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GRAM MATRIX AND ORTHOGONALITY IN FRAMES

Abolhassan FEREYDOONI1 and Elnaz OSGOOEI 2

In this paper, we aim at introducing a criterion that determines if { fi}i∈I is a
Bessel sequence, a frame or a Riesz sequence or not any of these, based on the norms and
the inner products of the elements in { fi}i∈I. In the cases of Riesz and Bessel sequences, we
introduced a criterion but in the case of a frame, we did not find any answers. This criterion
will be shown by K({ fi}i∈I). Using the criterion introduced, some interesting extensions of
orthogonality will be presented.
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1. Preliminaries

Frames are generalizations of orthonormal bases, but, more than orthonormal bases,
they have shown their ability and stability in the representation of functions [1, 4, 10, 11].
The frames have been deeply studied from an abstract point of view. The results of such
studies have been used in concrete frames such as Gabor and Wavelet frames which are very
important from a practical point of view [2, 9, 5, 8].

An orthonormal set {en} in a Hilbert space is characterized by a simple relation

⟨em,en⟩= δm,n.

In the other words, the Gram matrix is the identity matrix. Moreover, {en} is an orthonor-
mal basis if span{en}=H. But, for frames the situation is more complicated; i.e., the Gram
Matrix has no such a simple form. In what follows we recall the basic notations, concepts
and results which are used in the paper. Let H be a complex Hilbert space and I be the se-
quence of natural numbers. The range of an operator is denoted by R(.). A Bessel sequence
for H is a sequence { fi}i∈I ⊂H such that there is a positive constant B satisfying

∑
i∈I

|⟨ f , fi⟩|2 ≤ B∥ f∥2, f ∈H. (1)

Additionally, if for 0 < A < ∞,

A∥ f∥2 ≤ ∑
i∈I

|⟨ f , fi⟩|2 ≤ B∥ f∥2, f ∈H. (2)
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{ fi}i∈I is a frame. The constants A and B are called lower and upper frame bounds, respec-
tively.

A Riesz basis for H is a family { fi}i∈I such that for some constant 0 < A ⩽ B < ∞,

A∑
i∈I

|ci|2 ≤

∥∥∥∥∥∑i∈I ci fi

∥∥∥∥∥
2

⩽ B∑
i∈I

|ci|2, {ci}i∈I ∈ ℓ2.

Associated with each Bessel sequence { fi}i∈I we have three linear and bounded op-
erators, the synthesis operator

T : ℓ2(I)→H, T{ci}= ∑
i∈I

ci fi;

the analysis operator which is defined by

T ∗ : H→ ℓ2(I), T ∗ f = {⟨ f , fi⟩}i∈I ,

and the frame operator

S : H→H, S f = T T ∗ f = ∑
i∈I

⟨ f , fi⟩ fi.

For a review of the basic results of the frames theory I suggest that the reader study book
[1]. If { fi}i∈I is a Bessel sequence, we can compose the synthesis operator T and its adjoint
T ∗ to obtain the bounded operator

T ∗T : ℓ2(I)→ ℓ2(I), T ∗T{ci}i∈I =

{⟨
∑
j∈I

c j f j, fi

⟩}
i∈I

.

If {ei}i∈I is the canonical basis of ℓ2(I), the matrix representation of T ∗T is as follows:

G := T ∗T =
{⟨

T ∗Te j,ei
⟩}

i, j∈I =
{⟨

Te j,Tei
⟩}

i, j∈I =
{⟨

f j, fi
⟩}

i, j∈I

with the (i, j)-entry Gi, j = ⟨ f j, fi⟩. The matrix G = {⟨ f j, fi⟩}i, j∈I is called the Gram matrix
associated with { fi}i∈I.

To recognize that a sequence { fi}i∈I is a Bessel sequence or a frame we have to
check (1)-(2) for all f ∈H. Our main goal in this paper is presenting a practical method to
diagnose Bessel or Riesz sequences just by considering {⟨ f j, fi⟩}i, j∈I. In order to construct
this new method we need the following results:

Theorem 1.1. [1] Let { fi}i∈I be a sequence in H and let G be the Gram matrix associated
to { fi}i∈I. The following statements are satisfied:

(1) The Gram matrix G defines a bounded operator from ℓ2(I) into ℓ2(I) if and only if
the sequence { fi}i∈I is a Bessel sequence. In this case, the Gram matrix defines an
injective operator from R(T ∗) into R(T ∗) and R(G) = R(T ∗). The operator norm of
G is the optimal Bessel bound.

(2) The Gram matrix defines a bounded operator from R(T ∗) onto R(T ∗) with bounded
inverse if and only if { fi}i∈I is a frame sequence.

(3) The Gram matrix G defines a bounded, invertible operator on ℓ2(I) if and only if
{ fi}i∈I is a Riesz sequence.
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Before proceeding we recall some notations. Let K be a Hilbert space and V,W be
linear operators on K. By V ≤ W , we mean that for every f ∈ K, ⟨V f , f ⟩ ≤ ⟨W f , f ⟩.
We write A ≤ |⌊V⌉| ≤ B whenever for every f ∈ K, A∥ f∥ ≤ ∥V f∥ ≤ B∥ f∥ (the relation
A< |⌊V⌉|<B can be defined in a similar way) [7]. The operator V is positive (non-negative)
if V ≥ 0. When V is positive,

∥V∥= sup
∥ f∥=1

⟨V f , f ⟩.

.
Some parts of the following lemma were proved previously. Here, we prove it com-

pletely.

Lemma 1.1. Let V be a positive linear operator on K and 0≤A≤B≤∞ (B ̸= 0). Consider
the following statements:

(1) AI ≤V ⩽ BI.
(2) I − 1

BV ≤
(
1− A

B

)
I.

(3)
∥∥I − 1

BV
∥∥≤ 1− A

B .

(4) A ≤ |⌊V⌉| ≤ B.

Then (1), (2) and (3) are equivalent and imply (4). Moreover, (4) yields that A2

B ≤V ⩽ B.

Proof. When B = ∞, define 1
BV = 0 and A

B = 0, hence all assertions are valid. We prove the
statements when B < ∞. Obviously, for f ∈H,⟨(

I − 1
B

V
)

f , f
⟩
≤ sup

∥g∥=1

⟨(
I − 1

B
V
)

g,g
⟩
.

Since V is positive,

sup
∥ f∥=1

⟨(
I − 1

B
V
)

f , f
⟩
=

∥∥∥∥I − 1
B

V
∥∥∥∥ . (3)

Condition (2) is

⟨ f , f ⟩− 1
B
⟨V f , f ⟩ ≤ ⟨ f , f ⟩− A

B
⟨ f , f ⟩ ,

and condition (1) is

A⟨ f , f ⟩ ≤ ⟨V f , f ⟩ ≤ B⟨ f , f ⟩ .

Since V is positive a simple calculation proves the equivalence of two recent relations and
henceforth the equivalence of (1) and (2) follows. Clearly (2) −→ (3), and when (3) is
satisfied, (3) proves (2).
(1−→ 4) V ≤ BI implies that ∥V∥ ≤ B, so for all f ∈H, ∥V f∥ ≤ B∥ f∥.

Now, by the way of contradiction we assume that there is a g ∈H such that ∥V g∥<
A∥g∥. Let ∥g∥ = 1, so ∥V g∥ < A and thus sup∥ f∥=1 |⟨V g, f ⟩ | < A. Letting f = g we get
⟨V g,g⟩< A; this contradicts (1).
Now, assume that (4) is satisfied. We know that for a positive operator V , ∥V f∥2 ≤
∥V∥⟨V f , f ⟩, [3]. Hence

A2⟨ f , f ⟩= A2∥ f∥2 ≤ ∥V f∥2 ≤ ∥V∥⟨V f , f ⟩.
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Since ∥V∥ ≤ B,
A2

B
⟨ f , f ⟩ ≤ A2

∥V∥
∥ f∥2 ≤ ⟨V f , f ⟩.

On the other hand,
⟨V f , f ⟩ ≤ ∥V f∥∥ f∥ ≤ B∥ f∥2 = B⟨ f , f ⟩.

Two recent inequalities show that A2

B ≤V ⩽ B. □

Two special cases of the above lemma are deduced in the following prepositions when
V is bounded or invertible.

Proposition 1.1. Let V be a nonzero positive linear operator on K, the following statements
are equivalent:

(1) V is bounded with bound B.
(2) V ≤ BI , 0 < B < ∞.
(3) I − 1

BV ≤ I, 0 < B < ∞.
(4) ∥I − 1

BV∥ ≤ 1, 0 < B < ∞.

Proof. Use Lemma 1.1 with A = 0 and ∥V∥= B < ∞. □

Proposition 1.2. Let V be a bounded positive linear operator V on K. The following
statements are equivalent:

(1) V is invertible.
(2) AI ≤V ≤ BI, for constants 0 < A ≤ B < ∞.

(3) ∥I − 1
BV∥ ≤ 1− A

B , for constants 0 < A ≤ B < ∞.

(4) 0 < I − 1
BV <

(
1− A

B

)
I, for constants 0 < A ≤ B < ∞.

Proof. A positive linear operator is invertible if and only if it is bounded below. By Lemma
1.1(4−→1), (2) is satisfied. The other equivalences are clear from Lemma 1.1. □

2. Characterization of Bessel and Riesz sequences using {⟨ f j, fi⟩}i, j∈I

In this section, we introduce criterion K and state our principal theorem in which the
quantity K({ fi}i∈I) determines if { fi}i∈I is a Bessel or a Riesz sequence.

Lemma 2.1. [1] Let M = {Mi, j}i, j∈I be a matrix with Mi, j = M j,i for all i, j ∈ I, and for
which there exists a constant 0 < K < ∞ such that

sup
i∈I

∑
j∈I

|Mi, j|< K.

Then M defines a bounded operator on ℓ2(I) of norm at most K.

Now we define the criterion K({ fi}i∈I).

Definition 2.1. Let { fi}i∈I ⊆H and supi∈I ∥ fi∥2 = B < ∞. We define

k( fi) = 1− 1
B
∥ fi∥2 + ∑

j∈I, j ̸=i

∣∣∣∣⟨ f j, fi⟩
B

∣∣∣∣ , i ∈ I,



Gram Matrix and Orthogonality in Frames 229

and

K({ fi}i∈I) = sup
i∈I

k( fi).

Theorem 2.1. Let { fi}i∈I ⊆ H and B = supi∈I ∥ fi∥2 < ∞. Then the following statements
hold:

(1) If K({ fi}i∈I)< ∞, then { fi}i∈I is a Bessel sequence.
(2) If K({ fi}i∈I)< 1, then { fi}i∈I is a Riesz sequence.

Proof. By a simple calculation, for i ∈ I,

∑
j∈I

∣∣∣∣δi, j −
1
B
⟨ f j, fi⟩

∣∣∣∣= ∣∣∣∣1− 1
B
∥ fi∥2

∣∣∣∣+ ∑
j∈I, j ̸=i

∣∣∣∣⟨ f j, fi⟩
B

∣∣∣∣= k( fi).

Let M = I − 1
B G. Considering Mi, j = δi, j − 1

B⟨ f j, fi⟩, we see that

sup
i∈I

∑
j∈I

|Mi, j|= sup
i∈I

(∣∣∣∣1− 1
B
∥ fi∥2

∣∣∣∣+ ∑
j∈I, j ̸=i

∣∣∣∣⟨ f j, fi⟩
B

∣∣∣∣
)

= sup
i∈I

k( fi) = K ({ fi}i∈I) .

Since K := K ({ fi}i∈I)< ∞, Lemma 2.1 implies that M = I − 1
B G is a bounded oper-

ator with bound K. So G = B(I −M) is bounded and then by Theorem 1.1(1), { fi}i∈I is a
Bessel sequence.
(2) Since

∥∥I − 1
B G
∥∥≤ K < 1, G is an invertible operator and { fi}i∈I is a Riesz sequence by

Theorem 1.1(2) □

We say that { fi}i∈I has the equal norm B > 0 if ∥ fi∥ = B for all i ∈ I, and is normal
if ∥ fi∥= 1 for all i ∈ I. When { fi}i∈I has an equal norm the theorem above gives a simple
criterion based on ⟨ f j, fi⟩s and ∥ fi∥s. When { fi}i∈I has the equal norm

√
B,

K ({ fi}i∈I) = sup
i∈I

(∣∣∣∣1− 1
B
∥ fi∥2

∣∣∣∣+ ∑
j∈I, j ̸=i

∣∣∣∣⟨ f j, fi⟩
B

∣∣∣∣
)

=
1
B

sup
i∈I

∑
j∈I, j ̸=i

∣∣⟨ f j, fi⟩
∣∣ .

From the above relation we obtain

Corollary 2.1. Let { fi}i∈I ⊆H has the equal norm
√

B. Then

(1) If

sup
i∈I

∑
j∈I, j ̸=i

∣∣⟨ f j, fi⟩
∣∣< ∞,

then { fi}i∈I is a Bessel sequence.
(2) If

sup
i∈I

∑
j∈I, j ̸=i

∣∣⟨ f j, fi⟩
∣∣< B,

then { fi}i∈I is a Riesz sequence.

A criterion for determining Riesz sequences is given in the following theorem.
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Theorem 2.2. Let { fi}i∈I ⊆ H be a Bessel sequence. There exists a constant 0 < ε < 1
such that

∑
j∈I, j ̸=i

|⟨ f j, fi⟩| ≤ ∥ fi∥2 − ε, i ∈ I, (4)

if and only if K({ fi}i∈I)< 1.

Proof. Since { fi}i∈I is a Bessel sequence, B = supi∈I ∥ fi∥2 < ∞. Without loss of generality
we rewrite (4) in the form of

∑
j∈I, j ̸=i

|⟨ f j, fi⟩| ≤ ∥ fi∥2 −Bε, i ∈ I. (5)

This is equivalent to

K({ fi}i∈I) = 1− 1
B
∥ fi∥2 +

1
B ∑

j∈I, j ̸=i
|⟨ f j, fi⟩| ≤ 1− ε, i ∈ I. (6)

The above statement holds if and only if K({ fi}i∈I)< 1.
□

The next corollary presents a simple condition for { fi}i∈I being a Riesz sequence.

Corollary 2.2. Let { fi}i∈I ⊆H be a sequence such that B = supi∈I ∥ fi∥2 < ∞. If

sup
i∈I

∑
j∈I, j ̸=i

|⟨ f j, fi⟩|< inf
i∈I

∥ fi∥2 (7)

then K({ fi}i∈I) < 1. Also, every orthogonal set is a Riesz sequence if and only if 0 <

infi∈I ∥ fi∥2 ≤ supi∈I ∥ fi∥2 < ∞.

Proof. We know that

sup
i∈I

(
1− 1

B
∥ fi∥2

)
= 1− 1

B
inf
i∈I

∥ fi∥2.

From the hypothesis

1
B

sup
i∈I

∑
j∈I, j ̸=i

|⟨ f j, fi⟩|<
1
B

inf
i∈I

∥ fi∥2 ⩽ 1
B

sup
i∈I

∥ fi∥2 ⩽ 1

We obtain the inequality

1− 1
B

inf
i∈I

∥ fi∥2 < 1− 1
B

sup
i∈I

∑
j∈I, j ̸=i

|⟨ f j, fi⟩|< 1,

and therefore

1− 1
B

inf
i∈I

∥ fi∥2 +
1
B

sup
i∈I

∑
j∈I, j ̸=i

|⟨ f j, fi⟩|< 1.

Hence

K({ fi}i∈I) = sup
i∈I

(
1− 1

B
∥ fi∥2 +

1
B ∑

i ̸= j
|⟨ f j, fi⟩|

)

≤ 1− 1
B

inf
i∈I

∥ fi∥2 +
1
B

sup
i∈I

∑
j∈I, j ̸=i

|⟨ f j, fi⟩|< 1.
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For the latter assertion, because supi∈I ∑ j∈I, j ̸=i |⟨ f j, fi⟩|= 0, by (7), 0 < infi∈I ∥ fi∥2. Every
Riesz sequence is a Bessel sequence and so supi∈I ∥ fi∥2 < ∞. □

3. Some Extensions of Orthogonality

In the next assertion a characterization for Riesz sequences which are linear combi-
nations of an orthonormal basis is given.

Proposition 3.1. Let {ei}i∈Z be an orthonormal basis for H and {αk}k∈Z be a sequence of
complex numbers such that ∑k∈Z |αk|2 < ∞ and

|α0|⩾ |α1|= |α−1|⩾ |α2|= |α−2|⩾ . . ..

For every i ∈ Z define

fi = ∑
k∈Z

αk−iek. (8)

The following condition implies that { fi}i∈Z is a Riesz sequence:

∑
j∈Z, j ̸=0

∑
k∈Z

∣∣αkαk− j
∣∣< ∑

k∈Z
|αk|2 , (9)

Proof. Clearly,

B := sup
i∈Z

∥ fi∥2 = inf
i∈Z

∥ fi∥2 = ∑
k∈Z

|αk|2 < ∞.

For j ̸= 0, we compute

⟨ f0, f j⟩= ∑
k∈Z

αkαk− j.

Hence, for i ∈ Z,

∑
j∈Z, j ̸=i

|⟨ fi, f j⟩|= ∑
j∈Z, j ̸=i

|⟨ f0, f j−i⟩|= ∑
j∈Z, j ̸=0

|⟨ f0, f j⟩|.

So,

sup
i∈Z

∑
j∈Z, j ̸=i

|⟨ fi, f j⟩|= sup
i∈Z

∑
j∈Z, j ̸=0

|⟨ f0, f j⟩|

= ∑
j∈Z, j ̸=0

|⟨ f0, f j⟩|

= ∑
j∈Z, j ̸=0

∑
k∈Z

∣∣αkαk− j
∣∣ (10)

Since infi∈I ∥ fi∥2 = ∑i∈Z |αi|2 < ∞, the above relation and (9) yield that

sup
i∈Z

∑
j∈Z, j ̸=i

|⟨ f j, fi⟩|< inf
i∈I

∥ fi∥2.

Now, use Corollary 2.2.
□

The following example is a special case of the above proposition.
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Example 3.1. For every i ∈ Z define

fi = αei−1 + ei +αei+1,

where 0 < α < ∞. In the previous proposition put α0 = 1, α−1 = α1 = α and αk = 0
otherwise. We see that for | j|> 2, αkαk− j = 0. We consider the cases j ∈ {±1,±2}. When
j = ±1,

{
αkαk− j|k ∈ Z

}
= {0,α,α}. and when j = ±2,

{
αkαk− j|k ∈ Z

}
=
{

0,α2,α2
}

.
Using these computations,

∑
j∈Z, j ̸=0

∑
k∈Z

∣∣αkαk− j
∣∣= ∑

0<| j|≤2
∑
k∈Z

∣∣αkαk− j
∣∣= 2α2 +4α.

Since ∑k∈Z |αk|2 = 2α2 + 1, when α < 1
4 the condition of Proposition 3.1 is satisfied and

hence { fi}i∈Z is a Riesz sequence.

As well as the above example, we introduce some extensions of orthogonality as
follows: Let B = supi∈I ∥ fi∥2 < ∞ and 1 ⩽ m ∈ N, η > 0. Suppose that for i ∈ I,

|⟨ f j, fi⟩| ≤ η , i−m ⩽ j ⩽ i+m, j ̸= i,

and ⟨ f j, fi⟩= 0, otherwise. With m = 0, { fi}i∈I becomes an orthogonal sequence.

Proposition 3.2. With the orthogonality described above, if { fi}i∈I satisfies the condition

2mη < inf
i∈I

∥ fi∥2, (11)

then { fi}i∈I is a Riesz sequence.

Proof. We compute that

K({ fi}i∈I) = sup
i∈I

(
1− 1

B
∥ fi∥2 +

i+m

∑
j=i−m, j ̸=i

∣∣∣∣⟨ f j, fi⟩
B

∣∣∣∣
)

⩽ 1− 1
B

inf
i∈I

∥ fi∥2 +
2mη

B
. (12)

By the hypothesis of the proposition

2mη
B

<
1
B

inf
i∈I

∥ fi∥2 ≤ 1
B

sup
i∈I

∥ fi∥2 = 1.

And so,

1− 1
B

inf
i∈I

∥ fi∥2 < 1− 2mη
B

.

Therefore

1− 1
B

inf
i∈I

∥ fi∥2 +
2mη

B
< 1.

This relation and (12) yield that K({ fi}i∈I)< 1. Theorem 2.1(1) ensures us that { fi}i∈I is a
Riesz basis. □

Relation (11) says that with the orthogonality described above, for keeping Riesz
property, m and η should be restricted by relations η ≤ infi∈I ∥ fi∥2

2m or m = infi∈I ∥ fi∥2

2η .
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In the sequel, two special types of Gram matrices will be introduced. A Matrix
A = {ai, j}i, j∈I is said to be a sub-polynomial matrix (see [6]), if there are two constants
ε ,r > 0 such that

|ai, j| ≤ ε (1+ |i− j|)−r , i, j ∈ I.
A matrix A = {ai, j}i, j∈I is called a sub-exponential matrix if there exist constants ε ,α > 0
such that

|ai, j| ≤ εe−α|i− j|, i, j ∈ I.
We mention ε ,α or (ε,r) as the parameters of sub-exponential (sub-polynomial) matrix
A = {ai, j}i, j∈I. The following theorem shows the importance of such Gram matrices.

Theorem 3.1. [6, Theorem 5.6] Assume that A is a sub-exponential (sub-polynomial) matrix
which is invertible. Then its inverse is also a sub-exponential (sub-polynomial) matrix.

By a little computation we see that the following conditions are equivalent:

(1) supi∈I ∥ fi∥2 ≤ B, i ∈ I
(2) 0 ⩽ 1

B∥ fi∥2 ≤ 1.
(3) 0 ⩽ 1− 1

B∥ fi∥2 ≤ 1.
(4) |1− 1

B∥ fi∥2| ≤ 1.

For the proof the reader can follow these implications (1)→ (2)→ (3)→ (4)→ (1). The
equivalence above is used in the following Lemma.

Lemma 3.1. Let { fi}i∈I ⊆ H with supi∈I ∥ fi∥2 ≤ B < ∞ and 0 < α < ∞. The following
statements are equivalent for ε > 1:

(1)
∣∣δi, j − 1

B⟨ f j, fi⟩
∣∣≤ εe−α |i− j|, i, j ∈ I,

(2) 1
B |⟨ f j, fi⟩| ≤ εe−α|i− j|, i, j ∈ I.

If the above conditions are satisfied we have ∥ fi∥ ≤
√

B. For the case 0 < ε < 1,∣∣∣∣δi, j −
1
B
⟨ f j, fi⟩

∣∣∣∣≤ εe−α|i− j|, i, j ∈ I, (13)

if and only if√
B(1− ε)≤ ∥ fi∥ ≤

√
B(1+ ε), i ∈ I and |⟨ f j, fi⟩| ≤ Bεe−α|i− j|, i, j ∈ I (i ̸= j). (14)

Proof. Let i = j. By the comment before the lemma, since supi∈I ∥ fi∥2 ≤ B, we always have∣∣∣∣δi,i −
1
B
⟨ fi, fi⟩

∣∣∣∣= ∣∣∣∣1− 1
B
∥ fi∥2

∣∣∣∣≤ 1 ≤ ε = εe−α|i−i|.

and
1
B
|⟨ fi, fi⟩|=

1
B
∥ fi∥2 ≤ 1 ≤ ε = εe−α|i−i|.

Thus, for i = j, (1) and (2) are the same. But, for i ̸= j, since δi, j = 0.∣∣∣∣δi, j −
1
B
⟨ f j, fi⟩

∣∣∣∣= 1
B
|⟨ f j, fi⟩|.
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Therefore, for i ̸= j, (1) and (2) are identical.
Now, for the case 0 < ε < 1 we prove the second assertion. We prove the inequality (13) in
two cases i ̸= j and i= j. Assuming i= j, (13) becomes |1− 1

B∥ fi∥2| ≤ ε . This is equivalent
to

1− ε ⩽ 1
B
∥ fi∥2 ≤ 1+ ε,

and since 0 < ε < 1 we take the root
√

B(1− ε) and then√
B(1− ε)≤ ∥ fi∥ ≤

√
B(1+ ε).

For the case i ̸= j, obviously, (13) is equivalent to the second part of (14). □

Proposition 3.3. Let { fi}i∈I ⊆ H with supi∈I ∥ fi∥2 ≤ B < ∞. Then I − 1
B

G is a sub-
exponential matrix with parameter 0 < ε < 1, 0 < α if and only if√

B(1− ε)≤ ∥ fi∥ ≤
√

B(1+ ε), i ∈ I and |⟨ f j, fi⟩| ≤ Bεe−α|i− j|, i, j ∈ I (i ̸= j).

The above conditions yield that { fi}i∈I is a Riesz sequence and the inverse of the Gram
matrix is sub-exponential.

Note that the first part of Lemma 3.1 has the following consequence that: for ε ≥ 1,

I − 1
B

G is a sub-exponential matrix if and only if G is a sub-exponential matrix. Also,
similar results for a sub-polynomial Gram matrix can be derived. A special type of a sub-
exponential orthogonality is described below.

Proposition 3.4. Let { fi}i∈I ⊆ H with supi∈I ∥ fi∥2 ≤ B < ∞ and k ∈ I such that 2−k+2 <

infi∈I ∥ fi∥2. Assume that

|⟨ f j, fi⟩| ≤ 2−|i− j|−k, i, j ∈ I,(i ̸= j).

Then { fi}i∈I is a Riesz sequence and

|⟨ f j, fi⟩| ≤ 2−|i− j|−2 inf
i∈I

∥ fi∥2, i, j ∈ I.

Proof. For i ∈ I,

∑
j∈I, j ̸=i

∣∣∣∣⟨ f j, fi⟩
B

∣∣∣∣≤ 1
B ∑

j∈I, j ̸=i
2−|i− j|−k

=
2−k

B ∑
j∈I, j ̸=i

2−|i− j|

≤ 2−k

B
2 ∑

l∈I,
2−l (15)

=
2−k+2

B
.
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Using the above relation and the conditions of the theorem we compute

K({ fi}) = sup
i∈I

(
1− 1

B
∥ fi∥2 + ∑

j∈I, j ̸=i

∣∣∣∣⟨ f j, fi⟩
B

∣∣∣∣
)

≤ 1− inf
i∈I

1
B
∥ fi∥2 +

2−k+2

B
< 1− 2−k+2

B
+

2−k+2

B
= 1.

The reason for the inequality (15) is stated below:

∑
j∈I, j ̸=i

2−|i− j| = ∑
{

2−|i− j|| j ∈ I, j ̸= i
}

= ∑
{

2−l
∣∣∣∣ l ∈ {|i−1| , |i−2| , ...., |i− (i−1)| , |i− (i+1)| , ...

..., |i− (2i+1)| , |i− (2i+2)| , ....}
}

= ∑
{

2−l
∣∣∣∣ l ∈ {|i−1| , |i−2| , ....,2,1,1,2, ...

..., |i− (2i+1)| , |i− (2i+2)| , ....}
}

= ∑
{

2−l
∣∣∣∣ l ∈ {|i−1| , |i−2| , ....,2,1,1,2, ......, |i−1| , |i−2| , ....}

}
= ∑

{
2−l
∣∣∣∣ l ∈ {1,2, ...., |i−2| , |i−1|}

}
+∑

{
2−l
∣∣∣∣ l ∈ I

}
⩽ 2∑

{
2−l| l ∈ I

}
= 2 ∑

l∈I,
2−l = 22.

□
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