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A RETRAINING PROCEDURE APPLICATION FOR DATA 
PREDICTION 

I. NASTAC1, A. COSTEA2 

Articolul prezintă o arhitectură specială de reţea neuronală feedforward ce 
utilizează algoritmul de reantrenare pentru predicţia variabilelor de proces 
specifice unei aplicaţii industriale. Capacitatea modelului de extragere a unor 
informaţii relevante conferă un cadru util prentru reprezentarea relaţiilor existente 
în seriile temporale utilizate. Scopul principal este de a stabili un optim al 
arhitecturii şi al vectorilor de întârziere potriviţi pentru această predicţie de date. 
Prin evaluarea erorii la ieşire, după reantrenare, se evidenţiază faptul că această 
procedură poate înbunătăţi rezultatele modelului. 

 
This paper describes a special feedforward neural network architecture and 

an application of retraining algorithm, in order to forecast relevant process 
variables representative for an industrial application. The artificial neural networks 
(ANNs) ability to extract significant information provides valuable framework for 
the representation of relationships present in the structure of the data. The main 
purpose is to establish an optimum feedforward neural architecture and a well 
suited delay vector for data forecasting. The evaluation of the output error after the 
retraining of an ANN shows us that this procedure can substantially improve the 
achieved results. 

Keywords: artificial neural networks, forecasting, retraining procedure, delay 
vector. 

1. Introduction 

Artificial Neural Networks (ANNs) are modelling tools having the ability 
to adapt to and learn complex topologies of inter-correlated multidimensional 
data. Constructing reliable time series models for data forecasting is challenging 
due to nonstationarities and nonlinear effects [7]. In this report, we present our 
feedforward ANN model which is useful in the case where there is a huge amount 
of data that imply the presence of correlations across time. 

The goal of our research was to find a mathematical model describing the 
relationship between 29 input and 5 output variables of a glass manufacturing 
system (Fig. 1) [2]. 
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Fig. 1. Multi-input-multi-output system for glass quality 
 
All inputs and outputs vary dynamically, and there might occur large time-

delays. Changing an input variable may result in an output change starting only a 
couple of hours later and going on for up to several days [2]. 

The raw data consists of 9408 rows (time steps) – one data set every 15 
minutes during 14 weeks. For the first 12 weeks (8064 rows) both input and 
output data were given and used during training process. During the last 2 weeks 
(1344 rows) only input data were provided and, finally, we predicted the 
corresponding 1344 rows of outputs.  

The structure of this paper is as follows. Section 1 presents the problem 
concerning model structure and data preprocessing. In next section we introduce 
the retraining technique and explain our approach. The main features of our 
experimental results are given in Section 3, where we discuss specific aspects. 
Our conclusions are formulated in the final section of the report. 

2. Model structure and data preprocessing 

A good choice of the training data set is not a trivial task when one wants 
to make a good prediction. Data preprocessing and data selection remain essential 
steps in the knowledge discovery process for real world applications and greatly 
improve the network’s ability to capture valuable information when correctly 
carried out [6] [7]. 

In Fig. 2 we present our idea in training a feedfoward ANN to be a 
predictor. Delayed rows of the input data are used to construct representations of 
the current states. For learning purposes, the network inputs consist of many 
blocks with delayed values of the glass manufacturing system inputs and one 
block with delayed system outputs. The ANN target outputs consist of the current 
values of the glass manufacturing system outputs. Therefore, the network tries to 
match the current values by adjusting a function of their past values. 
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Fig. 2. Training a feedfoward ANN to be a predictor 
 
At moment t, one output, output_i(t), is affected by the inputs from 

different past time steps. For example at moment t the output output_i(t) is 
affected by all inputs (input_1, …, input_29) at different past time steps: t-v1, t-
v2, t-v3, etc. We denote by delay vector, Vect_In, a vector that includes the delays 
taken into account for the model: 

 
[ ]nInVect v,...,v,v_ 21=  (1) 

 
We used different delay vectors with n = 7, 8 or 9 elements, whose values 

belong to intervals that can cover one to three days. The distribution of the 
elements was approximately similar to Gamma distribution. The elements of each 
vector were ascendingly ordered. Consequently the maximum value of any vector 
is vn.  

Beside the inputs from different past time steps, the outputs at moment t 
are affected, in our model, by the outputs from the previous time step t-1. 

We designed a feedforward ANN with one hidden layer. The ANN model 
depicted in Fig. 1 restricts the total possible set of training (for model adaptation) 
to 8064-vn input-output pairs.  

Once we have decided all the influences on the output at moment t, we 
have applied Principal Component Analysis (PCA) [4] [9] to reduce the 
dimensionality of the input space and to un-correlate the inputs. Before applying 
PCA we have preprocessed the inputs and outputs using normalization. We have 
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applied the reverse process of normalization in order to denormalize the simulated 
outputs. 

3. Training Procedure 

As basic training algorithm we have used the Scale Conjugate Gradient 
(SCG) algorithm [5] [9]. In order to avoid the over-fitting phenomenon we have 
applied the early stopping method (validation stop) during the training                  
process [9].  

The accuracy of the result was improved applying, in a special way, the 
retraining technique [6] [8], which is a practical information extracting 
mechanism directly from the weights of a reference ANN, which was already 
trained and is perfectly functional at the present time. Briefly, the retraining 
procedure reduces the reference network weights by a scaling factor γ,  0<γ <1. 
These reduced weights are used as initial weights for a new training sequence, 
with the expectation for a better error as we can see in the following: 

• Training an Artificial Neural Network in a natural way, with validation 
stop starting, with the weights initialized to small uniformly distributed 
values. 

• Reduction of the first network weights with a scaling factor γ  (0 < γ < 1).  
• Retraining the network with the new initial weights. 
• Compare the validation error (or training error) in both cases. 

 
The data, that we used for our model, consist of 8064-vn input-output 

pairs. As splitting criterion we have randomly chosen approximately 85% of the 
data for training set and the remaining for validation. 

 
Next we describe the three steps performed to refine our model: 

 
1. First step was performed in order to decide the proper number of hidden 

neurons (Nh). Each of the trainings started with the weights initialized to 
small uniformly distributed values [3] [6]. We chose the best model 
according to the smallest error between the desired and simulated outputs. 
This error was calculated for 8064-vn data that include both training and 
validation sets. We have tested several ANN architecture with Nh around 
the geometric mean [1] of input neuron number (Ni) and output neuron 
number (No): 

 
55 +⋅≤≤−⋅ oihoi NNNNN  (2) 
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2. Secondly, we have applied the retraining technique using the ANN 
architecture (with its associate training and validation sets) obtained in the 
previous step. We have applied this technique for each value of γ  (γ  = 
0.3, 0.4, …, 0.9), keeping the neural networks that performed the 
minimum error as the reference network. We repeated this step three 
times. 

 
3. In this step we have also applied the retraining technique, the only 

difference from the previous step being that we randomly reconstructed 
the training and validation sets before each retraining sequence. 
 
The rule used to choose the best model during each step was the mean 

square error of the differences between real and simulated outputs of 8064-vn data 
that include both training and validation sets. 

At each of these 3 steps we obtained a new model. Consequently for one 
single delay vector we had 3 models. We have applied iteratively the 3 steps 
above for different delay vectors. In total we have used 12 different delay vectors 
obtaining 36 models. 

We have discovered that for the 4-th output (Fig. 3) there are three 
anomalous extreme values (during timesteps 5490, 5491 and 5492) that could 
negatively influence the training process. 

 

 
Fig. 3. The provided data for the 4-th output 
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Consequently, for half of our models we have decided to level these values 
by having them decreased from output_4(5489) to output_4(5493), in order to 
improve the forecast precision (see Tab. 1). 

 
Table 1 

Changing abnormal initial values with level values 

 Initial values Level values 

output_4(5489) 1471.94130808653 1471.94130808653 

output_4(5490) 1754.4285996792 1467.8 

output_4(5491) 1754.4285996792 1463.7 

output_4(5492) 1754.4285996792 1459.6 

output_4(5493) 1455.63110951847 1455.63110951847 

 
The criterion to choose one of these 36 models was the minimum value of 

the error ERR (see next section), but used for five intervals in which we had the 
real values of the outputs. 

4. Forecasting Model 

In our model, the outputs at moment t are affected by the outputs from the 
previous time step t-1. During the training phases we always used the real data at 
the input.  

In the last part, we tried to predict the 1344 values of outputs in a 
sequential mode. Therefore (see Fig. 4), in order to produce the outputs at the 
timestep (t) the neural network used as input, beside the real inputs of the glass 
manufacturing system from different past time steps, the estimated outputs (t-1), 
which was calculated at the previous step (t-1) using the outputs (t-2), and so on. 
Applying this iterative process, a forecast may be extended as many steps as 
required, but in this case, each step may increase the forecasting error. 

In order to choose the best model among the 36, we have split the output 
data corresponding to timestep (vn+1) till 8064 in five distinct intervals. The 
testing intervals are as follows: 400 - 1800; 1850 – 3250; 3300 – 4700;                     
4750 - 6150 and 6200 - 7600. 
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Fig. 4. Output forecasting 
 
We have computed for each interval the error ERR (according to [2]): 
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where N = 1344 (number of timesteps) 
 ORni

  = real output timestep n of output i 
 OFni = forecasted output timestep n of output i 
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500)(   a weight function decreasing with the number of timestep n. 

 
As a measure of model quality we calculated ERR_M as the mean of 5 

ERR errors. Then for each of the 36 models we have one ERR_M value. All the 
36 models were tested against each other in terms of ERR_M. We have chosen 
the model with the smallest ERR_M. 

 
The parameters of a model that met our expectations (derived from the 

step 2) were: 
• Vect_In = [10 20 35 55 80 120 185 290] 
• Number of hidden neurons = 35 
• ERR_M = 0.3602 and ERR_test = 0.4 
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We noticed that the previous model was among the ones that did not use 
the level values between output_4(5489) and output_4(5493). Even if the fact was 
a little bit surprising, we decided to present its characteristics. Applying an 
iterative process (depicted in Fig. 4), starting with time step 8065, we finally 
obtained the desired outputs that correspond to time steps 8065-9408. 

The outputs of the previously described model are presented in the 
following figures (5 and 6). 
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Fig. 5. Process outputs on the training set 

 
In Fig. 5 the real data (thin lines that correspond to time steps 1-8064) 

and neural network values (thick lines that correspond to timesteps 291-8064) 
after training process. Thick lines cover very well the thin lines, excepting first 
290 values since the simulated outputs start with this delay imposed by the 
maximum value of the delay vector Vect_In. 

 



A retraining procedure application for data prediction 23

8000 8500 9000 9500
1400

1500

1600

ou
tp

ut
1

8000 8500 9000 9500
1200

1400

1600

ou
tp

ut
2

8000 8500 9000 9500
1400

1600

1800

ou
tp

ut
3

8000 8500 9000 9500
1000

1500

2000

ou
tp

ut
4

8000 8500 9000 9500
1400

1500

1600

ou
tp

ut
5

 
Fig. 6. Process outputs on the test set  

 
Fig. 6 presents the real outputs (solid lines) and predicted outputs 

(dotted lines) that correspond to the test set (timesteps 8065-9408). 
Among all 36 models that were studied, we discovered other three models 

better than the one previously presented (see Table 2). All of them used during the 
training process the level values between output_4(5489) and output_4(5493). 

Table 2 
Parameters of the better models 

  Models  
 3_PCA_II 5_PCA_II 5_PCA_III 
Hidden 
neurons 

 
39

 
42

 
42 

Vect_In [10 20 30 45 65 95 145 210 
330] 

[12 22 31 39 47 55 66 
79 98] 

[12 22 31 39 47 55 66 
79 98] 

Result of: Step 2 Step 2 Step 3 
ERR_test 0.3629 0.3707 0.3788 
err_1 0.4159 0.4361 0.4586 
err_2 0.2593 0.2994 0.3059 
err_3 0.4294 0.3729 0.4991 
err_4 0.3902 0.2904 0.2639 
err_5 0.3196 0.4549 0.3663 
Standard dev. 
of errs 

 
0.0718

 
0.0757

 
0.0994 
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5. Conclusions 

In this paper, we have designed a neural network tool for data prediction. 
Our method exploits the input-output dependence across time using a delay 
vector. We employed the PCA procedure in order to reduce the dimensionality of 
the input space and to un-correlate the inputs. The learning process was refined 
applying the retraining procedure. 

It is important to study the shapes of the graphs before training in order to 
level some unnatural values. Choosing the best model is not an easy task. It 
should be improved using more data that cover all potential situations as much as 
possible. More than five distinct intervals used to compute ERR should also 
enhance the criterion of the selection. 

We were limited by the memory and speed of our computer (512 Mb of 
RAM and Pentium 4 CPU 1.7 GHz). We are definitely convinced that using 
vectors with more than 9 elements we can increase the performance of our tool. At 
the same time there are other efficient algorithms like Levenberg-Marquardt or 
Bayesian regularization that also necessitate a powerful machine to solve the 
problem. It is very easy to change in our tool the SCG algorithm with one of these 
because at the basic level the architecture and the retraining procedure are 
independent of the training algorithm. 

We noticed that the retraining technique significantly improved the 
achieved result. 
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