

EUCLIDEAN GEOMETRY OF FINSLER WAVEFRONTS THROUGH GAUSSIAN CURVATURE

Vladimir BALAN¹, Mircea CRĂŞMĂREANU,²

Lucrarea studiază curbura Gauss K a indicatoarei spațiilor Finsler. Pentru (α, β) -metrii, se obține o expresie a curburii similară celei determinate de M. Hashiguchi ([2], [3]), care extinde cazurile Randers, Kropina, Matsumoto și Riemann. Suprafețele Randers în context Funk 2-dimensional și metrica Randers-Funk pentru discul unitate sunt de asemenea studiate. Se pune în evidență relația curburii cu metricile Finsler fundamentală și angulară, utilizând reperul Berwald pentru cazul $n = 2$. Se demonstrează că curbura Gauss a indicatoarei este h -covariantă constantă relativ la conexiunile Cartan și Chern-Rund. În încheiere, este descris cazul structurilor pseudo-Finsler de tip Berwald-Moor.

The present paper deals with the Gaussian curvature K of a particular indicatrix in a general Finsler manifold. A formula for K similar to the one obtained by M. Hashiguchi ([2], [3]), is derived for (α, β) -metrics and then specialized to Randers, Kropina, Matsumoto and Riemann-type metrics. For the Funk two-dimensional case the class of Randers surfaces is detailed, and the Randers-Funk metric on the unit disk is investigated. Alternative expressions for K are provided, in terms of Finslerian metric and angular metric, and in terms of Berwald frame for $n = 2$. It is shown that K is h -covariant constant with respect to the Cartan and Chern-Rund connections. The last section describes the pseudo-Finsler locally-Minkowski Berwald-Moor case.

Keywords: Finsler spaces, Gauss curvature, indicatrix, hypersurface, (α, β) -metric, Randers metric, Funk metric, Finsler connection.

MSC2000: 53C60, 53B40.

1. Introduction

It is well-known the major rôle played by the Gaussian curvature in Differential Geometry. The aim of this paper is investigate the Gaussian curvature in Finsler spaces by means of the *indicatrix* (or *unit tangent space*, *unit tangent sphere*) associated to the Finsler structure. The importance of indicatrices in the Finslerian setting has been pointed out by Okubo (1, p.13]), which shows that, not only the fundamental Finsler function F defines the indicatrices, but conversely, the indicatrices determine F as well. One of the major differences between Riemannian and Finsler geometry is that the latter provides *several* remarkable connections - and not only one, as the Levi-Civita connection of the Riemannian case. Hence, in the Finslerian framework there are several curvatures with different geometric importance.

The first formula for Gaussian curvature K_x of a fixed indicatrix in Lagrange and Finsler geometry was given by Masao Hashiguchi in [2] and [3] and was further generalized by the second author of the present paper to Generalized Lagrange Geometry in [4].

The present study extends M. Hashiguchi's formula developed in the Randers-Kropina cases to the more general (α, β) case. Much attention is given to the $n = 2$ case, where the laborious computations are partially simplified by using in a special way the homogeneity of the Finsler fundamental function through the *associated function* $\lambda = \lambda(z)$ recently introduced by P. Funk ([5]). This reduction of number of variables from two to one becomes essential in replacing PDEs associated to conditions imposed on K to ODEs in $\lambda(z)$.

The paper is organized as follows: the first section recalls the Hashiguchi formula for Lagrange and Finsler manifolds and provides the formula for (α, β) -metrics. This naturally extends the Randers and Kropina cases studied in [2] and [3], and the Matsumoto and "Riemann"-type metrics are obtained as particular cases. As well, a new expression for K_x in terms of the Finsler and angular metrics, is presented.

The second section focuses on the dimension two - which has been intensively studied in recent works (e.g., [6] and Chapter 4 from [1]). The formula (both in the general and in the previously mentioned particular cases) is computed in terms of the Funk associated fundamental function λ . A new expression for K_x is obtained in terms of the Berwald frame, specific to Finslerian surfaces.

The next section provides concrete examples, supplementing thus the works [2] and [3]. The Randers metric on the unit disk considered by T. Okada in [7] appears as an example of Finsler metric of Funk type having constant Finslerian-Gaussian (or flag) negative curvature.

The last section is devoted to the behavior of the total function K in terms of its horizontal and vertical covariant derivatives with respect to certain Finsler connections. It is proved that K is horizontal covariant constant with respect to the Cartan and Chern-Rund connections.

2. Gaussian curvature for wavefronts in Lagrange and Finsler geometry

In the n -dimensional Euclidean space \mathbf{R}^n , consider a hypersurface

$$S = \{x \in \mathbf{R}^n \mid f(x) = 0, \nabla f(x) \neq 0\},$$

where $f \in C^\infty(\mathbf{R}^n)$, and ∇f denotes the gradient of f ($\nabla f = (f_i)_{i=1, \dots, n}$, $f_i = \frac{\partial f}{\partial x^i}$). We further choose the inward unit normal vector field of S , $N = -\frac{\nabla f}{\|\nabla f\|}$. Then we have the following classical result ([3, p. 37], [2, p. 23]):

Proposition 1.1 *The Gaussian curvature of pair (S, N) is:*

$$K = - \begin{vmatrix} f_{ij} & f_i \\ f_j & 0 \end{vmatrix} \cdot \|\nabla f\|^{-(n+1)}.$$

This formula has been used in the above cited papers in order to obtain the Gaussian curvature for the indicatrix of a *Lagrange space* $L^n = (M, L)$ on an open domain M of \mathbf{R}^n . More precisely, let $L : TM \rightarrow \mathbf{R}$ be a regular Lagrangian ([8]) on M considered as a smooth n -dimensional manifold. This means that the halved y -Hessian matrix of L , $g_{ij} = \frac{1}{2} \dot{\partial}_i \dot{\partial}_j L$ is of rank n (i.e., $\det(g_{ij}) \neq 0$), where $\dot{\partial}_i = \frac{\partial}{\partial y^i}$ using the local coordinates $x = (x^i)_{i=1,n}$ on M and $(x, y) = (x^i, y^i)$ on the tangent space TM . Associated to this Lagrangian we have the *indicatrix* of L at $x \in M$: $I_x = \{y \in T_x M; L(x, y) = 1\}$. This appears as a hypersurface in $T_x M \simeq \mathbf{R}^n$ implicitly defined by the function: $f(x, y) = L(x, y) - 1$.

Remark. Throughout this paper we shall alternatively call I_x *the wavefront at x* , following the paper [9].

Proposition 1.2 ([3, p. 39]) *Let L^n be a Lagrange space. Then at each point $x \in M$, the Gaussian curvature K_x of the wavefront I_x oriented in the direction $N_x = -\frac{\dot{\nabla} L}{\|\dot{\nabla} L\|}$ is:*

$$K_x = - \begin{vmatrix} \dot{\partial}_i \dot{\partial}_j L & \dot{\partial}_i L \\ \dot{\partial}_j L & 0 \end{vmatrix} \cdot \left[\sum_{i=1}^n (\dot{\partial}_i L)^2 \right]^{-\frac{n+1}{2}}. \quad (1)$$

In this proposition $\dot{\nabla} L$ denotes the gradient of L with respect to y i.e. $\dot{\nabla} L = (\dot{\partial}_i L)_{i=1,n}$.

Important remark. The formula (1) and its offsprings belong to the Euclidean geometry of the family of (Euclidean) hypersurfaces $\{I_x\}_{x \in M}$, and not to the Lagrange (particularly Finsler) geometry of the pair (M, L) .

If there exists a function $F : TM \rightarrow \mathbf{R}$, smooth on TM minus the null section and positively homogeneous of degree 1 with respect to y such that $L = F^2$ is a regular Lagrangian then the pair $F^n = (M, F)$ is a *Finsler space* and F is called the *fundamental function* of F^n ([8]). For Finsler spaces, it has been proved that:

Proposition 1.3 ([3, p. 40]) *Let (M, F) be a Finsler space and let $g = \det(g_{ij}) = \det(\frac{1}{2} \dot{\partial}_i \dot{\partial}_j F^2)$. Then at each point $x \in M$, the Gaussian curvature K_x of the wavefront I_x oriented in the direction opposite to $\dot{\nabla} L$ is:*

$$K_x = g \cdot \left(\sum_{i=1}^n l_i^2 \right)^{-\frac{n+1}{2}} \quad (2)$$

where $l_i = \dot{\partial}_i F$.

In the following we shall provide alternative expressions for the Gaussian curvature K_x . The homogeneity of the fundamental Finsler function F yields $l_i = F^{-1} g_{ij} y^j$, where $l = (l_i)$ is the *covariant normalized supporting element*; then using the equation of I_x : $F^2 = 1$, we get:

Proposition 1.4 *The Gaussian curvature of the Finslerian wavefront I_x is:*

$$K_x = g \cdot \left[\sum_{i=1}^n (g_{ij} y^j)^2 \right]^{-\frac{n+1}{2}}. \quad (3)$$

This shows that the Gaussian curvature is a metric object, i.e., it depends only on the Finsler metric g_{ij} (and not directly on the Finsler function F).

Using the notation $y_i = g_{ik} y^k$, the relation (3) rewrites in the simpler form

$$K_x = g \cdot \left[\sum_{i=1}^n y_i^2 \right]^{-\frac{n+1}{2}}.$$

As well, using the tensor field $h = (h_{ij} = F \frac{\partial^2 F}{\partial y^i \partial y^j})$ called *the angular metric* related to g_{ij} via ([6, p. 296]):

$$g_{ij} = h_{ij} + l_i l_j,$$

we get $l_i^2 = g_{ii} - h_{ii}$ and then we yield a formula for K in terms of both Finsler and angular metrics:

$$K_x = g \cdot \left[\sum_{i=1}^n (g_{ii} - h_{ii}) \right]^{-\frac{n+1}{2}}.$$

Example. The case of (α, β) -metrics. Let us consider a Riemannian metric $a = (a_{ij}(x))_{1 \leq i, j \leq n}$ and an 1-form: $b = (b_i(x))_{1 \leq i \leq n}$, both living globally on M , and let us associate to these objects the following functions on TM :

- $\alpha(x, y) = \sqrt{a_{ij} y^i y^j}$;
- $\beta(x, y) = b_i y^i$;
- $F(x, y) = \alpha \phi(\frac{\beta}{\alpha})$, with ϕ a C^∞ positive function on some interval $[-r, r]$, big enough such that $r \geq \frac{\beta}{\alpha}$ for all $(x, y) \in TM$.

Then F is a Finsler fundamental function if the following conditions are satisfied ([10, p. 307, eq. (2-11)])

$$\phi(s) > 0, \phi(s) - s\phi'(s) > 0, (\phi(s) - s\phi'(s)) + (b^2 - s^2)\phi''(s) > 0,$$

for all $|s| \leq b \leq r$. Then using the results from ([10, p. 307]) we obtain:

$$g = \phi^{n+1}(s)(\phi(s) - s\phi'(s))^{n-2}(\phi(s) - s\phi'(s) + (\|\beta\|_x^2 - s^2)\phi''(s)) \det a,$$

where $s = \frac{\beta}{\alpha}$ and $\|\beta\|_x = \sup\{\frac{\beta(x, y)}{\alpha(x, y)}; y \in T_x M\}$. Also:

$$l_i = \frac{\tilde{y}_i}{\alpha}(\phi - s\phi') + \phi' b_i,$$

where (\tilde{y}_i) is the a -covariant version of (y^i) : $\tilde{y}_i = a_{ij} y^j$. In conclusion, for an (α, β) -metric, we have:

$$K_x = \frac{\phi^{n+1}(\phi - s\phi')^{n-2}[(\phi - s\phi') + (\|\beta\|_x^2 - s^2)\phi''] \det a}{[\sum_{i=1}^n (\frac{\tilde{y}_i}{\alpha}(\phi - s\phi') + b_i \phi')^2]^{\frac{n+1}{2}}}.$$

Then, using the equation of $I_x : \phi = \frac{1}{\alpha}$, the final formula is:

$$K_x = \frac{(\phi - s\phi')^{n-2}[(\phi - s\phi') + (\|\beta\|_x^2 - s^2)\phi''] \det a}{\left[\sum_{i=1}^n (\tilde{y}_i(\phi - s\phi') + \alpha b_i \phi')^2 \right]^{\frac{n+1}{2}}}.$$

Particular cases.

I. Randers metrics ($\phi(s) = 1 + s$). From $\phi' = \phi - s\phi' = 1, \phi'' = 0$, it results ([3, Th. 3.3., p. 41], [2, Th. 3.2., p. 25]):

$$K_x = (\det a) \cdot \left[\sum_{i=1}^n (\tilde{y}_i + \alpha b_i)^2 \right]^{-\frac{n+1}{2}}.$$

II. Kropina metrics ($\phi(s) = \frac{1}{s}$). From $\phi' = -\frac{1}{s^2}, \phi - s\phi' = \frac{2}{s}, \phi'' = \frac{2}{s^3}$, it follows:

$$K_x = 2^{n-1} \|\beta\|_x^2 \cdot (\det a) \cdot \left[\sum_{i=1}^n (2\tilde{y}_i - \frac{\alpha}{s} b_i)^2 \right]^{-\frac{n+1}{2}},$$

and using the equation of $I_x : \frac{\alpha^2}{\beta} = \frac{\alpha}{s} = 1$, we infer ([2, Th. 3.3., p. 26]):

$$K_x = 2^{n-1} \|\beta\|_x^2 \cdot (\det a) \cdot \left[\sum_{i=1}^n (2\tilde{y}_i - b_i)^2 \right]^{-\frac{n+1}{2}}.$$

III. Matsumoto metrics ([11, p. 553], $\phi(s) = \frac{1}{1-s}$). From $\phi' = \frac{1}{(1-s)^2}, \phi - s\phi' = \frac{1-2s}{(1-s)^2}, \phi'' = \frac{2}{(1-s)^3}$, it results:

$$K_x = \frac{(1-s)^6 (1-2s)^{n-2} (1-3s+2\|\beta\|_x^2) \det a}{\left[\sum_{i=1}^n (\tilde{y}_i(1-2s) + \alpha b_i)^2 \right]^{\frac{n+1}{2}}}$$

or, using the equation of $I_x : 1-s = \alpha$:

$$K_x = \frac{\alpha^6 (2\alpha-1)^{n-2} (3\alpha-2+2\|\beta\|_x^2) \det a}{\left[\sum_{i=1}^n (\tilde{y}_i(2\alpha-1) + \alpha b_i)^2 \right]^{\frac{n+1}{2}}}.$$

IV. Riemann-type (α, β) -metrics ([11, p. 553], $\phi(s) = \sqrt{1+s^2}$). From $\phi' = \frac{2}{\sqrt{1+s^2}}, \phi - s\phi' = \frac{1}{\sqrt{1+s^2}}, \phi'' = \frac{1}{(1+s^2)^{3/2}}$, it follows:

$$K_x = (1 + \|\beta\|_x^2) \cdot (\det a) \cdot \left[\sum_{i=1}^n (\tilde{y}_i + \alpha b_i s)^2 \right]^{-\frac{n+1}{2}}.$$

But $I_x : \sqrt{1+s^2} = \frac{1}{\alpha}$ gives $s = \frac{\sqrt{1-\alpha^2}}{\alpha}$, and then:

$$K_x = (1 + \|\beta\|_x^2) \cdot (\det a) \cdot \left[\sum_{i=1}^n (\tilde{y}_i + b_i \sqrt{1-\alpha^2})^2 \right]^{-\frac{n+1}{2}}.$$

3. The two-dimensional case

For $n = 2$, I_x becomes a curve with a unique curvature - hence we shall omit the word "Gaussian". This case considerably simplifies by means of the Funk associated fundamental function ([5]). Namely, $F = F(x^1, x^2; y^1, y^2)$ being positively 1-homogeneous in $y = (y^1, y^2)$, we get for positive y^1 : $F = y^1 f(x^1, x^2; 1, z)$ with $z = y^2/y^1$.

Definition 2.1 ([5]) The function $\lambda(x; z) = \lambda(x^1, x^2; z) := f(x^1, x^2; 1, z)$ is called *the associated fundamental function* of the Finsler surface (M, F^2) .

In the following, we shall make use of the following formulae ([12, (3.4), p.307; (3.6), p.308; (3.7), p.308])

$$\begin{cases} (l_1, l_2) = (\lambda - \lambda' z, \lambda') \\ (g_{11}, g_{12}, g_{22}) = ((\lambda \lambda')' z^2 - 2\lambda \lambda' z + \lambda^2, \lambda \lambda' - (\lambda \lambda')' z, (\lambda \lambda')') \\ g = \lambda^3 \lambda'', \end{cases}$$

where the prime stands for differentiation by z . Hence we infer:

Proposition 2.2. *For a Finsler surface, the curvature of the wavefront I_x is:*

$$K_x(z) = \lambda^3 \lambda'' \cdot [(\lambda - \lambda' z)^2 + (\lambda')^2]^{-3/2}.$$

Example. (α, β) -metrics.

$$\lambda = \sqrt{a_{11} + 2a_{12}z + a_{22}z^2} \cdot \phi \left(\frac{b_1 + b_2 z}{\sqrt{a_{11} + 2a_{12}z + a_{22}z^2}} \right).$$

Using the notations: $\alpha_\lambda = \sqrt{a_{11} + 2a_{12}z + a_{22}z^2}$, $\beta_\lambda = b_1 + b_2 z$, we have:

$$\begin{cases} \lambda' = b_2 \phi' + \frac{a_{12} + a_{22}z}{\alpha_\lambda} (\phi - s\phi') \\ \lambda'' = \frac{\det a}{\alpha_\lambda^3} (\phi - s\phi') + \phi'' \left[\frac{b_2^2}{\alpha_\lambda} - \frac{\beta_\lambda (a_{12} + a_{22}z)(b_2 + \beta_\lambda)}{\alpha_\lambda^3} \right], \end{cases}$$

and then:

$$K_x(z) = \frac{(\alpha_\lambda \phi)^3 [\det a(\phi - s\phi') + \phi''(b_2^2 \alpha_\lambda^2 - \beta_\lambda (a_{12} + a_{22}z)(b_2 + \beta_\lambda))]}{[(b_1 \alpha_\lambda \phi' + (a_{11} + a_{12}z)(\phi - s\phi'))^2 + (b_2 \alpha_\lambda \phi' + (a_{12} + a_{22}z)(\phi - s\phi'))^2]^{\frac{3}{2}}}.$$

In the particular case of a Randers metric, one easily infers

$$K_x(z) = \frac{(\alpha_\lambda + \beta_\lambda)^3 \det a}{[(b_1 \alpha_\lambda + a_{11} + a_{12}z)^2 + (b_2 \alpha_\lambda + a_{12} + a_{22}z)^2]^{\frac{3}{2}}}.$$

For example, if the Riemannian metric is diagonal, i.e., $a_{12} = 0$, then the last formula becomes:

$$K_x(z) = \frac{(\sqrt{a_{11} + a_{22}z^2} + b_1 + b_2 z)^3 a_{11} a_{22}}{[(b_1 \sqrt{a_{11} + a_{22}z^2} + a_{11})^2 + (b_2 \sqrt{a_{11} + a_{22}z^2} + a_{22}z)^2]^{\frac{3}{2}}}.$$

Returning to the usual coordinates (x, y) on TM , we shall further use the remarkable *Berwald* frame (specific to the 2-dimensional case) (l, m) , with $m = (m^i)$, $m^i = \frac{1}{C} C^i$, where we consider the following Finsler tensors:

- $C_{ijk} = \frac{1}{4} \dot{\partial}_i \dot{\partial}_j \dot{\partial}_k F^2$ (*the Cartan tensor*, [6, p. 291]),

- $C_{jk}^i = g^{ia}C_{ajk}$, $C^i = C_{jk}^i g^{jk}$ (the Cartan vector), and
- $C = g_{ij}C^i C^j$ (the length of the Cartan vector).

But from ([6, p. 297]), one has $g_{ij} = l_i l_j + m_i m_j$, whence a straightforward computation gives ([1, p. 95])

$$g = (l_1 m_2 - l_2 m_1)^2.$$

This infers the curvature in terms of Berwald frame

$$K_x = (l_1 m_2 - l_2 m_1)^2 \cdot (l_1^2 + l_2^2)^{-3/2}.$$

4. A concrete example

We shall further consider the Randers metric on the unit disk D^1 determined by ([7, p. 123]):

$$\begin{cases} a_{11} = \frac{1-(x^2)^2}{\varphi^2(x)}, & a_{12} = a_{21} = \frac{x^1 x^2}{\varphi^2(x)}, & a_{22} = \frac{1-(x^1)^2}{\varphi^2(x)} \\ b_1 = \frac{x^1}{\varphi(x)}, & b_2 = \frac{x^2}{\varphi(x)}, \end{cases}$$

where φ defines the boundary $\partial D^1 = S^1 : \varphi(x) = 1 - (x^1)^2 - (x^2)^2$. It is known that the associated Randers-Funk metric is of constant negative flag curvature $(-1/4)$ ([7, p. 123]; see also [1, p. 20]). We have $\det a = \frac{1}{\varphi^3}$, and from the equation of $I_x : 1 = \alpha + \beta = \alpha + \frac{x^1 y^1 + x^2 y^2}{\varphi}$, it results that on I_x we have:

$$\alpha \varphi = \varphi - x^1 y^1 - x^2 y^2. \quad (4)$$

Also,

$$\tilde{y}_1 + \alpha b_1 = a_{11} y^1 + a_{12} y^2 + \frac{\alpha x^1}{\varphi} = \frac{\alpha \varphi x^1 + (1 - (x^2)^2) y^1 + x^1 x^2 y^2}{\varphi^2}$$

and (4) implies $\tilde{y}_1 + \alpha b_1 = (x^1 + y^1) \cdot \varphi^{-1}$. Concluding, we get

$$K_x(y) = [(x^1 + y^1)^2 + (x^2 + y^2)]^{-3/2}. \quad (5)$$

Moreover, a straightforward computation gives the wavefront

$$I_x : (x^1 + y^1)^2 + (x^2 + y^2)^2 = 1,$$

and then the above result yields $K_x = 1$ for every $x \in D^1$.

5. K is covariant constant with respect to certain Finsler connections

An important topic is the change of different geometrical structures with respect to certain changes of main objects of the theory. So, if we make a *conformal change* of the Finsler function, $\tilde{F} = e^{\varphi(x)} F$, then the Finsler metrics are M -conformally equivalent $\tilde{g}_{ij} = e^{2\varphi(x)} g_{ij}$ and $\tilde{l}_i = e^{\varphi(x)} l_i$. Then the relation (2) infers that the Gauss curvature \tilde{K}_x of $\tilde{I}_x : e^{\varphi(x)} F = 1$ is related to the curvature K_x of $I_x : F = 1$ through $\tilde{K}_x = e^{(n-1)\varphi(x)} K_x$.

As well, the Finslerian Gauss curvature exhibits interesting properties in terms of its covariant derivative with respect to linear connections. We recall ([6], [8]) that a linear connection on TM ,

$$D : (X, Y) \in \mathcal{X}(TM) \times \mathcal{X}(TM) \rightarrow D_X Y \in \mathcal{X}(TM)$$

is a *Finsler connection* if it preserves by parallelism the horizontal distribution generated by F and the almost tangent structure of TM .

A Finsler connection yields two covariant derivatives: a horizontal one denoted $|_k$ and a vertical one denoted $|_k$. The covariant derivatives of the Liouville vector field $\Gamma = y^i \frac{\partial}{\partial y^i}$ are usually denoted $D_j^i =$ the horizontal (briefly h -) deflection tensor respectively $d_j^i =$ the vertical (briefly v -) deflection tensor. D is called:

- *h-metrical* if $g_{ij}|_k = 0$ and *v-metrical* if $g_{ij}|_k = 0$,
- *metrical* if it is h - and v -metric,
- *h-deflection free* if $D_j^i = 0$, and *v-deflection free* if $d_j^i = 0$.

Denoting $I(TM) = \{(x, y) \in TM; y \in I_x M\}$ the set of all wavefronts of M and considering now the Gaussian curvature as a global function $K : I(TM) \subset \mathbf{R}^{2n} \rightarrow \mathbf{R}$, from (3) we get

Proposition 4.1 *If the Finsler connection D is h-metrical (v-metrical) and h- (v-)deflection free, then $K : I(TM) \rightarrow \mathbf{R}$ is a horizontal (vertical) covariant constant function. In particular, if D is metrical and Γ is $*$ -covariant constant with respect to D , then K is $*$ -covariant constant with respect to D where $* \in \{h, v\}$.*

Examples of Finsler connections.

- *the Berwald connection*: neither h -metrical nor v -metrical;
- *the Cartan connection*: metrical and $d_j^i = \delta_j^i$;
- *the Chern-Rund connection*: h -metrical, but not v -metrical and $d_j^i = \delta_j^i$;
- *the Hashiguchi connection*: v -metrical and not h -metrical.

All these four connections are h -deflection free and then we infer:

Corollary 4.2 *The function K is h -covariant constant with respect to the Cartan and Chern-Rund connections.*

We note that results on closely related topics have been published in [13], [14], [15], and [16] (the latter, for the case of non-compact Finsler indicatrix).

6. Pseudo-Finsler notable structures

Recently, much attention has been paid to the pseudo-Finsler framework ([17]), and especially to m -root structures, mainly due to their applications to Relativity, Ecology and Diffusion Imaging ([18],[19],[20]). Primarily studied and developed by M.Matsumoto and H.Shimada ([21],[22],[23]), these structures have the generic form:

$$F(x, y) = \sqrt[m]{a_{i_1 i_2 \dots i_m}(x) y^{i_1} \dots y^{i_m}},$$

where $a_{i_1 i_2 \dots i_m}$ are the coefficients of an m -covariant tensor field on the manifold M . The remarkable particular flat locally-Minkowski n -root pseudo-Finsler space $(M = \mathbb{R}^n, F)$, with

$$F(y) = \sqrt[n]{y^1 \dots y^n},$$

has the property that its indicatrix $I_x : y^1 \dots y^n = c$, ($c = 1$) is the Tzitzeica hypersurface ([24],[25],[26],[27]) whose Gauss curvature at some point $y \in I_x \subset T_x M$ is proportional to the $(n+1)$ -th power of the distance d_y from origin to the tangent hyperplane $T_y I_x$. This infers

$$K(y) = d_y^{n+1} \cdot \frac{(-1)^n}{n^{n+1} c^2} = \frac{n \cdot (-1)^{n+1}}{c^2} \left(\sum_{i=1}^n (y^i)^{-2} \right)^{-(n+1)/2}, \quad (\text{for } c = 1).$$

In particular, for $n = 4$, one obtains the Gauss curvature of the H_4 Berwald-Moor indicatrix ([18]), and for $n = 6$ the curvature of the uniform m -root metric used in diffusion imaging ([20]).

Acknowledgements. Special thanks are offered to Mihai Anastasiei, Ioan Bucătaru and Stephen Taylor for their useful remarks. The present work was partially supported by the CEEX Grants 05-D11-84, 133/2006, and GAR 4/3.06.2009.

REFERENCES

- [1] *D. Bao, S.S. Chern, Z. Shen*, "An Introduction to Riemann-Finsler Geometry", Graduate Texts in Mathematics 200, Springer-Verlag, 2000.
- [2] *M. Hashiguchi*, "On a Finsler-geometrical expression of the Gaussian Curvature of a hypersurface in an Euclidian space", Rep. Fac. Sci. Kagoshima Univ. **25** (1992), pp. 21-27.
- [3] *S.-I. Nishimura, M. Hashiguchi*, "On the Gaussian curvature of the indicatrix of a Lagrange space", Rep. Fac. Sci. Kagoshima Univ., **24** (1991), pp. 33-41.
- [4] *M. Crasmareanu*, "The Gaussian curvature for the indicatrix of a generalized Lagrange space", in M. Anastasiei, Peter L. Antonelli (Eds.) Finsler and Lagrange Geometries, Kluwer Academic Publishers, 2003, pp. 83-90.
- [5] *P. Funk*, "Beiträge zur zweidimensionalen Finsler'schen Geometrie", Monatsh. Math. Phys. **52** (1948), pp. 194-216.
- [6] *P.L. Antonelli, I. Bucataru, S.F. Rutz*, "Computer algebra and two and three dimensional Finsler geometry", Publ. Math. Debrecen, **62** (2003), No. 3-4, pp. 289-313.
- [7] *T. Okada*, "On models of projectively flat Finsler spaces of constant negative curvature", Tensor, **40** (1983), pp. 117-123.
- [8] *R. Miron, M. Anastasiei*, "The Geometry of Lagrange Spaces, Theory and Applications", Kluwer Academic Publishers, FTPH no. 59, 1994.
- [9] *I. Bucataru, M.A. Slawinski*, "Generalized orthogonality between rays and wavefronts in anisotropic homogeneous media", Nonlinear Anal. Real World Appl. **6** (2005), No. 1, pp. 111-121.
- [10] *Z. Shen*, "Landsberg curvature, S -curvature and Riemannian curvature", in D. Bao et al. (Eds.) A sampler of Riemann-Finsler geometry, Math. Sci. Res. Inst. Publ. 50, Cambridge Univ. Press, Cambridge, 2004.
- [11] *Miron, H. Shimada, V.S. Sabău*, "Finsler spaces with (μ, β) -metric", Publ. Math. Debrecen **62** (2003), No. 3-4, pp. 547-560.

-
- [12] *M. Matsumoto*, "On Wagner's generalized Berwald spaces of dimension two", *Tensor* **36** (1982), No. 3, pp. 303-311.
- [13] *V. Balan, S. Ikeda*, "Structural considerations on the theory of gravitational fields in Finsler spaces", *Sci. Bull. Univ. Politehnica of Bucharest, Ser. A*, **67** (2005), No. 3, pp. 3-10.
- [14] *V. Balan, S. Ikeda*, "Structural considerations on the theory of gravitational fields in Finsler spaces II", *Sci. Bull. Univ. Politehnica of Bucharest, Ser. A*, **68** (2006), No. 4, pp. 3-8.
- [15] *V. Balan, A. Pitea*, "Symbolic software for Y-energy extremal Finsler submanifolds", *DGDS* **11** (2009), 41-53.
- [16] *V. Balan*, "Spectral properties and applications of the numerical multilinear algebra of m -root structures", *Hypercomplex Numbers in Geometry and Physics*, **2** (10), vol. 5 (2008), 101-108.
- [17] *A. Bejancu*, "Geometry of Finsler Submanifolds", Kluwer Acad. Publishers, 2000.
- [18] *D.G. Pavlov, Gh. Atanasiu, V. Balan (Eds)*, "Space-Time Structure. Algebra and Geometry", LILIA Print, Moscow 2007.
- [19] *P.L. Antonelli, B.C. Lackey*, "The Theory of Finslerian Laplacians and Applications", Kluwer Academic Publishers, 1998.
- [20] *L. Astola, L. Florack*, "Finsler Geometry on higher order tensor fields and applications to high angular resolution diffusion imaging", *LNCS* 5567 (2009), pp. 224-234.
- [21] *M. Matsumoto, H. Shimada*, "On Finsler spaces with 1-form metric II. Berwald-Moor's metric $L = (y^1 y^2 \dots y^n)^{1/n}$ ", *Tensor N.S.* **32** (1978), pp. 275-278.
- [22] *H. Shimada*, "On Finsler spaces with metric $L = \sqrt[n]{a_{i_1 i_2 \dots i_n}(x) y^{i_1} \dots y^{i_n}}$ ", *Tensor, N.S.* **33** (1979), pp. 365-372.
- [23] *H. Shimada*, "On Finsler spaces with 1-form metric II. Berwald-Moor's metric $L = \sqrt[n]{y^1 y^2 \dots y^n}$ ", *Tensor N.S.* **32** (1978), pp. 375-278.
- [24] *G. Tzitzéica*, "Sur une nouvelle classe de surfaces", *C.R. Acad. Sci., Paris, Ser. I, Math.* **144** (1907), pp. 1257-1259.
- [25] *C. Udriște*, "Tzitzéica theory - opportunity for reflection in Mathematics", *Balkan Journal of Geometry and Its Applications* **10** (2005), No. 1, pp. 110-120.
- [26] *C. Udriște, N. Bîlă*, "Symmetry group of Tzitzéica surfaces PDE", *Balkan J. Geom. Appl.* **4** (1999), No. 2, pp. 123-140.
- [27] *V. Balan and S.-A. Vâlcea*, "The Tzitzéica surface as solution of PDE systems", *Balkan Journal of Geometry and Its Applications* **10** (2005), No. 1, pp. 69-72.