
U.P.B. Sci. Bull., Series A, Vol. 78, Iss. 4, 2016                                                      ISSN 1223-7027 

NUMERICAL SOLUTION FOR THE TIME–SPACE 

FRACTIONAL PARTIAL DIFFERENTIAL EQUATIONS BY 

USING THE WAVELET MULTI–SCALE METHOD 

 

H. AMINIKHAH1, M. TAHMASEBI2, M. MOHAMMADI ROOZBAHANI3 

 

In this paper, a practical method for numerical solutions of the time-space 

fractional partial differential equations (FPDEs) is presented. The wavelet method 

based on multiple resolutions is used to solve the FPDE. This method transforms the 

given FPDE and the boundary conditions to matrix equations with unknown wavelet 

coefficients which can be solved by a sequential evaluation of two systems, with 

significantly less computational effort. Theoretical considerations are discussed. For 

illustration the accuracy and efficiently of the method some numerical examples are 

presented 

 

Keywords: Fractional diffusion equation; Wavelet numerical method; Multi 

resolutions Method; Fractional differential equations. 

1. Introduction 

There is a vast literature on efficient methods for fractional partial 

differential equations. These equations are important as they arise naturally in 

many applied areas [1-4, 8, 11, 15, 17, 18-20]. Almost all methods of solving 

FPDEs are the generalizations of the same strategies for the solutions of PDEs. 

Multiscale wavelet method for the solution of PDEs are used in many works [6, 

10, 14, 16, 22]. Also Mclaren et. al. handled multiscaling collocation method in 

different way [13]. Their method keeps the different levels of resolution consistent 

with each other which has a property similar to domain decomposition methods. 

In the present work, we are interested to combine Adams fractional and the 

multiscale techniques to solve the fractional partial differential equations 

efficiently. The main objective of the present work is to extended the multiscaling 

collocation method in [13] for FPDE. We intend to consider a kind of 

“generalized diffusion” equation which is referred to the space-time FDE with 

Robin condition boundary, 
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xD  is Caputo fractional derivative of order   defined by [15] 
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where 1m m   , m . 

In this approach, we utilize cubic B-spline wavelets which are symmetric, 

compactly supported and smooth enough. The paper is organized as follows: 

In section 2 the basic definitions and required properties of the wavelets 

are briefly mentioned. In section 3 the fractional derivative matrix was 

approximated by collocation method. In section 4 the wavelets and scaling 

functions were reshaped to satisfy the boundary conditions exactly. In section 5 

we employ the fractional Adams method for time discretization FPDE, then by the 

operational matrices we convert the FPDE to a linear system. Finally, by multi-

resolution method in some subdomains this system divides to some smaller 

systems which each of them has different resolution and less computation than the 

primary system, then by combining the solutions of these systems, we derive an 

approximation of the true solution with less computation. In section 6, the stability 

of the method is investigated. In section 7 numerical examples are given to 

demonstrate the validity of the proposed method. 

2. Wavelet analysis Preliminaries and notations 

In this section, we present some notations, definitions and preliminary 

facts of the wavelet theory which will be used further in this work. The discrete 

wavelets constitute a family of functions constructed from dilation and translation 

of a function called the mother wavelet  x . They are defined by 

   2

, 2 2 .
j

j

j k x x k 


                                            (3) 

The best way to understand wavelets is through a multi-resolution analysis [5]. 

Given a function    2f x L , a multi-resolution analysis (MRA) of  2L  

produces a sequence of subspaces 0 1j jV V V     such that the projections 

of f  onto these spaces give finer approximations of the function f  as j  . 

There exists 0V   such that  x k  , k  is a Riesz basis in 0V . The function   

is called the scaling function. As a consequence of above definition, jV  is spanned 
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by    2
, 2 2

j
j

j k x x k 


  . One may construct wavelets by first completing the 

spaces jV  to the space 1jV   by the space jW , i.e., 1j j jV V W   . In such away there 

exists a function   such that jW  is spanned by  2 j x k   . The space jW  include 

all the functions in 1jV   that are orthogonal to all those in jV  under  2L -inner 

product. The set of functions which form a basis for the space jW  are called 

wavelets [3, 4]. For the inclusion 0 1V V  and 0 1W V  there are two important 

identities: 

       2 2 , 2 2 .k k

k k

t h t k t g t k                               (4) 

For more details, refer to [5]. 

Definition (Biorthogonal wavelets): Two functions  2, L    are 

called biorthogonal wavelets if each of the sets  : ,jk j k   and  : ,jk j k   be 

a Riesz basis of  2L  and they are biorthogonal to each other in the following 

sense 

, , , ,,j k l m j l k m     for all , , ,j k l m . 

Designing biorthogonal wavelets allows more freedom than orthogonal wavelets. 

One of them is the possibility of constructing symmetric wavelet functions. Since 

they define a multi-resolution analysis, the dual functions must satisfy 
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k

x g x k                          (5) 

In this work we will use biorthogonal wavelets whose scaling functions are the 

cubic B-splines: 
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The fractional derivative of cubic B-spline  3B x  is given in [11]: 
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2.1. Fast Wavelet Transform (FWT) 

From 1j j jV V W   , every function 1 1j jv V   can be written uniquely as 

the sum of a function j jv V  and a function j jw W . Then there exist some 

coefficients such that 
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http://en.wikipedia.org/wiki/Orthogonal_wavelet
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In other words, we have two representations of the function 1jv   , one as an 

element in 1jV   and associated with the sequence 1,j ka 
, and another as a sum of 

elements in jV and jW  associated with the sequences  ,j ka  and  ,j kb . The 

following relations show how to pass between these representations. From (5) and 

(8) and biorthogonal property of wavelets, 

, 1,2 ,j k i j k i

i

a h a                                                        (9) 

and 

, 1,2 .j k i j k i

i

b g a                                                      (10) 

These formulas define the FWT, let 1ja  , ja
 
and jb  be vectors which contain 

coefficients  1,j ka 
,  ,j ka  and  ,j kb  respectively, then the FWT maps the vector 

1ja   onto vectors ja and jb : 
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For numerical purposes we have to reverse the process to define Inverse fast 

wavelet transform (IFWT). To do this, taking the inner product of each side of (8) 

with 1,j k  , we derive 

1, 2 , 2 , ,j k k n j n k l j l
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a h a g b                                      (11) 

so we can define IFWT as following: 
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3. Matrix approximations 

In this work we need operational matrix M  to approximate 
xD  on jV  

where 0 1  . We will use a collocation based method to calculate them. First 

we want to approximate any function of  2L as finite series of wavelets and 

scaling functions. For a fixed 0j  , we use jV as a basic space, we add extra 

spaces jW  for increasing the resolution. Let 
jV

f denote the projection  2f L  

onto jV . From 1j j jV V W    we have 
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where ,ji j ib f  , ,ji j ia f   and 
1 1,j i j ia f   . Since we use compact 

support wavelet basis, so this property guarantees that in the bounded domain 

 the sum only contains finitely nonzero terms. Thus the function 
jV Wj

f


 in the 

bounded domain   can be expressed as a vector
a

F
b
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 what we will usually call 

"the vector form of 
jV Wj

f


", the vector a  contains all coefficients  ,j ka  and b  

contains all coefficients ,j kb . If F  was restricted to subdomain  , then only 

coefficients must be considered whose functions ,j i  and .j i have support in  , 

we represent it by symbol 
a

F
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. Let jP  be the cubic matrix which converts 

F
 
the vector form of 

jV
f  into d  the vector whose elements are values of f in 

2 j

kx k , 0 k N  . Then we have jP F d . Also, we construct the matrix 

jP which converts F  the vector form of 
jV

f  into d  the vector whose elements 

are values of  xD f x  in 2 j

kx k , 0 k N  . Then we have jP F d

 . 

Since the basic form of the function f is in the space j jV W so we need 

the FWT and IFWT for transforming the vectors from the space 1jV   to the space 

j jV W  and vice versa. This content is expressed in the following diagram: 
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This diagram shows that we can make the fractional derivative matrix as 

following 

 
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                                         (13) 

In this method we need to decompose the matrix M into some blocks such that 

the partitions of the matrix M must be compatible with the partition of the vector 
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In addition, if we use the restricted vector 
a

F
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3.1. Advection matrix 

One further requirement is the multiplication by the space independent 

function  g x . We create the linear operator G  to approximate the multiplication. 
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1

,j jFWT P G P IFWT


                                        (16) 

G  is a diagonal matrix with the values of function g  in 2 j

kx k , 0 k N  . 

In the general case, we can represent the operator  . k
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where kF  is a diagonal matrix with the values of function kf  in some locations. 
 

4. Boundary conditions 

In this section we reshape the wavelets and the scaling functions in jV  

whose their support contains 0( )x x n  , in such a way that they satisfy in the 

boundary conditions (1), rest are zero at these points. For example in 0x   only 

three cubic B-spline functions are nonzero, we can make the reshaped scaling 

function in 0x   by combining these functions: 

       , 1 ,0 , 1 .j j jx a x b x c x                                              (18) 

The function   must satisfy the boundary conditions, also  L x  must be 

consistent with these reshaped functions in the boundary conditions, so we have 

   
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the coefficients a , b and d  are obtained from the above system equations. 
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5. The proposed method 

 

We consider the fractional Adams method for solving FPDE (1), This 

method was first studied by Diethelm, Ford and Freed [7]. Their method for 

solving equation (20) is as follows: 

    ,D y t f t y t  ,   00y y , 0 1,                                    (20) 
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and    , : 0,1,.., , .k k k

T
h t kh k N y y t

N
     

Let nu  denote the exact solution  ., nu t  and nu  denote approximation 

solution of it. So approximation solution for the time space-fractional diffusion 

equation (1) by using the fractional Adam's method would be 
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Now we can take the space 1jV   to approximate the solution of equation (23). If 

we consider the vector form
k

k

a

b

 
 
  

 of  , ku x t in j jV W , Then from (23) and the 

definition of M we have 
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We use the multiscaling method to solve this system to avoid growing our 

calculations and has more accurate solution in the subdomain  . This means that 

once we solve the system in a space jV  and domain  . Once again we solve the 

system in a finer space 1jV   and subdomain  . Combination of these two systems 

makes suitable accuracy and the less calculations than the solutions of the system 

in the space 1jV  on domain  . In the beginning we consider the matrix M  in the 

space 1jV  , since in the first step we will not be using all of M so we decompose 

the matrix M into some blocks .
A B

M
C D

 
  
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We only consider the block A which operates as the operator L  in the 

space jV  over all domain . Then using time stepping scheme (23) we find an 

approximation for 1na  which we denote by Tma
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Next, we are looking for vector correction where 1n Tm Cra a a   . What we want 

now is to solve the system on  in the 1jV  . Consider the fractional Adam's 

method for this case 
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,
2

Cr Tm

n

kn

k n k
k

A B a ah
I

C D b

a A B ah
c

C Db b











 



  

      
                     

    
     

        


                  (27) 

then 

 

 

1

, 1

0

0

, 1 , 1

0 0

2

0
.

2

r

m

C

n

n
k

k n

k

n n
T k k

k n k n

k k

A B ah
I

C D b

c Bb
h

b
C a c a D c b











 






 

  

   
            

 
 

 
   
         

  



 

        (28)

 

The vector

 

1

1

n

n

a

b







 
 
  

 is obtained by solving the above system. The last step is 

increase the accuracy of the approximated vector 
0

Tma



 
 
 

. We construct the vector 

1

1

n

n

a

b







 
 
  

 by replacing the elements of 
0

Tma



 
 
 

by the elements of 
1

1

n

n

a

b







 
 
  

, the only 

ones that are related to subdomain  . This completes the method.  

Now, we present the algorithm of the proposed method. In this algorithm 

j , h  and g  are resolution level, time step and initial function respectively. If the 

vector  0 2, , ,
T

Na a a a  be the vector form of a function in jV  then we suppose 

the restricted vector a  is  1, ,
T

r sa a  . 
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5.1. Algorithm: 

1.  0 1 2, , , Nv g g g  where 2 jN m   and  2 0, ,2j

kg g k k N   

2. 1

j

a
FWT P v

b

 
   

 
 

3. Constructing matrix M by using (17) 

4. Blocking the matrix 
A B

M
C D

 
  
 

 where  1: 1,1: 1A M N N   , 

 1: 1, 1: 2 1B M N N N     and so on for C and D  

5. 
A B

M
C D

 



 

 
  
 

 Limiting M  to subdomain  , where 

 : 1, : 1A A r s r s    ,  : 1, :B B r s r s    and so on for C and D  

6. For 0n  to k  do 

7.               
n

n

a a

b b

   
   

  
 

8.                : 1a a r s     ,     :b b r s   

9.               Solve the system (25) to get vector Tma  

10.              : 1Tm Tma a r s    

11.             Solve the system (28) to get vector 
Cra

b





 
 
 

 

12.             Cr Tma a a     ,   

13.              : 1Tma r s a  ,  :b r s b , 
Tma

v
b

 
  

 
 

14. End for 

6. Stability 

In order to show stability of the approximate solution, we recall discrete 

Gronwall lemma. 

Lemma (Discrete Gronwall Lemma): If  ky ,  kf , and  kg  are nonnegative 

sequences and 

0

0,n n k k

k n

y f g y for n
 

  

        

                             (29) 

then

 0

exp 0.n n k k i

k n k i n

y f f g g for n
   

 
   

 
                           (30) 

If, in addition,  kf  is nondecreasing then
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0

exp 0.n n i

i n

y f g for n
 

 
  

 
                                      (31)

 Now, let nu  denote the approximation solution of equation (23), and nU  be the 

vector form of nu  in the jV  and       0 1, , , , , ,
T

n n n N nU u x t u x t u x t     where 

2 j

kx k , 0 k N  . Since n njP U U , from equation (23) we have 

 
1 1 1 1

1 0 1, 1

0

.
2

n

n k nj j k n j j

k

h
P U P U c MP U MP U





   
 



 
   

   
                    (32)

 Choosing h  small enough that 
 

1
1

2 2

h
M




 

 
 guarantees nonsingularity of 

the matrix 
 2

h
I M





 

, then 

 
 

1

1
2

2
1

2

h
I M

h
M









 
       

 

, 

therefore, we have 

 

   

1

1
1 0

1

1

, 1

0

2

.
2 2

n j j

n

kj j k n

k

h
U P I M P U

h h
P I M P M c U



 



 














 
     

 
       



            (33) 

Since 
 

1

2
2

h
I M







 
     

 and 
T

h
N

 , we have 

 
1 1

1 0 , 1

0

2

2 .
2

n

n kj j j j k n

k

T

N
U P P U P P M c U





 
 



 
 
 

 
 

            (34) 

By applying Gronwall's inequality, we obtain

 
, 1

1 01 2

0

exp ,
n

k n
n

k

c
U C U C T

N










 
  

 
                                (35) 

since 
     

1 1 1

, 1 2 1 2
2

k nc n k n k n k

N N N N N

  

   

  

     
     is bounded and 

increasing function with respect to   so we have 

 1 01 2exp 2 ,nU C U C T 
                                      (36) 
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where 1

1 2 j jC P P  and 
 

1

2

4

2
j j

h
C P P M




 

, this completes the proof of 

stability. 

 

7. Numerical Examples 

 

Example 7.1. We consider the following time space fractional differential 

equation 

   , , ,t tD u x t D u x t   

the initial condition and the boundary conditions are as follows: 

       
2

1
exp , 3 4,

1, 20, 0,0 2, ,0 1 2

0, .

x
u t u t t u x x

otherwise

  
    

         


 

For comparison, the example 1 was solved numerically in different levels of 

resolutions. Table 1 shows the convergence when j decreases, also the Figure 1 

shows in different times the approximated results satisfy the boundary conditions 

exactly. 
Table 1. The errors are the difference between the jV  results and The 1jV   results ( 1/j jV V  ) 

with h=0.01 at t=0.5. 

0.9         

x  3 4/V V   4 5/V V   5 6/V V   6 7/V V   7 8/V V   solution on 8V  

1.5 0.0030298 -0.000261 -6.163E-6 -3.025E-7 -1.516E-8 3.5574E-7 

2 0.0007083 7.9038E-6 8.4961E-7 9.6163E-8 1.0941E-8 0.11612065 

2.5 0.000198 -9.662E-6 1.9387E-9 -1.41E-9 7.848E-11 0.28671766 

3 0.000521 -1.194E-5 -3.205E-7 -1.114E-8 4.754E-10 0.29474804 

3.5 -0.000733 -0.000135 -1.081E-5 -8.237E-7 -6.865E-8 0.10448197 

0.7         

x  3 4/V V   4 5/V V   5 6/V V   6 7/V V   7 8/V V   solution on 8V  

1.5 -3.29E-6 -2.831E-7 -1.968E-9 -6.91E-11 8.928E-12 2.3211E-9 

2 0.0002645 1.4228E-6 -2.444E-7 -6.756E-9 -7.375E-10 0.00223121 

2.5 0.0002652 3.0337E-6 -2.905E-7 -2.917E-9 -2.156E-10 0.03290537 

3 0.0002006 3.0142E-6 -1.995E-7 -1.829E-10 1.453E-10 0.08704351 

3.5 0.0001583 3.6176E-6 3.9999E-9 1.5924E-8 2.7148E-9 0.12114837 
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Fig. 1. This figure shows approximated solution in different times in example 1 

 

Example 7.2.we consider the following fractional equation: 

     
2

2
, , ,tD u x t u x t u x t

x

 
 


 

The initial condition and the boundary conditions are as follows: 

             

   

3 3 3 3 3 3,0 3 2 3 3 3 2 3 3 , 1 11

1, 11, 0, 0 1

u x B x B x B x B x B x B x x

u t u t t

              


   

The example was solved by presented multi-scaled method with 5V on   and 

6V on  . The figure 2 and table 2 show that the accuracy can be improved by 

enlarging subdomain. 

 
Table 2.  

The errors are the difference between the multi-scale results and The results obtained using 

6V , with h=0.01 at t=0.5. 

x  2.5 4.5 5.5 7.5 8.5 10.5 

error [4,8]   -2.0330E-6 4.3833E-7 -2.2797E-7 2.1657E-7 -2.1980E-6 1.0790E-6 

error [2,10]   -4.4215E-8 8.7666E-8 -4.5595E-8 4.3315E-8 -8.7919E-8 2.1579E-7 

solution on 6V  0.07538483 1.44352103 1.19066365 -0.6054038 -1.4118151 -0.3922880 

 

 
Fig. 2. This figure compare the errors of the presented method in different subdomains. 
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8. Conclusions 

 

In this work a practical approach for solving time space fractional partial 

differential equation is presented. Multi scaling method via wavelets is used to 

increase resolution in some locations, furthermore the computations are reduced 

because of the compact support of wavelets, and also wavelets are employed in 

such a way that they satisfy the boundary conditions exactly. The method can be 

extended to nonlinear FPDEs that is now under progress. 
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