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HYPERSTABILITY OF MULTI-MIXED ADDITIVE-QUADRATIC

JENSEN TYPE MAPPINGS

Somaye Salimi1, Abasalt Bodaghi2

In this article, we introduce the multi-mixed additive-quadratic Jensen type

mappings and then unify the system of functional equations defining a multi-mixed
additive-quadratic mapping to obtain a single equation. We show that under what condi-

tions these mappings can be multi-additive, multi-quadratic and multi-additive-quadratic.

Applying a fixed point theorem, we study the generalized Hyers-Ulam stability hypersta-
bility of multi-mixed additive-quadratic Jensen type mappings.
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1. Introduction

In 1940, Ulam [35] raised the following question concerning stability of group ho-
momorphisms: under what condition does there exist an additive mapping near an approx-
imately additive mapping? Hyers [22] answered the problem of Ulam for Banach spaces.
Later, the result of Hyers was significantly generalized by Aoki [1], Th. M. Rassias [33]
(stability incorporated with sum of powers of norms), P. Găvruţa [21] (stability controlled
by a general control function) and J. M. Rassias [32] (stability including mixed product-sum
of powers of norms).

Throughout this paper, N and Q are the set of all positive integers and rationals,
respectively, N0 := N∪ {0},R+ := [0,∞). For any l ∈ N0, n ∈ N, t = (t1, . . . , tn) ∈ {−1, 1}n
and x = (x1, . . . , xn) ∈ V n we write lx := (lx1, . . . , lxn) and tx := (t1x1, . . . , tnxn), where
lx stands, as usual, for the lth power of an element x of the commutative group V .

Let V be a commutative group, W be a linear space, and n ≥ 2 be an integer. Recall
from [19] that a mapping f : V n −→ W is called multi-additive if it is additive (satisfies
Cauchy’s functional equation A(x+ y) = A(x) +A(y)) in each variable. Some facts on such
mappings can be found in [23] and many other sources. In addition, f is said to be multi-
quadratic if it is quadratic (satisfies quadratic functional equation Q(x + y) + Q(x − y) =
2Q(x) + 2Q(y)) in each variable [16]. Zhao et al. [39] showed that the mentioned mapping
f is multi-quadratic if and only if the equation∑

t∈{−1,1}n
f(x1 + tx2) = 2n

∑
j1,j2,...,jn∈{1,2}

f(x1j1 , x2j2 , . . . , xnjn) (1)

holds, where xj = (x1j , x2j , . . . , xnj) ∈ V n with j ∈ {1, 2}.
Prager and Schwaiger [30] introduced the notion of multi-Jensen mapping f : V n −→

W (satisfies Jensen’s functional equation J
(
x+y
2

)
= J(x)+J(y)

2 in each variable) with the
connection with generalized polynomials and obtained their general form. The aim of this
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note was to study the stability of the multi-Jensen equation. After that, the stability of
multi-Jensen mappings in various normed spaces have been investigated by a number of
mathematicians (see [17], [18], [31], [36] and [37]).

Let V and W be linear spaces, n ∈ N and k ∈ {0, . . . , n}. A mapping f : V n −→W is
called k-Jensen and n−k-quadratic (briefly, multi-Jensen-quadratic) if f is Jensen in each of
some k variables and is quadratic in each of the other variables (satisfies the Jensen type of
quadratic equation 2Q

(
x+y
2

)
+ 2Q

(
x−y
2

)
= Q(x) + Q(y)). These mappings are introduced

in [34]. Moreover, it is shown in [34] that the mapping f is multi-Jensen-quadratic mapping
if and only if it satisfies the equation

2n
∑

q∈{−1,1}n−k

f

(
xk1 + xk2

2
,
xn−k1 + qxn−k2

2

)
=

∑
l1,...,ln∈{1,2}

f(xl11, xl22, . . . , xlnn)

for all xki = (xi1, . . . , xik) ∈ V k and xn−ki = (xik+1 . . . , xin) ∈ V n−k where i ∈ {1, 2}. For a
different form of a multi-Jensen-quadratic mapping and its stability, we refer to [2].

In [19] and [16], Ciepliński studied the generalized Hyers-Ulam stability of multi-
additive and multi-quadratic mappings in Banach spaces, respectively (see also [39]). Since
then, the stability of multi-Cauchy-Jensen mappings in non-Archimedean spaces, Banach
spaces, and multi-additive-quadratic mappings are studied in [3], [4], [5] and [6]. Recently,
the stability of multi-cubic and multi-quartic mappings in Banach spaces via a fixed point
theorem are investigated in [12] and [11], respectively. For other forms of multi-cubic map-
pings and functional equations which are recently studied, we refer to [29].

In [38], Zamani et al. introduced the mixed additive-quadratic functional equation

f(x+ 2y) + f(x− 2y) + 8f(y) = 2f(x) + 4f(2y). (2)

They determined the general solution of the equation (2) and studied its Hyers-Ulam stability
in non-Archimedean Banach modules over a unital Banach algebra; for the general form of
(2) see [10]. Some results on the stability of mixed additive-quadratic mappings can be
found in [9], [25] and [27]. We also mention that some results on the stability of mixed type
mappings can be found in [7], [8], [20], [24] and [26].

Here, we recall from [28] the following mixed additive-quadratic Jensen type functional
equation

2J

(
x+ y

2

)
+ J

(
x− y

2

)
+ J

(
y − x

2

)
= J(x) + J(y). (3)

Motivated by the equation (3), in this paper we define multi-mixed additive-quadratic
Jensen type mappings and include a characterization of such mappings. In other words, we
prove that every multi-mixed additive-quadratic mapping can be shown a single functional
equation and vice versa. Furthermore, we investigate the generalized Hyers-Ulam stability
and hyperstability for such mappings by using a fixed point method which is taken from
[14].

2. Characterization of multi-mixed additive-quadratic Jensen type map-
pings

Let V and W be vector spaces over Q, n ∈ N. Suppose that n ≥ 2 and xni =
(xi1, xi2, . . . , xin) ∈ V n, where i ∈ {1, 2}. We shall denote xni by xi if there is no risk of
ambiguity.

We say the mapping f : V n −→W is n-multi-mixed additive-quadratic Jensen type or
briefly multi-mixed additive-quadratic if f is mixed additive-quadratic Jensen type in each
variable (see the equation (3)).



Hyperstability of multi-mixed additive-quadratic Jensen type mappings 57

Let p, q ∈ {−1, 1}n where p = (p1, . . . , pn) and q = (q1, . . . , qn). In the following
equation and the rest of the paper, as a convention, we put pk = ql = 1 whenever pkql = 1
for k, l ∈ {1, . . . , n}.

In this section, we reduce the system of n equations defining the multi-mixed additive-
quadratic mapping to obtain the single functional equation as follows:

∑
p∈{−1,1}n

∑
q∈{−1,1}n

f

(
px1 + qx2

2

)
=

∑
l1,...,ln∈{1,2}

f(xl11, xl22, . . . , xlnn). (4)

Put m := {1, . . . ,m}, m ∈ N. For a subset T = {j1, . . . , ji} of m with 1 ≤ j1 < . . . <
ji ≤ m and x = (x1, . . . , xm) ∈ V m,

Tx := (0, . . . , 0, xj1 , 0, . . . , 0, xji , 0, . . . , 0) ∈ V m

denotes the vector which coincides with x in exactly those components, which are indexed
by the elements of T and whose other components are set equal zero. Note that φx = 0,

mx = x. We use these notations in the proof of upcoming lemma.
We shall to show that if a mapping f : V n −→ W satisfies the equation (4), then it

is multi-mixed additive-quadratic mapping and vice versa. In order to do this, we need the
next lemma.

Lemma 2.1. If the mapping f : V n −→ W satisfies equation (4), then f(x) = 0 for any
x ∈ V n with at least one component which is equal to zero.

Proof. Putting x1 = x2 = (0, . . . , 0) in (4), we get

4nf(0, . . . , 0) = 2nf(0, . . . , 0). (5)

Thus, f(0, . . . , 0) = 0. Letting x1k = x2k = 0 for all k ∈ {1, . . . , n}\{j} and x1j = x2j in
(4), we obtain

2× 4n−1f(0, . . . , 0, x1j , 0, . . . , 0) = 2nf(0, . . . , 0, x1j , 0, . . . , 0), (6)

and so f(0, . . . , 0, x1j , 0, . . . , 0) = 0. The above process can be repeated to obtain 2 ×
4n−1f(kx1) = 2nf(kx1), where 1 ≤ k ≤ n−1. Hence, f(kx1) = 0. This shows that f(x) = 0
for any x ∈ V n with at least one component which is equal to zero. �

We say the mapping f : V n −→W is odd in the jth variable if

f(z1, . . . , zj−1,−zj , zj+1, . . . , zn) = −f(z1, . . . , zj−1, zj , zj+1, . . . , zn).

Moreover, f is even in the jth variable if

f(z1, . . . , zj−1,−zj , zj+1, . . . , zn) = f(z1, . . . , zj−1, zj , zj+1, . . . , zn).

We now prove the main result of this section.

Theorem 2.1. The mapping f : V n −→ W is multi-mixed additive-quadratic mapping if
and only if it satisfies equation (4). Furthermore,

(i) if f is odd in a variable, then it is additive Jensen type in the same variable;
(ii) if f is even in a variable, then it is quadratic Jensen type in the same variable.

Proof. (Necessity) Assume that f is a multi-mixed additive-quadratic mapping. We prove
f satisfies the equation (4) by induction on n. For n = 1, it is trivial that f satisfies the
equation (3). Assume that (4) is valid for some positive integer n > 1. Then,
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∑
p∈{−1,1}n+1

∑
q∈{−1,1}n+1

f

(
pxn+1

1 + qxn+1
2

2

)

=
∑

p∈{−1,1}n

∑
q∈{−1,1}n

f

(
pxn1 + qxn2

2
, x1n+1

)
+

∑
p∈{−1,1}n

∑
q∈{−1,1}n

f

(
pxn1 + qxn2

2
, x2n+1

)
=

∑
l1,...,ln∈{1,2}

f(xl11, xl22, . . . , xlnn , x1n+1) +
∑

l1,...,ln∈{1,2}

f(xl11, xl22, . . . , xlnn , x2n+1)

=
∑

l1,...,ln+1∈{1,2}

f(xl11, xl22, . . . , xlnn, xln+1n+1).

This means that (4) holds for n+ 1.
(Sufficiency) Let j ∈ {1, . . . , n} be arbitrary and fixed. Putting x1k = x2k for all

k ∈ {1, . . . , n}\{j} and using Lemma 2.1, we obtain

2nf

(
x11, . . . , x1j−1,

x1j + x2j
2

, x1j+1, . . . , x1n

)
+ 2n−1f

(
x11, . . . , x1j−1,

x1j − x2j
2

, x1j+1, . . . , x1n

)
+ 2n−1f

(
x11, . . . , x1j−1,

x2j − x1j
2

, x1j+1, . . . , x1n

)
= 2n−1[f(x11, x12, . . . , x1n) + f(x11, . . . , x1j−1, x2j , x1j+1, . . . , x1n)].

Thus

2f

(
x11, . . . , x1j−1,

x1j + x2j
2

, x1j+1, . . . , x1n

)
+ f

(
x11, . . . , x1j−1,

x1j − x2j
2

, x1j+1, . . . , x1n

)
+ f

(
x11, . . . , x1j−1,

x2j − x1j
2

, x1j+1, . . . , x1n

)
= f(x11, x12, . . . , x1n) + f(x11, . . . , x1j−1, x2j , x1j+1, . . . , x1n). (7)

Therefore, f is mixed additive-quadratic Jensen type in the jth variable.
(i) Let f be odd in the jth variable. It follows from relation (7) that

2f

(
x11, . . . , x1j−1,

x1j + x2j
2

, x1j+1, . . . , x1n

)
= f(x11, x12, . . . , x1n) + f(x11, . . . , x1j−1, x2j , x1j+1, . . . , x1n).

(ii) Similar to the part (i), it follows from the assumption and (7) that

2f

(
x11, . . . , x1j−1,

x1j + x2j
2

, x1j+1, . . . , x1n

)
+ 2f

(
x11, . . . , x1j−1,

x1j − x2j
2

, x1j+1, . . . , x1n

)
= f(x11, x12, . . . , x1n) + f(x11, . . . , x1j−1, x2j , x1j+1, . . . , x1n).

This means that f is quadratic in the jth variable. �

Recall that a mapping f : V n −→ W is called k-Jensen and n− k-quadratic (briefly,
multi-Jensen-quadratic) if f is Jensen in each of some k variables and is quadratic in each
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of the other variables. In this note, we suppose for simplicity that f is Jensen in each of
the first k variables, but one can obtain analogous results without this assumption. We also
note that if f is odd in each of some k variables, then the concepts of multi-Jensen-quadratic
and multi-additive-quadratic (which was introduced in [5]) for the mapping f coincide. This
leads us to the next corollary.

Corollary 2.1. Suppose that the mapping f : V n −→W satisfies equation (4).

(i) If f is odd in each variable, then it is multi-additive Jensen type;
(ii) If f is even in each variable, then it is multi-quadratic Jensen type;
(iii) If f is odd in each of some k variables and is even in each of the other variables, then

it is multi-additive-quadratic.

3. Stability Results for multi-mixed additive-quadratic mappings

In this section, we prove the generalized Hyers-Ulam stability of equation (4) by a
fixed point result (Theorem 3.1) in Banach spaces. Throughout, for two sets A and B, the
set of all mappings from A to B is denoted by BA. Here, we introduce the upcoming three
hypotheses:

(A1) Y is a Banach space, S is a nonempty set, j ∈ N, g1, . . . , gj : S −→ S and L1, . . . , Lj :
S −→ R+,

(A2) T : Y S −→ Y S is an operator satisfying the inequality

‖Tλ(x)− Tµ(x)‖ ≤
j∑
i=1

Li(x) ‖λ(gi(x))− µ(gi(x))‖ , λ, µ ∈ Y S, x ∈ S,

(A3) Λ : RS
+ −→ RS

+ is an operator defined through

Λδ(x) :=

j∑
i=1

Li(x)δ(gi(x)) δ ∈ RS
+, x ∈ S.

Here, we highlight the following theorem which is a fundamental result in fixed point
theory [14, Theorem 1]. This result plays a key tool to obtain our objecive in this section.
We also remember that this fixed point method for the stability of functional equations was
introduced and used for the first time by Brzdȩk in [13].

Theorem 3.1. Let hypotheses (A1)-(A3) hold and the function θ : S −→ R+ and the
mapping φ : S −→ Y fulfill the following two conditions:

‖Tφ(x)− φ(x)‖ ≤ θ(x), θ∗(x) :=

∞∑
l=0

Λlθ(x) <∞ (x ∈ S).

Then, there exists a unique fixed point ψ of T such that

‖φ(x)− ψ(x)‖ ≤ θ∗(x) (x ∈ S).

Moreover, ψ(x) = liml→∞ Tlφ(x) for all x ∈ S.

From now on, for the mapping f : V n −→ W , we consider the difference operator
Df : V n × V n −→W by

Df(x1, x2) =
∑

p∈{−1,1}n

∑
q∈{−1,1}n

f

(
px1 + qx2

2

)
=

∑
l1,...,ln∈{1,2}

f(xl11, xl22, . . . , xlnn).

We bring the oncoming lemma from [5] will be useful in the proof of our stability result. For
simplicity, given an m ∈ N, we write S := {0, 1}m, and Si stands for the set of all elements
of S having exactly i zeros, i.e.,

Si := {(s1, . . . , sm) ∈ S : card{j : sj = 0} = i}, i ∈ {0, . . . ,m}.
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Lemma 3.1. Let m ∈ N, l ∈ N0 and ψ : S −→ R. Then

m∑
v=0

m∑
w=0

∑
s∈Sw

∑
t∈Sv

(2l − 1)wψ(st) =

m∑
i=0

∑
p∈Si

(2l+1 − 1)iψ(p)

In the sequel, S stands for {0, 1}n and Si ⊆ S for i ∈ {0, . . . , n}. We have the
following stability theorem for the functional equation (4) for the odd case.

Theorem 3.2. Let V be a linear space and W be a Banach space. Suppose that φ : V n ×
V n −→ R+ is a mapping satisfying

lim
l→∞

(
1

2n

)l n∑
i=0

∑
p∈Si

(2l − 1)iφ(2lpx1, 2
lpx2) = 0 (8)

for all x1, x2 ∈ V n and

Φ(x) =:

∞∑
l=0

(
1

2n

)l+1 n∑
i=0

∑
p∈Si

(2l − 1)iφ(2l+1px, 0) <∞ (9)

for all x ∈ V n. Assume also f : V n −→W is a mapping fulfilling the inequality

‖Df(x1, x2)‖ 6 φ(x1, x2) (10)

for all x1, x2 ∈ V n. If f is odd in each variable, then there exists a unique multi-additive
Jensen type mapping J : V n −→W such that

‖f(x)− J(x)‖ ≤ Φ(x) (11)

for all x ∈ V n.

Proof. Replacing (x1, x2) by (2x1, 0) in (10) and using the oddness of f in each variable, we
have ∥∥∥∥∥2nf(x)−

∑
s∈S

f(2sx)

∥∥∥∥∥ ≤ φ(2x, 0)

for all x = x1 ∈ V n and so ∥∥∥∥∥f(x)− 1

2n

∑
s∈S

f(2sx)

∥∥∥∥∥ ≤ 1

2n
φ(2x, 0) (12)

for all x ∈ V n. Take x ∈ V n and let θ(x) := 1
2nφ(2x, 0), Tθ(x) := 1

2n

∑
s∈S θ(2sx). Inequal-

ity (12) can be modified as

‖f(x)− Tf(x)‖ ≤ θ(x) (13)

for all x ∈ V n. Define Λη(x) := 1
2n

∑
s∈S η(2sx) for all η ∈ RV n

+ , x ∈ V n. We now see that

Λ has the form described in (A3). Moreover, for each λ, µ ∈WV n

and x ∈ V n, we get

‖Tλ(x)− Tµ(x)‖ =

∥∥∥∥∥ 1

2n

[∑
s∈S

(η(2sx)− µ(2sx)

]∥∥∥∥∥ ≤ 1

2n

∑
s∈S
‖η(2sx)− µ(2sx)‖ .

The above relation shows that the hypothesis (A2) holds. By induction on l, one can check
for any l ∈ N0 and x ∈ V n that

Λlθ(x) :=

(
1

2n

)l n∑
i=0

(2l − 1)i
∑
p∈Si

θ(2lpx). (14)
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Fix an x ∈ V n. Here, we adopt the convention that 00 = 1. Hence, the relation (14) is
trivially true for l = 0. Next, assume that (14) holds for a l ∈ N0. Using Lemma 3.1 for
m = n and ψ(s) := θ(2l+1sx) (s ∈ S), we get

Λl+1θ(x) = Λ(Λlθ)(x) =
1

2n

n∑
v=0

∑
t∈Sv

(Λlθ)(2tx)

=

(
1

2n

)l+1 n∑
v=0

∑
t∈Sv

n∑
w=0

(2l − 1)w
∑
s∈Sw

θ(2l+1stx)

=

(
1

2n

)l+1 n∑
v=0

n∑
w=0

∑
s∈Sw

∑
t∈Sv

(2l − 1)wθ(2l+1stx)

=

(
1

2n

)l+1 n∑
i=0

∑
p∈Si

(2l+1 − 1)iθ(2l+1px).

Therefore, (14) holds for any l ∈ N0 and x ∈ V n. Now, relations (9) and (14) necessitate that
all assumptions of Theorem 3.1 are satisfied. Hence, there exists a mapping J : V n −→ W
such that

J(x) = lim
l→∞

(Tlf)(x) =
1

2n

∑
s∈S

J(2sx) (x ∈ V n),

and also (11) holds. We shall to show that

‖D(Tlf)(x1, x2)‖ ≤
(

1

2n

)l n∑
i=0

∑
p∈Si

(2l − 1)iφ(2lpx1, 2
lpx2) (15)

for all x1, x2 ∈ V n and l ∈ N0. We argue by induction on l. The inequality (15) is valid for
l = 0 by (10). Assume that (15) is true for an l ∈ N0. For each x1, x2 ∈ V n, we have

‖D(Tl+1f)(x1, x2)‖

=
1

2n

∥∥∥∥∥∑
s∈S

D(Tlf)(2sx1, 2sx2)

∥∥∥∥∥
≤
(

1

2n

)l+1∑
s∈S

n∑
i=0

∑
t∈Si

(2l − 1)iφ(2l+1stx1, 2
l+1stx2)

=

(
1

2n

)l+1 n∑
i=0

∑
p∈Si

(2l+1 − 1)iφ(2l+1px1, 2
l+1px2)

for all x1, x2 ∈ V n. We note that the last equality follows from Lemma 3.1 with m := n
and ψ(s) := φ(2l+1sx1, 2

l+1sx2) (s ∈ S). Letting l→∞ in (15) and applying (8), we arrive
at DJ(x1, x2) = 0 for all x1, x2 ∈ V n. This means that the mapping J satisfies (4). Now,
the part (i) of Corollary 2.1 implies that J is a multi-additive Jensen type mapping. Lastly,
assume that J : V n −→W is another multi-Jensen mapping satisfying the equation (4) and
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inequality (11), and fix x ∈ V n, j ∈ N. By Lemma 2.1 and (9), we have

‖J(x)− J(x)‖

=

∥∥∥∥∥
(

1

2n

)j
J(2jx)−

(
1

2n

)j
J(2jx)

∥∥∥∥∥
≤
(

1

2n

)j
(‖J(2jx)− f(2jx)‖+ ‖J(2jx)− f(2jx)‖)

≤ 2

(
1

2n

)j
Φ(2jx)

≤ 2

(
1

2n

)j n∑
l=j

(
1

2n

)l+1 n∑
i=0

∑
p∈Si

(2l − 1)iφ(2l+1px, 0).

Consequently, letting j →∞ and using the fact that series (9) is convergent for all x ∈ V n,
we obtain J(x) = J(x) for all x ∈ V n. This completes the proof. �

We have the next result which is analogous to Theorem 3.2 for the functional equation
(4) in the even case.

Theorem 3.3. Let V be a linear space and W be a Banach space. Suppose that φ : V n ×
V n −→ R+ is a mapping satisfying

lim
l→∞

(
1

4n

)l n∑
i=0

∑
p∈Si

(2l − 1)iφ(2lpx1, 2
lpx2) = 0

for all x1, x2 ∈ V n and

Ψ(x) =:

∞∑
l=0

(
1

4n

)l n∑
i=0

∑
p∈Si

(2l − 1)iφ(2l+1(px, 0)) <∞

for all x ∈ V n. Assume also f : V n −→W is a mapping fulfilling the inequality

‖Df(x1, x2)‖ 6 φ(x1, x2) (16)

for all x1, x2 ∈ V n. If f is even in each variable, then there exists a unique multi-quadratic
mapping Q : V n −→W such that

‖f(x)− Q(x)‖ ≤ Ψ(x)

for all x ∈ V n.

Proof. Replacing (x1, x2) by (2x1, 0) in (16) and using the evenness of f in each variable,
we get ∥∥∥∥∥f(x)− 1

4n

∑
s∈S

f(2sx)

∥∥∥∥∥ ≤ 1

4n
φ(2x, 0) (17)

for all x ∈ V n. Take x ∈ V n and let θ(x) := 1
4nφ(2x, 0), Tθ(x) := 1

4n

∑
s∈S θ(2sx). The

relation (17) can be rewritten as

‖f(x)− Tf(x)‖ ≤ θ(x)

for all x ∈ V n. The rest of the proof is similar to the proof of Theorem 3.2 and so we omit
it. �

The following corollary is a direct consequence of Theorem 3.2 concerning the stability
of (4) for the even case.
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Corollary 3.1. Let δ > 0. Let also V be a normed space and W be a Banach space. Suppose
that f : V n −→W is a mapping satisfying the inequality

‖Df(x1, x2)‖ ≤ δ

for all x1, x2 ∈ V n. If f is even in each variable, then there exists a unique multi-quadratic
mapping Q : V n −→W such that

‖f(x)− Q(x)‖ ≤ δ

2n(2n − 1)

for all x ∈ V n.

Proof. Setting the constant function φ(x1, x2) = δ for all x1, x2 ∈ V n, and applying Theorem
3.3, we have

Φ(x) =

n∑
l=0

(
1

4n

)l+1 n∑
i=0

∑
p∈Si

(2l − 1)iφ(2l+1px, 0)

= δ

∞∑
l=0

(
1

4n

)l+1 n∑
i=0

(
n
i

)
(2l − 1)i × 1n−i

=
δ

4n

∞∑
l=0

(
1

4n

)l
2nl =

δ

4n

∞∑
l=0

(
1

2n

)l
=

δ

2n(2n − 1)
.

�

Theorem 3.4. Let V be a linear space and W be a Banach space. Suppose that φ : V n ×
V n −→ R+ is a mapping satisfying

lim
l→∞

(
1

2n

)l n∑
i=0

∑
p∈Si

(2l − 1)iφ(2lpx1, 2
lpx2) = 0

for all x1, x2 ∈ V n and

Γ(x) =:

∞∑
l=0

(
1

22n−k

)l n∑
i=0

∑
p∈Si

(2l − 1)iφ(2l+1px, 0) <∞

for all x ∈ V n. Assume also f : V n −→W is a mapping fulfilling the inequality

‖Df(x1, x2)‖ 6 φ(x1, x2) (18)

for all x1, x2 ∈ V n. If f is odd in each of some k variables and is even in each of the other
variables, then there exists a unique multi-additive-quadratic mapping F : V n −→ W such
that

‖f(x)− F(x)‖ ≤ Γ(x)

for all x ∈ V n.

Proof. Similar to the proof of preceding theorems, interchanging (x1, x2) by (2x1, 0) in (18)
and using the assumptions, we find∥∥∥∥∥22n−kf(x)−

∑
s∈S

f(2sx)

∥∥∥∥∥ ≤ φ(2x, 0)

for all x ∈ V n and so ∥∥∥∥∥f(x)− 1

22n−k

∑
s∈S

f(2sx)

∥∥∥∥∥ ≤ 1

22n−k
φ(2x, 0) (19)



64 S. Salimi, A. Bodaghi

for all x ∈ V n. Choose x ∈ V n and let θ(x) := 1
22n−kφ(2x, 0), Tθ(x) := 1

22n−k

∑
s∈S θ(2sx).

The relation (19) converts to

‖f(x)− Tf(x)‖ ≤ θ(x)

for all x ∈ V n. The rest of the proof is similar to the proof of Theorem 3.2. �

Let A be a nonempty set, (X, d) a metric space, ψ ∈ RAn

+ , and F1,F2 operators

mapping a nonempty set D ⊂ XA into XAn

. We say that operator equation

F1ϕ(a1, . . . , an) = F2ϕ(a1, . . . , an) (20)

is ψ-hyperstable provided every ϕ0 ∈ D satisfying inequality

d(F1ϕ0(a1, . . . , an),F2ϕ0(a1, . . . , an)) ≤ ψ(a1, . . . , an), a1, . . . , an ∈ A,
fulfils (20); this definition is introduced in [15]. In other words, a functional equation F is
hyperstable if any mapping f satisfying the equation F approximately is a true solution of
F.

Corollary 3.2. Suppose that αij > 0 for i ∈ {1, 2} and j ∈ {1, . . . , n} fulfill
∑2
i=1

∑n
j=1 αij <

n. Let f : V n −→W be a mapping fulfilling the inequality

‖Df(x1, x2)‖ ≤
2∏
i=1

n∏
j=1

‖xij‖αij

for all x1, x2 ∈ V n, where V is a normed space and W is a Banach space.

(i) If f is odd in each variable, then it is multi-additive Jensen type;
(ii) If f is even in each variable, then it is multi-quadratic Jensen type;
(iii) If f is odd in each of some k variables and is even in each of the other variables, then

it is multi-additive-quadratic.

Proof. The results follow from Theorems 3.2, 3.3 and 3.4 by taking

φ(x1, x2) =

2∏
i=1

n∏
j=1

‖xij‖αij .

�

4. Conclusions

In this paper, the authors introduced the multi-mixed additive-quadratic Jensen type
mappings. It is shown that such mappings can be described by an equation. Using a fixed
point theorem, it is proved that the multi-mixed additive-quadratic mappings can be stable
and hyperstable.
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