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ON THE NONLINEAR RESONANCE WAVE INTERACTION 

Petre P.TEODORESCU1, Veturia CHIROIU2 

Această lucrare studiază interacţiunea dinamică a unei o bare lineare 
dispersive aşezată pe un mediu elastic continuu, cu un dispozitiv nelinear care este 
slab conectat la capătul din dreapta. Sunt studiate interacţiunile rezonante ale 
dispozitivului cu unda incidentă care se propagă prin bară folosind metoda 
cnoidală. Soluţiile sunt scrise ca o suma între o superpoziţie lineară şi una neliniară 
de vibraţii cnoidale.  

This paper is studying the dynamic interaction of a dispersive linear rod 
resting on a continuous elastic foundation, with a nonlinear end attachment that is 
weakly connected to its right end. The resonant interactions of the attachment with 
incident traveling wave propagating in the rod are studied by using the cnoidal 
method. The solutions are written as a sum between a linear and a nonlinear 
superposition of cnoidal vibrations. 
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1. Introduction 

Resonant wave interaction is a nonlinear process in which energy is 
transferred between different natural modes of a system by resonance. For a 
nonlinear system, the motion is not simply a summation of the linear modes, but 
consists of the linear harmonics plus their nonlinear coupling [1], [2]. Under 
resonance conditions, the nonlinear coupling between different modes may lead to 
excitation of neutral modes. An interesting situation occurs in systems of coupled 
a main structure with a nonlinear attachment, where isolated resonance captures  
are resulting as a consequence of the energy pumping [3-5]. The energy pumping 
is an irreversible transfer of vibration energy from the main structure to its 
nonlinear attachment. It is interesting to note that this transient resonant 
interaction results in broadband passive absorption of energy by the attachment, in 
contrast to the linear vibration absorber whose effect is narrowband [6]. The 
interaction of incident traveling waves with a local defect can lead to phenomena, 
such as, speed up or slow down of the traveling wave, scattering of the wave to 
multiple independent wave packets, or trapping of the wave at the defect in the 
form of a localized wave [6], [7].  
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In this paper, starting from the results obtained in [6], the energy exchange 
between a rod and a nonlinear end attachment is analyzed, for an external sine 
excitation applied on the assembly. The analytical solutions of the problem are 
obtained by using the cnoidal method [2].   

 

2. The model 

Consider an elastic rod of length L  connected to a grounded local 
attachment of unit mass, viscous damping and stiffness nonlinearity. The 
connection between the rod and the nonlinear end attachment is made on the point 

Ax x=  by means of a weak linear stiffness. Let us assume that ( )v t  is the 
displacements of the attachment, the rod is initially at rest and that an external 
force (0, ) sinf t A tω=  is applied at the origin O of the coordinate system, at 

0t = . The displacement A( , )y x t  of the rod at the point of attachment A, in the 
direction of ( )v t , can be written as [6] 
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where the Green’s function AAg  is the displacement at point A of the rod in the 
direction of ( )v t , due to a unit impulse applied at the same point and the same 
direction, and the Green’s function AOg  is the displacement at point A of the rod 
in the direction of ( )v t , due to a unit impulse applied at origin O in the direction 
of the external force. Consequently, the motion equation of the attachment is 
given by 

A
1

( ) ( ) ( ) [ ( , ) ( )]
p

j
j

j
v t v t v t y x t v tλ α ε

=

+ + = −∑�� � ,  (0) (0) 0v v= =� , (2.2) 

where 0 1≤ �ε  scales the weak coupling, λ  denotes the viscous damping 
coefficient, and jα , 1,...,j p= ,  the coefficients of the stiffness nonlinearity.  

Substituting (2.2) in (2.1), the following equation for the oscillation of the 
attachment is obtained 
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The Green functions are expanded by a set of orthogonal polynomials ( )n tϕ    
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The polynomials ( )n tϕ satisfy the orthogonality and completeness 
conditions 
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and also a recurrence formula 

. 1 1 1( ) ( ) ( ) ( )n n n n n nt b t a t c tϕ ϕ ϕ+ − −= − − . (2.5) 

The Hermite polynomials ( )nH t  are used in this paper for expanding the 
Green’s functions. The motion equation of the rod is 

2
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where Ax L e= + ( x e=  and x L e= +  are the ends of the rod) and 2
0ω  is the 

normalized stiffness of the elastic foundation.  

3. Solutions 

The cnoidal method was proposed in [2] for solving the nonlinear 
equations, as a further extension of the Osborne method [8]. The set of equations 
(2.1)-(2.6) can be reduced to equations similar to Weierstrass equation with 
polynomials of higher order  
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with θ  a generic function of time, and 0iA >  constants. The dot means 
differentiation with respect to the variable t x ct→ − , c  a constant. We know that 
(3.1) admits a particular solution expressed as an elliptic Weierstrass function that 
is reduced, in this case, to the cnoidal function cn [9]  
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where 321 ,, eee  are the real roots of the equation 04 21
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321 eee >> , and 21, gg R∈  expressed in terms of the constants iA , 5...2,1=i , 
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the solution of (3.1) can be written as a sum between a linear and a nonlinear  
superposition of cnoidal vibrations 

lin nonlin= +θ θ θ , (3.4) 

where 
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where the moduli 10 ≤≤ km ,  the frequencies kω  and amplitudes kα depending 
on 0θ , 0pθ  and kA . Therefore, the solutions of (2.1)-(2.6) are written under the 
form (3.5) 
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4. Results and conclusions 

The calculations are carried out for L =200, 0ω = 1.2 , f = 10, λ =0.4, 
e =1. The response ( )v t  of the attachment is displayed in fig.4.1. Instantaneous 
frequency of the nonlinear attachment is depicted in fig.4.2. These figures put into 
evidence the presence of four regimes of transient responses.  The first regime (0-
50-90s) describe the interaction of the nonlinear attachment with incoming 
traveling waves with frequency 0ω ω> . After a short transition, the attachment 
passes to periodic oscillation of the second regime (140-260s) with frequency 
nearly below 0ω , and after another short transition to a weakly oscillation of the 
third regime (340-500s) with frequency nearly above 0ω . The periodic motion of 
the second and third regimes are the consequence of energy pumping where the 
attachment engages in 1–1 resonance capture with a linear structural mode [6].  

The last regime (550-800s) consists in a weakly modulated periodic 
motions in the neighborhood of 0ω . The transition between the third and fourth 
regimes describes the case when the attachment can no longer sustain resonance 
capture, and escape from resonance capture occurs. The energy is radiated back to 
the rod and the instantaneous frequency decreases until it reaches a frequency 0∼ . 
By comparing our results with those obtained in [6] for impulse excitation and 
step initial displacement distribution, we observe that in the case of a sine external 
force, four regimes are depicted, and no three as in [6]. This can be explained by 
an oscillatory irreversible transfer of vibration energy from the rod to its nonlinear 
attachment. Two steps of energy pumping for 1-1 resonance capture with the 
linear structural mode are depicted, for two weakly modulated periodic motions 
with frequency nearly equal (below and above 0ω ). We can term this phenomenon 
as an oscillatory energy pumping. 

 
Fig. 4.1. The response of the attachment.  
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Fig. 4.2. Instantaneous frequency of the nonlinear attachment. 
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