levels (2.26) and prob-

ability densities
∣∣ψGWn (x)

∣∣2 of the ground and a) 1 excited state for a = 0.5;
b) 3 excited states for a = 1; c) 5 excited states for a = 1.5; d) 6 excited
states for a = 2 (m = ω = ~ = 1).

Figure 2. Dependence of the non-equidistant energy levels (2.26) from the
confinement parameter a for the ground and 10 excited states (m = ω =
~ = 1).

lim
a→∞

EGWn = ~ω
(
n+ 1

2

)
= En. (3.1)

Let’s discuss details of the limit between confined and free wavefunctions (2.27) and
(2.5). Due to existence of the following well-known limit relation between Gegenbauer

polynomials C
(α)
n (x) and Hermite polynomials Hn(x)
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lim
α→∞

α−
1
2nC

(
α+

1
2

)
n

(
x√
α

)
=
Hn(x)

n!
(3.2)

that is completely applicable in our case, wavefunctions of the stationary states of the
confined quantum harmonic oscillator potential with a position-dependent effective mass
ψbn(x) (2.27) reduce to wavefunctions of the stationary states of the unbounded quantum
harmonic oscillator potential ψn(x) (2.5) under the following limit relation:

lim
a→∞

ψGWn (x) = ψn(x). (3.3)

Here, also one needs to use the following special case behaviour for the Gamma
function:

Γ (z)
|z|→∞

'
√

2π

z
ez ln z−z,

that leads to the following asymptotics and limit relations α→∞ (α = mωa2

~ ):

Γ (α+ 1/2)
α→∞

'
√

2πe
α lnα−α

,

Γ (n+ 2α+ 1)
α→∞

' 2
n
√

4παe
(2α+n) lnα−2α+2α ln 2

,

lim
α→∞

α
n
2 c
GW
n = c̃0

√
n!

2n
, c̃0 =

(
mω

π~

)1/4

,

lim
α→∞

(
1−

x2

a2

)mωa2

~
= e
−mωx

2

2~ .

We have to note that present solution applied for confined harmonic oscillator problem
can also be used in future for explicit solution of different quantum mechanical problems with
position-dependent mass under some confinement effect. We think that number of quantum
mechanical problems, for example, free quantum particle, potential box or well problem with
position-dependent effective mass can be solved in recent future by using same or at least
similar approach and they also will lead to unexpected surprising behaviour of the energy
spectrum and wavefunction.

Acknowledgements

E.I. Jafarov kindly acknowledges that this work was supported by the Scientific Fund
of State Oil Company of Azerbaijan Republic 2019-2020 grant.

R E F E R E N C E S

[1] M. Moshinsky and Y.F. Smirnov, The Harmonic Oscillator in Modern Physics, Harwood Academic

Publishers, Amsterdam, 1996.

[2] L.D. Landau and E.M. Lifshitz, Quantum mechanics: non-relativistic theory, Pergamon Press, Oxford,

1991.

[3] Y. Ohnuki and S. Kamefuchi, Quantum Field Theory and Parastatistics, Springer-Verlag, Berlin Hei-

delberg, 1982.

[4] N.M. Atakishiev, R.M. Mir-Kasimov and S.M. Nagiev, Quasipotential models of a relativistic oscillator,

Theor. Math. Phys. 44(1980) 592-603.

[5] E.I. Jafarov, N.I. Stoilova and J. Van der Jeugt, Finite oscillator models: the Hahn oscillator, J. Phys.

A 44(2011) 265203.

[6] E.I. Jafarov, N.I. Stoilova and J. Van der Jeugt, The su(2)α Hahn oscillator and a discrete Fourier-

Hahn transform, J. Phys. A 44(2011) 355205.



336 E.I. Jafarov, S.M. Nagiyev and A.M. Seyidova

[7] E.I. Jafarov and J. Van der Jeugt, A finite oscillator model related to sl(2|1), J. Phys. A 45(2012)

275301.

[8] E.I. Jafarov and J. Van der Jeugt, Discrete series representations for sl(2|1), Meixner polynomials and

oscillator models, J. Phys. A 45(2012) 485201.

[9] E.I. Jafarov and J. Van der Jeugt, The oscillator model for the Lie superalgebra sh(2|2) and Charlier

polynomials, J. Math. Phys. 54(2013) 103506.

[10] C. Trusca, C. Stan and E.C. Niculescu, Stark shift and oscillator strengths in a GaAs quantum ring

with off-center donor impurity, U.P.B. Sci. Bull. Series A 80(2018) 261-270.

[11] F.C. Auluck, Energy levels of an artificially bounded linear oscillator, Proc. Indian Nat. Sci. Acad.

7(1941) 133-140.

[12] S. Chandrasekhar, Dynamical Friction. II. The Rate of Escape of Stars from Clusters and the Evidence

for the Operation of Dynamical Friction, Astrophys. J. 97(1943) 263-273.

[13] L. Leibler, Effective-mass theory for carriers in graded mixed semiconductors, Phys. Rev. B 12(1975)

4443-4450.

[14] T.L. Li and K.J. Kuhn, Band-offset ratio dependence on the effective-mass Hamiltonian based on a

modified profile of the GaAs - AlxGa1−xAs quantum well, Phys. Rev. B 47(1993) 12760-12770.

[15] M.R. Geller and W. Kohn, Quantum mechanics of electrons in crystals with graded composition, Phys.

Rev. Lett. 70(1993) 3103-3106.

[16] O. Mustafa and S. Habib Mazharimousavi, First-Order Intertwining Operators with Position Dependent

Mass and η-Weak-Pseudo-Hermiticity Generators, Int. J. Theor. Phys. 47(2008) 446-454.

[17] V.M. Tkachuk and O. Voznyak, Effective Hamiltonian with position-dependent mass and ordering

problem, Eur. Phys. J. Plus 130(2015) 161.

[18] R. Koekoek, P.A. Lesky and R.F. Swarttouw, Hypergeometric orthogonal polynomials and their q-

analogues, Springer Verslag, Berlin, 2010.

[19] T. Gora and F. Williams, Theory of electronic states and transport in graded mixed semiconductors,

Phys. Rev. 177(1969) 1179-1182.

[20] A.F. Nikiforov, and V.B. Uvarov, Special Functions of Mathematical Physics: A Unified Introduction

with Applications, Birkhäuser, Basel, 1988.
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