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ON THE NONLINEAR RESONANCE WAVE INTERACTION

Petre P. TEODORESCU?, Veturia CHIROIU?

Aceasta lucrare studiaza interactiunea dinamicd a unei o bare lineare
dispersive asezatd pe un mediu elastic continuu, cu un dispozitiv nelinear care este
slab conectat la capatul din dreapta. Sunt studiate interactiunile rezonante ale
dispozitivului cu unda incidentd care se propagd prin bara folosind metoda
cnoidald. Solutiile sunt scrise ca o suma intre o superpozitie lineard si una neliniara
de vibratii cnoidale.

This paper is studying the dynamic interaction of a dispersive linear rod
resting on a continuous elastic foundation, with a nonlinear end attachment that is
weakly connected to its right end. The resonant interactions of the attachment with
incident traveling wave propagating in the rod are studied by using the cnoidal
method. The solutions are written as a sum between a linear and a nonlinear
superposition of cnoidal vibrations.
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1. Introduction

Resonant wave interaction is a nonlinear process in which energy is
transferred between different natural modes of a system by resonance. For a
nonlinear system, the motion is not simply a summation of the linear modes, but
consists of the linear harmonics plus their nonlinear coupling [1], [2]. Under
resonance conditions, the nonlinear coupling between different modes may lead to
excitation of neutral modes. An interesting situation occurs in systems of coupled
a main structure with a nonlinear attachment, where isolated resonance captures
are resulting as a consequence of the energy pumping [3-5]. The energy pumping
is an irreversible transfer of vibration energy from the main structure to its
nonlinear attachment. It is interesting to note that this transient resonant
interaction results in broadband passive absorption of energy by the attachment, in
contrast to the linear vibration absorber whose effect is narrowband [6]. The
interaction of incident traveling waves with a local defect can lead to phenomena,
such as, speed up or slow down of the traveling wave, scattering of the wave to
multiple independent wave packets, or trapping of the wave at the defect in the
form of a localized wave [6], [7].
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In this paper, starting from the results obtained in [6], the energy exchange
between a rod and a nonlinear end attachment is analyzed, for an external sine
excitation applied on the assembly. The analytical solutions of the problem are
obtained by using the cnoidal method [2].

2. The model

Consider an elastic rod of length L connected to a grounded local
attachment of unit mass, viscous damping and stiffness nonlinearity. The
connection between the rod and the nonlinear end attachment is made on the point
x=x, by means of a weak linear stiffness. Let us assume that v(z) is the

displacements of the attachment, the rod is initially at rest and that an external
force f(0,7)=Asinar is applied at the origin O of the coordinate system, at

t=0. The displacement y(x,,7) of the rod at the point of attachment A, in the
direction of v(¢), can be written as [6]

Y(pit) = [ £(0.0)gu0(t—7)dz -

t

[ (3060, 7) =¥(2)) £(0,7)gan (¢~ 7)dl7,

: 2.1)

where the Green’s function g,, is the displacement at point A of the rod in the
direction of v(¢), due to a unit impulse applied at the same point and the same
direction, and the Green’s function g, is the displacement at point A of the rod
in the direction of v(z), due to a unit impulse applied at origin O in the direction

of the external force. Consequently, the motion equation of the attachment is
given by

V(t) + Av() + iajvf (t) = ely(xa, 1) —v(0)], v(0)=v(0)=0, (2.2)

where 0<g<1 scales the weak coupling, A denotes the viscous damping
coefficient, and «;, j=1,..., p, the coefficients of the stiffness nonlinearity.

Substituting (2.2) in (2.1), the following equation for the oscillation of the
attachment is obtained

P(t) + Av(e) + ﬁ a v (f) = ﬁ ()" te"A 23)

n=1
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A, = (0.0 gno (1) * gpn () +(=1)" V() * g1 (8).

The Green functions are expanded by a set of orthogonal polynomials ¢, (¢)

g() i;w%ﬁ)c—JWM%mw

n=0

The polynomials ¢, (¢) satisfy the orthogonality and completeness
conditions

0

[ w00 00,0 = w5, 56-1)=-3 Do 0, (). @4

o n=0 n

and also a recurrence formula
. ¢n+l (z) = bn (Z - an )¢n (t) - cn—l¢n—1 (Z) . (25)

The Hermite polynomials H,(z) are used in this paper for expanding the
Green’s functions. The motion equation of the rod is

V(. 0)+ g y(x,t) =y, (x,0) = f(0,1),
Y, (X0 t) +e[v(t) = y(xx, )] =0, y(x, - L,2) =0, (2.6)
y(x,0) = y,(x,0)=v(0) =v(0) =0,

wherex, =L+e(x=e and x=L+e are the ends of the rod) and ] is the
normalized stiffness of the elastic foundation.

3. Solutions

The cnoidal method was proposed in [2] for solving the nonlinear
equations, as a further extension of the Osborne method [8]. The set of equations
(2.1)-(2.6) can be reduced to equations similar to Weierstrass equation with
polynomials of higher order

=ﬁ4m9, (3.1)

with @ a generic function of time, and 4, >0 constants. The dot means

differentiation with respect to the variable r —» x—ct, ¢ a constant. We know that
(3.1) admits a particular solution expressed as an elliptic Weierstrass function that
is reduced, in this case, to the cnoidal function cn [9]
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0=1(t)=e,~ (e, ~es)on’ (e, —e)tsm), (3.2)

where e,,e,,e; are the real roots of the equation 4)°-g,y-g,=0 with
e, >e,>e;, and g,,g, € R expressed in terms of the constants 4,, i=12...5,
and satisfying the condition g -27¢2 >0 . The modulus m of the Jacobean

elliptic function is m = €27% por arbitrary initial conditions
€ — &

6(0)=6,, 6(0)=0,,, (33)

the solution of (3.1) can be written as a sum between a linear and a nonlinear
superposition of cnoidal vibrations

0 = elin + Hnonlin ’ (34)
where
n Zﬂkcnz(wkt;mk)
9Iin = ZZ akcnz (a)kt; mk )’ gnonlin = k=0n ! (35)
k=0 1+ y.en’(w,t;m,)
k=0

where the moduli 0<m, <1, the frequencies @, and amplitudes «, depending
on &, 6,, and 4, . Therefore, the solutions of (2.1)-(2.6) are written under the
form (3.5)

. D Bucn®(s;m,)
v(t) = alZ:Cn2 (t;m,)+—= ,
k=t 1+ yuen?(tmy,)

k=0

(3.6)
n ZBkzcnz(g;mk)
y(©)=a, cn*(&m) + =2  E=kx—ot,
= 1+ ZYkzcnz(EJ m)
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4, Results and conclusions

The calculations are carried out for L =200, o, = V1.2, f =10, 1=04,
e=1. The response v(¢) of the attachment is displayed in fig.4.1. Instantaneous
frequency of the nonlinear attachment is depicted in fig.4.2. These figures put into
evidence the presence of four regimes of transient responses. The first regime (0-
50-90s) describe the interaction of the nonlinear attachment with incoming
traveling waves with frequency o > @,. After a short transition, the attachment

passes to periodic oscillation of the second regime (140-260s) with frequency
nearly below a,, and after another short transition to a weakly oscillation of the

third regime (340-500s) with frequency nearly above «,. The periodic motion of

the second and third regimes are the consequence of energy pumping where the

attachment engages in 1-1 resonance capture with a linear structural mode [6].
The last regime (550-800s) consists in a weakly modulated periodic

motions in the neighborhood of «,. The transition between the third and fourth

regimes describes the case when the attachment can no longer sustain resonance
capture, and escape from resonance capture occurs. The energy is radiated back to
the rod and the instantaneous frequency decreases until it reaches a frequency ~ 0.
By comparing our results with those obtained in [6] for impulse excitation and
step initial displacement distribution, we observe that in the case of a sine external
force, four regimes are depicted, and no three as in [6]. This can be explained by
an oscillatory irreversible transfer of vibration energy from the rod to its nonlinear
attachment. Two steps of energy pumping for 1-1 resonance capture with the
linear structural mode are depicted, for two weakly modulated periodic motions
with frequency nearly equal (below and above @, ). We can term this phenomenon

as an oscillatory energy pumping.
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Fig. 4.1. The response of the attachment.
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Fig. 4.2. Instantaneous frequency of the nonlinear attachment.
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