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ADAPTIVE GALERKIN FRAME METHODS FOR SOLVING 
OPERATOR EQUATIONS 

A. ASKARI HEMMAT1, H. JAMALI2 

In this paper we use frames to construct corresponding trial spaces for an 
adaptive Galerkin scheme and design an algorithm in order to give an adaptive 
approximation solution to operator equations. We describe construction, prove 
error estimates for the resulting scheme and then investigate computational 
complexity. The adaptive Galerkin method that we analyze in this paper will 
iteratively produces finite sets ,Λ⊂Λ j

 Ν∈j  and the Galerkin approximations 

j
uΛ

to u of the Subspaces )}({
jj

spanS Λ∈Λ = λλϕ . The error of this approximation is 

),(# s
jO −Λ  (for some s>0) in the energy norm, where ,)( H

j
⊂Λ∈λλϕ  is a frame for a 

separable Hilbert space H  and ,# jΛ  denotes the cardinality o f 
jΛ . 

Keywords: Hilbert spaces, frames, adaptive solution, Galerkin method, N-term  
                   approximation. 

1. Introduction 

Assume that H  is a separable Hilbert space with dual *H , Λ  is a countable set 
of indices and H⊂=Ψ Λ∈λλψ )(  is a frame for H  This means that there exist 
constants ∞<≤< BA0  such that  

,, 222

HH
fBffA ≤><≤ ∑

Λ∈λ
λψ           ,Hf ∈∀                          (1) 

or equivalently (by the Riesz mapping), 
                      ,)( 222

*
2

* HH
fBffA ≤Ψ≤

A
            ,*Hf ∈∀                        (2) 

where .),())(()( Λ∈Λ∈ ><==Ψ λλλλ ψψ fff  Our problem is to find ,Hu∈  such that  
 ,fLu =                                                              (3) 

where *: HHL →  is a symmetric, positive definite and bounded invertible linear 
operator. For example, we can consider a linear differential operator in variational 
form. In [2, 3], an iterative adaptive method for solving this system has been 
developed by wavelet bases.  
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     For an index set Λ⊂Λ~ , 
Λ∈~)(

λλψ is called a frame sequence if it is a frame for 
its closed span. We assume that 

Λ∈~)(
λλψ is a frame sequence with bounds ,, BA for 

all finite index sets Λ⊂Λ~ . The adaptive Galerkin method that we analyze in this 
paper will iteratively produce finite sets ,Λ⊂Λ j  ,Ν∈j  and the Galerkin 
approximation 

j
uΛ

to u  of the subspaces )}({
jj

spanS Λ∈Λ = λλψ , with error 

)(# s
jO −Λ  (for some 0>s ) in the energy norm , where jΛ# denotes the cardinality 

of  .jΛ  For the frame Ψ ,  let HT →Λ)(: 2A  be the synthesis operator  

∑
Λ∈

=
λ

λλλλ ψccT ))((  

and let )(: 2
* Λ→ AHT  (or )(: 2

** Λ→ AHT ) be the analysis operator  
.),()(*

λλψ ><= ffT  
Also let HHTTS →= :*  be the frame operator       ∑ ><=

λ
λλ ψψ,)( ffS . 

Note that T  is surjective, *T  is injective, *T is the adjoint of T  and because of 
(1) or (2) T is bounded, in fact we have 

   BTT ≤= * .                                                   (4) 
It was shown in [1] that, for the frame Λ∈λλψ )(  , S is a positive invertible operator 
satisfying HH BISAI ≤≤  and HH IASIB 111 −−− ≤≤ . Also, the sequence 

                                             Λ∈
−

Λ∈ ==Ψ λλλλ ψψ )()~(~ 1S    
is a frame (called the canonical dual frame) for H  with bounds 1−B , 1−A . Every 

Hf ∈  has the expansion 
                                   ∑∑ ><=><=

λ
λλ

λ
λλ ψψψψ ~,~, fff  

Since ⊥= )()( *TRanTKer   we have )()()( *
2 TKerTRan ⊕=ΛA . Thus the or- 

thogonal projection Q  of a sequence )()( 2 Λ∈Λ∈ Aλλc  onto the )( *TRan  is given 
by 
                                ,),()()( 1

2 Λ∈
−

Λ∈ ><=Λ∈ ∑ jjSccQ ψψλ
λ

λλλ A  

that is, )()(: 22
1* Λ→Λ= − AATSTQ . For more details see [1]. 

     Since  L  is bounded invertible, (3) has a unique solution u  for any Hf ∈ and 
                                                ,* HH

uLu ≅      ,Hu∈      
where ba ≅  means that, there are constants 21,dd such that adbad 21 ≤≤ . Also 
the bilinear form a  defined by 
                                                       >=< vLuvua ,),(  
is symmetric, positive definite and elliptic in the sense that 
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.),( 2

H
vvua ≅                                                  (5) 

It follows that H  is a Hilbert space with respect to the inner product a  with an 
equivalent energy norm .).,(.. 2 a

a
=  

2. The Equivalent 2A -Problem 

     Let Λ∈=Ψ λλψ )(  be a frame for H  with bounds A  and B , and 

Λ∈
−

Λ∈ ==Ψ λλλλ ψψ )()~(~ 1S be its canonical dual frame. For the infinite matrix G  
defined by 

,,, >=< ijji LG ψψ  

where >< ..,  denotes the ),( * HH  duality product, we have the following 
theorem, in which T  and *T  are as defined in section 1. 
Theorem 2.1. The matrix G  defines a bounded linear operator form )(2 ΛA to 

)(2 ΛA  with      *
22 )()( HH

LBG
→Λ→Λ

≤
AA

. 

As an operator on )(2 ΛA  we have .*LTTG =  Also G  as a map form )( *TRan  
into itself is bounded and invertible.  
Proof . By definition of G ,  for a sequence )(2 Λ∈AC we have  

` 
>>=<>=<=< ∑∑ jj

k
kk

k
jkk LTCcLLc ψψψψψ ,,,  

using (4) we have : 

∑ ><=
j

jLTCGC ψ,2
;     

.2

)(

22

222

2

*

Λ
≤

≤≤

A
CLB

TCLBLTCB
HH

 

Therefore 
.LBG ≤  

Let )( *TRanC∈ , then >=< λλ ψ,uc  for some .Hu∈  Also  

,,,,

,,)(

>>=<><=<

>><<=

∑

∑

jj

jj

LSuLu

uLGC

ψψψψ

ψψψ

λ
λ

λ

λ
λλ

 

where S  is the frame operator. This means that G  maps )( *TRan  into 

)( *TRan with .),(),( λλλλ ψψ ><→>< LSuu  
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Let *Hv∈ , since L  and S are surjective, so there exists Hu∈ such that 
,vLSu =  thus G maps .),(),( λλλλ ψψ ><>< vtou  

Also since L  and S  are injective, if  ,,, >>=<< λλ ψψ LSvLSu  for every Λ∈λ  

then, because of completeness of the frame Ψ , ,LvLu =  therefore vu = , and 

>>=<< λλ ψψ ,, vu  for all Λ∈λ , i.e.; G is injective. 
     Consider ,|

)( *TRan
GM = then the equation (3) takes the following form: 

There exists )( *TRanU ∈ such that TUu = (in terms of the canonical dual 

frame Ψ~ we have Λ∈><= λλψ )~,( uU ), then fTLTUT ** = , that is  

,FMU =                                                                  (6) 
where fTF *= . The solution  U to (6) gives the solution u to (3). 
The matrix M is symmetric and positive definite. We define its associated 
bilinear form a by 

)(2
,),( Λ>=< AWMVWVa  

with the associated norm  
),,(2 VVaV =    ).(2 Λ∈∀ AV  

From (5) and frame condition (1), we obtain .
)(2 Λ

≅
A

VV  Thus there exist 

constants 21,cc such that  

,2

)(2

22

)(1
22 ΛΛ

≤≤
AA

VcVVc                                            (7) 
 

therefore   
.

)(2)()(1
222 ΛΛΛ

≤≤
AAA

VcMVVc                                (8) 

Now from (7) and (8) we have 

V
c

cMVV
c

c

2

2
)(

2

1

2
≤≤

ΛA
.                                  (9) 

     For a tolerance 0>ε  and a vector )(2 Λ∈AV  let NV  be the vector obtained 
by replacing all but the N  largest coefficients in modulus of V by zeros, for the 
smallest Ν∈N such that  

,
)(2

ε≤−
ΛANVV  

NV  is called the best N -term approximation for V . Now let 

)()( 2 Λ∈= Λ∈ AλλvV , for each 1≥n  let *
nv be the n-th largest of the numbers 
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λv  and .)( 1
** ∞

== nnvV  For each 20 <<τ  we let )(Λω
τA  denote the collection of 

all vectors )(2 Λ∈AV for which  

}{sup *
1

1)( nn vnV τ
ω
τ

≥Λ
=

A
 

is finite. This expression defines a quasi norm for ).(Λω
τA  Defining 

,
)()()( 2 ΛΛΛ

+=
AAA

VVV ω
τ

ω
τ

 

then there exists a constant τc  such that  

)(
)()()( ΛΛΛ

+≤+ ω
τ

ω
τ

ω
τ

τ AAA
WVcWV .                               (10) 

Also  

)()(2
sup

ΛΛ
≅− ω

τAA
VVVN N

s
N  

 
and there exists a constant C  such that  

  s
N NVCVV −

ΛΛ
≤−

)()(2
ω
τAA

,  Ν∈N                          (11) 

for each 0>s  such that 1)
2
1( −+= sτ .  One can see [2,4,5] for further details on 

the quasi-Banach spaces )(Λω
τA . 

 3. The Galerkin Algorithm 

In this section we construct an adaptive Galerkin algorithm to give an 
adaptive approximation to solution U  of (6), for )(Λ∈ ω

τAU  (for some 0>s  

and 1)
2
1( −+= sτ ). We recall that FMU =  where fTF *=  with this in mind 

we note that our algorithm generated nested finite sets jΛ , Ν∈j and the 

approximate Galerkin solution 
j

UΛ  to U such that  

,)(# s
jj

UU −
Λ Λ− ≺  

where ba ≺   means that there exists a constant d  such that bda ≤ .  Let 
}:{ Γ∈=Γ γψ γspanS  for Λ⊂Γ .  The approximate Galerkin solution Γu  

from ΓS is defined by conditions >=<Γ vfvua ,),( , Γ∈ Sv  , that is equivalent to 
,FPUM ΓΓΓ =                                        (12) 
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where Γ∈= ηγηγ ,, )(mM  and ΓP  is the orthogonal projector from )(2 ΛA  onto 

)(2 ΓA . Let ΓΓΓ −=−= MUFMUMUR  be the residual associated to Γ  
and 10 <<α  be the fixed real number. Following [2] we introduce the 
following routines at our disposal. 
GALERKIN: Γ→Γ U][  
Solve the finite system of (12) for the finite set Γ  and find the approximate 
Galerkin solution ΓU  to U . 

GROW: Γ→Γ Γ ],[ U  
by taking the N  largest coefficients of ΓR  in absolute value, denote by NΓ the set 
of these indices,  find the smallest integer N  such that 

)()( 2
)1(

ΛΓ
−

ΛΓ −≤
AA

RNRC s αω
τ

                            (13) 

and define .NΓ∪Γ=Γ  

     In order the algorithm SOLVE to meet our goal, we need some assumptions. 
Assumption 1. Assume that the matrix M  is s  - compressible in the sense that 
for each Ν∈j there exist constants jα and jβ  and a matrix jM having at most 

j
j 2α  nonzero entries per column, such that ,jjMM β≤−  

where Ν∈jj )(α  is summable and for any ss <′ , Ν∈
′

j
js

j )2(β  is summable. 

Proposition 3.1. The s -compressible matrix M maps )(Λω
τA  bonded into itself 

for 1)
2
1( −+= sτ . 

Proof. See[2]. 
Since )(, Λ∈Γ

ω
τAUU  so by Propsition.3.1. ).(Λ∈Γ

ω
τAR  From (11) we have 

,
)()(2

sNRCRRR
N

−

ΛΓΛΓΓΓ ≤− ω
τAA

 

we may assume that .1≥C  This inequality and (13) give 
,)1(

)()( 22
ΛΓΛΓΓΓ −≤−

AA
RRRR

N
α  

therefore  

)()( 22 ΛΓΛΓΓ ≥
AA

RRP α .                                          (14) 

Also because of (13) 

)(

)(2
)1(

ΛΓ

ΛΓ−
−

≤
ω
τ

α

A

A

RC
R

N s . 
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Since N is the smallest integer that satisfies (13) we have 

).1()
)1(

(
1

)(

)(

2

−≥
−

≥
ΛΓ

ΛΓ N
R

RC
N s

A

A

α
ω
τ  

So for ,2≥N  

.)
)1(

(21)
)1(

(
1

)(

)(
1

)(

)(

22

ss

R
RC

R
RC

N
ΛΓ

ΛΓ

ΛΓ

ΛΓ

−
≤+

−
≤

A

A

A

A

αα
ω
τ

ω
τ  

Hence for a constant 1q  

.)()(#
1

)(

)(
1

2

s

R
R

qN
ΛΓ

ΛΓ≤=Γ−Γ
A

Aωτ                                       (15) 

Lemma 3.2. The output Γ  of GROW satisfies 

ΓΓ −≤− UUUU θ            where .))(1( 2
1

3

2

12

c
cαθ −=  

Proof. From (9) we have 

)(
2

2
1

1
)(

2

2
1

1

22
)()(

ΓΓΓΛΓΓΓΓ −≥−≥−
AA

UUM
c
cUUM

c
cUU  

)(
2

2
1

1
)(

2

2
1

1

22
)(

ΛΓΓΓΓΓ =−=
AA

RP
c
cUUM

c
c

 

,)(
)(

2

2
1

1
)(

2

2
1

1

22 ΛΓΛΓ −=≥
AA

UUM
c
cR

c
c αα  

where the last inequality obtains from (14), therefore by (9)  

.)( 2
3

2

1
ΓΓΓ −≥− UU

c
cUU α                                          (16) 

Now because of orthogonality of the Galerkin solutions with respect to the energy 
inner product,  

,222
ΓΓΓΓ −+−=− UUUUUU  

then by (16) 
222

ΓΓΓΓ −−−=− UUUUUU  
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),)(1()( 3

2

12223

2

122

c
cUUUU

c
cUU αα −−=−−−≤ ΓΓΓ  

hence 

.))(1( 2
1

3

2

12

c
cUUUU α−−≤− ΓΓ  

      Now we are ready to present our algorithm. 
SOLVE ],[],,[

εεε ΛΛ→ UFM  

(i) ,0 φ=Λ   FR =Λ0
;      (ii) while  .

1

2
1

2
)(2

εθ >
Λ c

cFj
A

 

       (ii,1) GALERKIN: .][
j

Uj Λ→Λ        (ii,2) GROW: 1],[ +Λ Λ→Λ jj j
U  

       (ii,3) .1+→ jj       (iii) 1+Λ=Λ jε ,    
1+ΛΛ =

j
UU

ε
 .   

Theorem 3.3. The output 
εΛ

U  of the algorithm satisfies 

.ε
ε

≤− ΛUU  

Proof . Using Lemma.3.2 for jΛ  and 1+Λ j  

,
1 jj

UUUU ΛΛ −≤−
+

θ                                                (17) 

repeartedly 

   ,UUU kθ
ε

≤− Λ                                        (18) 

for a constant .Ν∈k  Combining this with (9) we have 

.
)(

1

2
1

2

2
εθθ

ε
≤≤≤−

ΛΛ A
F

c
cUUU kk  

   Assumption 2. Assume that )(Λ∈ ω
τAU , 1)

2
1( −+= sτ  and the inverse 

matrices 1−
Λ j

M  are uniformly bounded on )(Λω
τA , i.e.; there exists a constant 

0C such that  

,0)(

1 CM
j

≤
Λ

−
Λ ω

τA
     .Ν∈j  

Theorem 3.4.  The outputs 
j

UΛ  and jΛ  in step (ii) in the algorithm  SOLVE 

satisfy 
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.)(# s
jj

UU −
Λ Λ− ≺  

Proof. Since )(Λ∈ ω
τAU  then by Proposition.3.1 ).(Λ∈ ω

τAF  Therefore  

,
)()()()( ΛΛΛΛΛ ≤≤ ω

τ
ω
τ

ω
τω

τ
AAAA

UMFFP
j

 

combining this inequality with Assumption 2 and (12) we obtain  
,

)(0)()(0)()( ΛΛΛΛΛΛΛΛ ≤≤=
ω
τ

ω
τω

τ
ω
τ

ω
τ AAAAA

UCMFPCUU
j

j
jj

 

hence 

,
)()()( ΛΛΛΛΛ −≤

ω
τ

ω
τω

τ AAA jj
UUMR  

),1()(
)(0)()()()()( ΛΛΛΛΛΛΛ

+≤+≤ ω
τ

ω
τ

ω
τω

τ
ω
τ

ω
τ

ττ AAAAAA
MCUcMUUcM

j
 

where the second inequality takes from (10). Thus the residuals 
j

RΛ are uniformly 

bounded, that means there exists a constant 2q  such that  2)(
qR

j
≤

ΛΛ ω
τA

. 

This inequality with (15) and (9) give 

ss
jj j

UUMqq
1

)(

1

211
2

1
)(##

−

ΛΛ− −
−+Λ≤Λ

A
 

.)(#
11

2

1
1

211 1

sss
j j

UU
c

cqq
−

Λ

−

− −
−+Λ≤  

Then by (17) 

))()((##
1111

2

1
1

211

1

11

sssss
j

s
j jjj

UUUU
c

cqqUU
−− Λ

−

Λ

−

−Λ −−+Λ≤−Λ θ  

),)((#
1

2

1
1

21

1

1

1

1

sss
j

s

c
cqqUU

j

−

Λ− +−Λ=
−

θ  

 iterating the procedure, we have  

,##
1

1
3

11

1

1

11 ∑
−

=

−

ΛΛ +−Λ≤−Λ
−

j

i

s
i

s
j

ss
j qUUUU

j
θθ               (19) 

where .)(
1

2

1
1

213
ss

c
cqqq

−

=  Also using (15) and (9) for 0Λ  and 1Λ give  

sss UUMRqUU
11

10

1

1
)(

0
)(

01
)(##

−

ΛΛΛ
ΛΛ

−+Λ≤−Λ
τ

ω
τ AA

 



138                                            A. Askari Hemmat, H. Jamali 

,
11

1
)()(

ss FMUq
ΛΛ

−

≤
ω
ττ AA

 

this inequality with Proposition 3.1 induce  

,#
11

1
)(

1

ss FUU
Λ

Λ−Λ
ω
τA

≺  

hence by (19) we obtain 

3

1

1

1

1
## kqUUUU ss

j j
+−Λ≤−Λ ΛΛ  

,3

1

)(

qU s +
Λω

τA

≺  

where k is the constant in (18). Thus 
sss

j qUUU
j

)()(# 3

1

)(

+Λ−
Λ

−
Λ

ω
τA

≺ . 

That means 

.)(# s
jj

UU −
Λ Λ− ≺  

6. Conclusions 

In this paper we have used frames instead of Riesz bases, in order to give an 
adaptive algorithm for the numerical solution of an operator equation. The scheme 
is based on approximated iterations of the Galerkin method. Using frames instead 
of Riesz bases does not spoil the optimal convergence of the Galerkin method. 
Convergence and computational complexity can be theoretically proved and 
numerically verified. 
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