U.P.B. Sci. Bull., Series C, Vol. 69, No. 2, 2007 ISSN 1454-234x

A RETRAINING PROCEDURE APPLICATION FOR DATA
PREDICTION

. NASTAC!, A. COSTEA?

Articolul prezintda o arhitecturd speciala de retea neuronald feedforward ce
utilizeaza algoritmul de reantrenare pentru predictia variabilelor de proces
specifice unei aplicatii industriale. Capacitatea modelului de extragere a unor
informatii relevante conferda un cadru util prentru reprezentarea relatiilor existente
in seriile temporale utilizate. Scopul principal este de a stabili un optim al
arhitecturii §i al vectorilor de intdrziere potriviti pentru aceastd predictie de date.
Prin evaluarea erorii la iesire, dupa reantrenare, se evidentiazd faptul ca aceastd
procedurd poate inbundtati rezultatele modelului.

This paper describes a special feedforward neural network architecture and
an application of retraining algorithm, in order to forecast relevant process
variables representative for an industrial application. The artificial neural networks
(ANNs) ability to extract significant information provides valuable framework for
the representation of relationships present in the structure of the data. The main
purpose is to establish an optimum feedforward neural architecture and a well
suited delay vector for data forecasting. The evaluation of the output error after the
retraining of an ANN shows us that this procedure can substantially improve the
achieved results.

Keywords: artificial neural networks, forecasting, retraining procedure, delay
vector.

1. Introduction

Artificial Neural Networks (ANNs) are modelling tools having the ability
to adapt to and learn complex topologies of inter-correlated multidimensional
data. Constructing reliable time series models for data forecasting is challenging
due to nonstationarities and nonlinear effects [7]. In this report, we present our
feedforward ANN model which is useful in the case where there is a huge amount
of data that imply the presence of correlations across time.

The goal of our research was to find a mathematical model describing the
relationship between 29 input and 5 output variables of a glass manufacturing
system (Fig. 1) [2].

! Lecturer, Dept. of Electronics, Telecommunications and Information Technology, University
POLITEHNICA of Bucharest, Romania
2 Researcher, Turku Centre for Computer Science, Finland



16 I. Nastac, A. Costea

it () e—
1:nput_2(t]l — e LI 10
input_3(t) —H System |-----

_____ e UL (]
mput_ 290t b

Fig. 1. Multi-input-multi-output system for glass quality

All inputs and outputs vary dynamically, and there might occur large time-
delays. Changing an input variable may result in an output change starting only a
couple of hours later and going on for up to several days [2].

The raw data consists of 9408 rows (time steps) — one data set every 15
minutes during 14 weeks. For the first 12 weeks (8064 rows) both input and
output data were given and used during training process. During the last 2 weeks
(1344 rows) only input data were provided and, finally, we predicted the
corresponding 1344 rows of outputs.

The structure of this paper is as follows. Section 1 presents the problem
concerning model structure and data preprocessing. In next section we introduce
the retraining technique and explain our approach. The main features of our
experimental results are given in Section 3, where we discuss specific aspects.
Our conclusions are formulated in the final section of the report.

2. Model structure and data preprocessing

A good choice of the training data set is not a trivial task when one wants
to make a good prediction. Data preprocessing and data selection remain essential
steps in the knowledge discovery process for real world applications and greatly
improve the network’s ability to capture valuable information when correctly
carried out [6] [7].

In Fig. 2 we present our idea in training a feedfoward ANN to be a
predictor. Delayed rows of the input data are used to construct representations of
the current states. For learning purposes, the network inputs consist of many
blocks with delayed values of the glass manufacturing system inputs and one
block with delayed system outputs. The ANN target outputs consist of the current
values of the glass manufacturing system outputs. Therefore, the network tries to
match the current values by adjusting a function of their past values.



A retraining procedure application for data prediction 17

mput 1) —

mput_ 2(t)
mput_ 29—
[ Delays :“/\
t-v)
[ Delays o
- ) — E £
"
R .
: —>{Pca g
L ]
Delays :‘> = -
t-) A
Delays
— -1 :[>
output_1(t)
output_2(t)
output_5(t)

Fig. 2. Training a feedfoward ANN to be a predictor

At moment t, one output, output_i(t), is affected by the inputs from
different past time steps. For example at moment t the output output_i(t) is
affected by all inputs (input_1, ..., input_29) at different past time steps: t-vi, -
Vo, t-v3, etc. We denote by delay vector, Vect_In, a vector that includes the delays
taken into account for the model:

Vect_lnz[vl,vz,...,vn] (1)

We used different delay vectors with n =7, 8 or 9 elements, whose values
belong to intervals that can cover one to three days. The distribution of the
elements was approximately similar to Gamma distribution. The elements of each
vector were ascendingly ordered. Consequently the maximum value of any vector
is Vp.

Beside the inputs from different past time steps, the outputs at moment t
are affected, in our model, by the outputs from the previous time step t-1.

We designed a feedforward ANN with one hidden layer. The ANN model
depicted in Fig. 1 restricts the total possible set of training (for model adaptation)
to 8064-Vv,, input-output pairs.

Once we have decided all the influences on the output at moment t, we
have applied Principal Component Analysis (PCA) [4] [9] to reduce the
dimensionality of the input space and to un-correlate the inputs. Before applying
PCA we have preprocessed the inputs and outputs using normalization. We have



18 I. Nastac, A. Costea

applied the reverse process of normalization in order to denormalize the simulated
outputs.

3. Training Procedure

As basic training algorithm we have used the Scale Conjugate Gradient
(SCG) algorithm [5] [9]. In order to avoid the over-fitting phenomenon we have
applied the early stopping method (validation stop) during the training
process [9].

The accuracy of the result was improved applying, in a special way, the
retraining technique [6] [8], which is a practical information extracting
mechanism directly from the weights of a reference ANN, which was already
trained and is perfectly functional at the present time. Briefly, the retraining
procedure reduces the reference network weights by a scaling factor y, 0<y <l1.
These reduced weights are used as initial weights for a new training sequence,
with the expectation for a better error as we can see in the following:

e Training an Artificial Neural Network in a natural way, with validation
stop starting, with the weights initialized to small uniformly distributed
values.

e Reduction of the first network weights with a scaling factor y (0 < y<1).

e Retraining the network with the new initial weights.

e Compare the validation error (or training error) in both cases.

The data, that we used for our model, consist of 8064-v, input-output
pairs. As splitting criterion we have randomly chosen approximately 85% of the
data for training set and the remaining for validation.

Next we describe the three steps performed to refine our model:

1. First step was performed in order to decide the proper number of hidden
neurons (Np). Each of the trainings started with the weights initialized to
small uniformly distributed values [3] [6]. We chose the best model
according to the smallest error between the desired and simulated outputs.
This error was calculated for 8064-v,, data that include both training and
validation sets. We have tested several ANN architecture with N, around
the geometric mean [1] of input neuron number (V;) and output neuron
number (N,):

JN; N, =5< N, <\[N;-N, +5 )



A retraining procedure application for data prediction 19

2. Secondly, we have applied the retraining technique using the ANN
architecture (with its associate training and validation sets) obtained in the
previous step. We have applied this technique for each value of ¥ (y =

0.3, 04, ..., 0.9), keeping the neural networks that performed the
minimum error as the reference network. We repeated this step three
times.

3. In this step we have also applied the retraining technique, the only
difference from the previous step being that we randomly reconstructed
the training and validation sets before each retraining sequence.

The rule used to choose the best model during each step was the mean
square error of the differences between real and simulated outputs of 8064-v,, data
that include both training and validation sets.

At each of these 3 steps we obtained a new model. Consequently for one
single delay vector we had 3 models. We have applied iteratively the 3 steps
above for different delay vectors. In total we have used 12 different delay vectors
obtaining 36 models.

We have discovered that for the 4-th output (Fig. 3) there are three
anomalous extreme values (during timesteps 5490, 5491 and 5492) that could
negatively influence the training process.

1600

1760 B

1700 + ~

1650 ~

output,

1600 - B

1850 - B

1500 ~

1 1 1 1 Il Il Il Il
1} 1000 2000 3000 4000 5000 G000 7000 a000 9000
timestep

1450

Fig. 3. The provided data for the 4-th output



20 I. Nastac, A. Costea

Consequently, for half of our models we have decided to level these values
by having them decreased from output 4(5489) to output 4(5493), in order to
improve the forecast precision (see Tab. 1).

Table 1

Changing abnormal initial values with level values

Initial values Level values

output 4(5489) 1471.94130808653 1471.94130808653
output_4(5490) 1754.4285996792 1467.8
output_4(5491) 1754.4285996792 1463.7
output_4(5492) 1754.4285996792 1459.6

output_4(5493) 1455.63110951847 1455.63110951847

The criterion to choose one of these 36 models was the minimum value of
the error ERR (see next section), but used for five intervals in which we had the
real values of the outputs.

4. Forecasting Model

In our model, the outputs at moment t are affected by the outputs from the
previous time step t-1. During the training phases we always used the real data at
the input.

In the last part, we tried to predict the 1344 values of outputs in a
sequential mode. Therefore (see Fig. 4), in order to produce the outputs at the
timestep (¢) the neural network used as input, beside the real inputs of the glass
manufacturing system from different past time steps, the estimated outputs (z-1),
which was calculated at the previous step (¢-1) using the outputs (z-2), and so on.
Applying this iterative process, a forecast may be extended as many steps as
required, but in this case, each step may increase the forecasting error.

In order to choose the best model among the 36, we have split the output
data corresponding to timestep (v,*1) till 8064 in five distinct intervals. The
testing intervals are as follows: 400 - 1800; 1850 — 3250; 3300 — 4700;
4750 - 6150 and 6200 - 7600.



A retraining procedure application for data prediction 21

Hp11E 1(f) e
nput_2(t)

input_2%(t)—

[ | Delays
it-v)

=N

oy
—
—

output_1(t)
output_2(t)

PCA

output_5(t)

Postprocessing

Preprocessing

——) Delays
(t- )

Delays

|—‘ t-1)

Fig. 4. Output forecasting

We have computed for each interval the error ERR (according to [2]):

1 100 <5 O = Opa
ERR =~ S (n) 3
5; N nz=1 |0Rm’| ©)

where N = 1344 (number of timesteps)
Orni = real output timestep n of output i
Ofni = forecasted output timestep n of output i
and  r(p = 505000 a weight function decreasing with the number of timestep n.

As a measure of model quality we calculated ERR M as the mean of 5
ERR errors. Then for each of the 36 models we have one ERR M value. All the
36 models were tested against each other in terms of ERR_M. We have chosen
the model with the smallest ERR M.

The parameters of a model that met our expectations (derived from the
step 2) were:
o Vect In=[1020355580 120 185290]
e Number of hidden neurons = 35
e ERR M=0.3602 and ERR test=0.4



22 I. Nastac, A. Costea

We noticed that the previous model was among the ones that did not use
the level values between output 4(5489) and output 4(5493). Even if the fact was
a little bit surprising, we decided to present its characteristics. Applying an
iterative process (depicted in Fig. 4), starting with time step 8065, we finally
obtained the desired outputs that correspond to time steps 8065-9408.

The outputs of the previously described model are presented in the
following figures (5 and 6).

1600

‘a 1500 ;MMWWWMM 7
=3
o
1400 L L L L L L L L
0 1000 2000 3000 4000 5000 6000 7000 8000 9000
1600 T T T T T T T T
‘_'N
§ W ]
5
o
1400 L L L L L L L L
0 1000 2000 3000 4000 5000 6000 7000 8000 9000
1600 T T T T T T T T
‘_l")
3 1500 |
=3
o
1400 L L L L L L L L
0 1000 2000 3000 4000 5000 6000 7000 8000 9000
1800 T T T T T T T T
‘_fl‘
3 1600 E
5
o
1 400 L L L L L L L L
0 1000 2000 3000 4000 5000 6000 7000 8000 9000
1600 T T T T T T T T
0
2 1500 N‘WMW J
=3
o
1 400 L L L L L L L L
0 1000 2000 3000 4000 5000 6000 7000 8000 9000

Fig. 5. Process outputs on the training set

In Fig. 5 the real data (thin lines that correspond to time steps 1-8064)
and neural network values (thick lines that correspond to timesteps 291-8064)
after training process. Thick lines cover very well the thin lines, excepting first
290 values since the simulated outputs start with this delay imposed by the
maximum value of the delay vector Vect In.



A retraining procedure application for data prediction 23

output 4 oulput3 (Jutpul2 outpul1

(Jl.rlpul5

1600

1500 -

1400
80
1600

1400 -

1200
80
1800

1600 -

1400
80!
2000

1500 -

1000
80
1600

1500 -

1400
80

9500

9500

9500

9500

00 8500 9000

Fig. 6. Process outputs on the test set

9500

Fig. 6 presents the real outputs (solid lines) and predicted outputs
(dotted lines) that correspond to the test set (timesteps 8065-9408).

Among all 36 models that were studied, we discovered other three models
better than the one previously presented (see Table 2). All of them used during the
training process the level values between output 4(5489) and output 4(5493).

Table 2
Parameters of the better models
Models
3 PCA Il 5 PCA Il 5 PCA 1l

Hidden
neurons 39 42 42
Vect_In [102030456595145210| [12223139475566 | [1222 313947 5566

330] 79 98] 79 98]
Result of: Step 2 Step 2 Step 3
ERR_test 0.3629 0.3707 0.3788
err_1 0.4159 0.4361 0.4586
err_2 0.2593 0.2994 0.3059
err_3 0.4294 0.3729 0.4991
err_4 0.3902 0.2904 0.2639
err_5 0.3196 0.4549 0.3663
Standard dev.
of errs 0.0718 0.0757 0.0994




24 I. Nastac, A. Costea

5. Conclusions

In this paper, we have designed a neural network tool for data prediction.
Our method exploits the input-output dependence across time using a delay
vector. We employed the PCA procedure in order to reduce the dimensionality of
the input space and to un-correlate the inputs. The learning process was refined
applying the retraining procedure.

It is important to study the shapes of the graphs before training in order to
level some unnatural values. Choosing the best model is not an easy task. It
should be improved using more data that cover all potential situations as much as
possible. More than five distinct intervals used to compute ERR should also
enhance the criterion of the selection.

We were limited by the memory and speed of our computer (512 Mb of
RAM and Pentium 4 CPU 1.7 GHz). We are definitely convinced that using
vectors with more than 9 elements we can increase the performance of our tool. At
the same time there are other efficient algorithms like Levenberg-Marquardt or
Bayesian regularization that also necessitate a powerful machine to solve the
problem. It is very easy to change in our tool the SCG algorithm with one of these
because at the basic level the architecture and the retraining procedure are
independent of the training algorithm.

We noticed that the retraining technique significantly improved the
achieved result.

REFERENCES

[1] I.A. Basheer, and M. Hajmeer, Artificial neural networks: fundamentals, computing, design,
and application, Journal of Microbiological Methods, Elsevier Science, Vol. 43, 2000, pp.
3-31.

[2] *** Eunite Competition 2003: Prediction of product quality in glass manufacturing, available
on http://www.eunite.org/eunite/events/eunite2003/competition2003.pdf

[3] M.T. Hagan, H.B. Demuth, and M. Beale, Neural Networks Design, MA: PWS Publishing,
Boston, 1996.

[4] J.E. Jackson, A user guide to principal components, John Wiley, New York, 1991.

[5] M.F. Moller, A scaled conjugate gradient algorithm for fast supervised learning, Neural
Networks, Vol. 6, 1993, pp. 525-533.

[6] I Nastac, Contributii la modelarea calitatii si fiabilitatii sistemelor tehnice prin intermediul
metodelor inteligentei artificiale, Ph.D. Thesis, Polytechnic University of Bucharest, 2000.

[7] I Nastac, and E. Koskivaara, Financial Forecasting Using Neural Networks Model,
Proceedings of the 6-th ICEI, Bucharest, May 2003, pp. 612-616.

[8] I. Nastac, R. Matei, Fast retraining of artificial neural networks, in Rough Sets, Fuzzy Sets,
Data Mining and Granular Computing, Wang et al. (Eds.), Springer-Verlag in the series of
Lecture Notes in Artificial Intelligence (LNAI 2639), 2003, pp. 458-462.

[9] *** Neural Network Toolbox User’s Guide, The MathWorks, Inc., Natick, 2005.



