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VISUAL GUIDANCE OF ROBOTS INTEGRATED IN 
INTELLIGENT MANUFACTURING 

Octavian STOCKLOSA1, Theodor BORANGIU2, Silviu RĂILEANU3, Octavian 
MORARIU4, Cristina MORARIU5 

Guidance vision is applied as an advanced motion control method, which 
provides flexibility when integrating robots in intelligent manufacturing cells with 
unstructured environment. The paper develops a methodology for on-line 
implementing vision-based robot control strategies that use robot-object models a 
priori learned, and are on-line checked for collision-free grasping based on the 
models of the gripper's fingerprints. Experiments have been carried out on a 
development platform using a Cobra s850 SCARA robot with compact Adept 
controller and vision extension. 
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1. Introduction 

Tasks in visual servoing consist into controlling the motion of the robot in 
its environment using vision, as opposed to just observing the environment, like in 
active vision from motion. Visual servoing of robots uses structural features 
extracted from images as form- and contour image features for object recognition 
and locating or collision avoidance. Context features may be added to this data to 
simplify object search at run time. The form- and contour image features refer to 
the projection of a body- or hole physical feature of an object (e.g. the part to be 
grasped, the gripper's fingers or the robot tool) onto the camera image plane [1]. 
Typical image features are: edges and corners for contours, respectively the 
shape, centre of mass, orientation of bodies and holes or contrived patterns for 
form descriptors. Image features must be unambiguously located in different 
views of the robot scene by different virtual cameras [2]. Visual servo systems 
typically use one of the following camera configurations [3, 4]: (a) Stationary 
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(fixed outside the robot workspace): their location is time-invariant relative to the 
robot base frame (x0, y0, z0); (b) Mobile (arm-mounted or hand-held): their 
location relative to (x0, y0, z0) is time variant as the robot link on which the camera 
is mounted moves relative to the world frame. 

A systemic view of the robot motion planning and tracking for robot 
grasping stationary and moving parts is presented in this paper. This view allows 
the task-oriented management of a scene's foreground and provides part 
qualifying, robustness to variation in workspace lighting and adaptation to 
unstructured material flows to be accessed by the robot. 

Random scene foregrounds, as the conveyor belt, may need to be faced in 
robotic tasks. Depending on the parts shape and on their dimension along z+, 
grasping models Gs_m  are off line trained for object classes. If there is the 
slightest uncertainty about the risk of collision between the gripper and parts in 
the scene – touching or very close one to the other –, then extended grasping 
models { }FGP_mGs_m,EG_m =  must be created by adding the gripper's 
fingerprint model FGP_m  to authorize part access only after clear grip tests at run 
time.  

2. Frames, features and servoing taxonomy 

Robotic tasks are typically described with respect to more than one frame 
[3, 4]. The fixed or moving locations of these coordinate frames can be linked via 
relative transformations, or poses. A robot motion, guided by vision to grasp an 
object or to interact with it, will be planned from visual data created at run time 
and mapped into the operational space to provide a pose in which the end-effector 
accesses the object or interacts with it in a desired manner, imposed by the 
application task [10].  

An analysis of the components of this transformation and of the coordinate 
frames they interconnect results from Fig. 1 which shows a SCARA robot 
manipulator and a stationary, down looking camera [5, 6, 7]. 

The visually planned and tracked motion will guide the robot towards the 
grasping location of an object of interest identified and located in the image plane 
(xvis, yvis). There are 4 components used to compute the end-effector's destination 
transformation part.loc=0

nx  which is relative to the base frame (x0, y0, z0) of the 
robot: 
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Fig. 1. Stationary camera configuration and related camera − robot relative transformations 
00 , nobj xx  respectively for feature tracking- and feature tracking for object grasping. 

• The location offset ]to.cam[cam=0
visx  of the image frame (xvis, yvis) with 

respect to the robot's world frame (x0, y0, z0). This coordinate transformation is 
created off line by an interactive camera – robot calibration program for all 
virtual cameras cam in use. 

• The pose vis.loc=vis
objx  of the object-attached frame (xobj, yobj) relative to the 

vision frame (xvis, yvis). This coordinate transformation is computed at run time 
by the vision processor and describes, in most cases, the location of the frame 
placed in the centre of mass of the currently identified object, with an 
orientation expressed by the angle between the minimum inertia axis of the 
object's 2D image and xvis; 

• The pose grip.trans== obj
n

obj
T xx  of the frame ),,( TTT zyx  attached to the end-

effector with respect to the object's locating frame (xobj, yobj). This relative 
transformation is always considered when visually controlling object grasping, 
to recuperate the third dimension (the depth of view) which was lost during 
image acquisition by the 2D projection; 

• The pose TOOL== F
n

F
T xx  of the end-effector frame ),,( TTT zyx  with respect to 

the coordinate frame (xF, yF, zF) which is attached to the tool mounting flange 
of the manipulator.  

Image feature parameters represent real-valued quantities that are 
computed from one or several image features. Typical feature parameters used in 
visual servo control are: the image plane coordinates vu,  of visualised object 
points visP ; the distance between two image points, ),(dist visvis QP  and the 
orientation of the line connecting these two points, ),(∠ vis

visvis xQP ; the parameters 
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of the gripper's fingerprints projection on the image plane: shape, area, location, 
etc. 

Hence, a real-valued mathematical or logical expression having as 
arguments one or more image feature parameters may be used to dynamically 
update the description of an object (part to be tracked / grasped) or robot tool. 
Image feature parameters can be stored in numerical form fi (possibly bounded); 
they map the object space into the feature parameter spaceF , by means of feature 
parameter vectors k

kfff Rf ⊆∈]...[= T
21 F . Any feature parameter fi takes 

values in iF . The set of all k chosen feature parameters defines a function which 
maps the object space into the Cartesian product kFFF ×⋅⋅⋅×× 21 . Thus, a certain 
object to be visually tracked and grasped, or a gripper (tool) to be visually 
positioned will appear as a point in the k-dimensional feature space. 

The mapping from the location of the end-effector to the set of 
corresponding image feature parameters, computed according to the projective 
geometry of the camera will be denoted by FT →:F . Considering 2⊆ RF  the 
feature parameter space of vu,  coordinates of the projection of some point visP  
onto the image plane (xvis, yvis), then, assuming perspective projection, T][= vuf . 

The pair "physical camera-virtual camera (a data set describing the task - 
driven context in which the physical camera's information will be interpreted)" is 
related to the base coordinate system of the robot by the time-invariant pose 0

visx  
evaluated a single time during an interactive off line camera-robot calibration 
session, and to the object in the scene by vis

objx .  
The camera image of the object vis

objx  is independent of the robot motion 
(unless the target is the end-effector itself, described for example by image feature 
of the gripper's fingerprints projected onto the image plane). The pose vis

objx  is 
variable in time for parts travelling on conveyor belts; the computation of this 
information is done at run time, and involves the search, recognition and locating 
of the image features(s) on the object of interest [2, 3]. 

For object grasping, the image features must unambiguously describe the 
entire object for its successful identification and locating at run time. In addition, 
the pose obj

nx  of the gripper, relative to the frame attached to the object in its 
current location, is required.  

For a stationary camera, the relationship between these poses is: 
 trackingfeature (a)for   ,:00 vis

objvisobj xxx =  

graspingobject for                                         

  trackingfeature (b)for   ,::00 obj
n

vis
objvisn xxxx =
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The taxonomy of visual servo architectures is defined by classifying robot-
vision systems according to the type of structure of the closed-loop motion 
controller and to its type of control law:  

Hierarchical motion control structure [8, 9], with the vision processor 
providing set-points as reference input to the robot's joint-level controller – thus 
using joint data feedback to internally stabilise the robot. This structure 
corresponds to the interlaced look-and-move control schemes, where motion 
tracking and image processing are pipelined (Fig. 2). 

 

 
Fig. 2. Position-based look-and-move servoing scheme for object tracking  

This is a position-based control structures, using error signals defined in 
task space coordinates. Features are extracted from images and their associated 
parameters are computed and used in conjunction with a geometric model of the 
visualised object and of the known camera-robot ensemble, to estimate first the 
pose of the object with respect to the camera. Feedback is then computed by 
reducing errors in estimated pose space, and applied to the task-space trajectory 
generator. 

Position-based look-and-move control will be used, according to the 
system structure in Fig. 2. Features are extracted from the image and used to 
estimate the pose est

vis
obj

vis
obj )(=ˆ xx  of the target (object, point) relative to the camera. 

Using these values, an error between the current estimated and the desired pose of 
the robot d

vis
obj )(x , is defined in the task space T . Thus, position-based control 

neatly separates the control actions, i.e. the computation of the feedback signal 
nsnsmms ≤≤3  ),,(=)( 0 qdkx  using the direct kinematics model )(dk  of the 

manipulator, from the estimation problem involved in computing position or pose 
vis
objx̂  from visual data est)(f .  
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Definition. A visual positioning task is expressed by an error function 
mRE →:T . This function is referred to as virtual kinematic error function VKE. 

A positioning task is fulfilled when the end-effector has been moved in pose 
0= nn xx  if 0xE =)( n . 

Once a suitable VKE function is defined and its parameters are 
instantiated from visual data, a compensator can be designed that reduces the 
value of the VKE function to zero. This compensator computes at every sampling 
time instant the necessary end-effector position (xn)c that is sent as dynamic 
reference udr to the joint-space (operational - space) motion tracking controller. 
Since the VKE functions are defined usually in the Cartesian space, it is common 
sense to develop the compensator's control law through geometric insight. 

3. Motion control based on pose-feature extraction from fixed camera 

In industrial applications of position-based dynamic look-and-move 
control structures, the robot-vision system works with offline learned objects 
which can be visually recognised and located at runtime [10]. It becomes thus 
possible: 

• To recover the object's pose, objx̂ , relative to the base frame of the robot, from 
the direct estimate vis

objx̂  of the object's pose in the vision frame and by 
composing it with the camera-robot calibration estimate visx̂ ; 

• To define stationing points objS  on the object's image, relative to a suitable 
object-attached frame (xobj, yobj). 

Assuming a random part presentation in the robot workstation, the object's 
pose relative to a (unique) camera frame vis

obj 1_x̂ , will be estimated at run time, in a 
first stage in terms of the following image feature parameters:  

• CC yx , : coordinates of the centre of mass C of the 2D projection of the object's 
visualised surface onto the image plane ),( visvis yx ; 

• )MIA,(∠= visxorient : orientation angle of the object. 
The object-attached frame ),( 1_1_ objobj yx  will have the origin in C and the 

abscissa MIA≡1_objx  (Fig. 3). 
To grasp objects of a certain type always in the same way, irrespective of 

their location in the robot scene, the desired (unique) pose of the gripper, obj
n*x , 

relative to the object-attached frame must be a priori learned. 
Let us denote by G the projection of the end-tip point T, the origin of the 

gripper frame ),,( nnn zyx , onto the image plane: { }TG ),(|proj=
visvis yx . 
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For a desired grasping style [11], 1_objG  is a stationing point in the object's 
coordinates ),( 1_1_ objobj yx , irrespective of the current position and orientation of 
the object. Its coordinates are )cos(alphaCGdGx ∗= ; )sin(alphaCGdGy ∗= , 

 

  
Fig. 3. The 2-stage definition of the object-attached frame 

where ),dist(= GCCGd , MIA) ),,dir((∠= GCalpha  measured CCW from MIA to the 
direction CG, i.e. ),(dir GC . 

In a second stage, the object-attached frame will be shifted to origin G, by 
a translation of distance CGd  along )MIA(dir  followed by a rotation of angle alpha 
about the normal in C to the image plane, as represented in Fig. 3. 

Given an object pose, vis
objx , estimated visually at run time, and assuming 

that the object was recognized as a member of that class for which a relative 
grasping pose obj

n*x  was a priori learned using a stationary camera calibrated to the 
robot base frame by xvis, then the positioning error can be defined by the VKE 
function: 

obj
n

vis
objvis

nn
nvis

vis
obj

obj
nn ***

~:ˆ:ˆ:ˆ==)ˆ,ˆ,~;( 0 xxxxxxxxxE  
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With an EOL system, )ˆ(inverse=ˆ 0
0 n
n xx  will be dynamically updated by the 

trajectory generator to bring to zero the positioning error n
n*x . This can be simply 

done applying for an IK-based Resolved Motion Rate Control algorithm.   
The closed-loop servo control uses the visually estimated pose of the 

object, vis
objx̂ , the estimated camera-robot calibration pose, visx̂  and assumes that 

reduced-error direct kinematics ( 0ˆ nx ) – and inverse kinematics ( n
0x̂ ) models are 

available. 
As for the imposed grasping pose, for a priori unknown object location in 

the scene, some components in obj
n*x̂  must be estimated at run time whenever the 

"grasping style" is general, i.e. such that CG ≡/  and G does not lie on MIA. 
With an ECL system capable to observe both the object ( vis

objx̂ ) and the end-
effector ( vis

nx̂ ) and to estimate their poses, the error equation (4) becomes: 
obj
n

vis
obj

n
vis

obj
n

vis
objvis

visn
vis

n
n ***

~:ˆ:ˆ=~:ˆ:ˆ:ˆ:ˆ= 0
0 xxxxxxxxx  

For an ECL system the uncertainties in both the robot's kinematics models 
and in the camera-robot calibration model do not affect the positioning accuracy 
of the global system, since the corresponding terms dropped out of the error 
equation. 

4. Learning procedure for robot-object model parameters 

To calculate the set of robot scene parameters for object grasping, an off 
line training scheme will use interactively pose- and point-image features (centre 
of mass and orientation in the object's image) and robot points learned in 
Cartesian space. 

The following four robot scene parameters completely specify the relative 
gripper-object grasp pose [12]: (1) the grasping "height", ht; (2) the gripper's 
opening, openg; (3) the xy offset, d, of the grasping point G=proj|(xvis,yvis){T} 
relative to the mass centre C of the object's image (T - end tip point); (4) the roll 
angle of the gripper, φ, relative to an orientation axis of the object (in the sequel 
the minimum inertia axis (MIA) of the object's image. These 4 grasping 
parameters (ht, openg, d, φ) are particular for each class of objects and "grasping 
style" and will be therefore learned and stored in related class records.  

The parameters of a grasping transformation 
obj
nx  for a given class of 

objects are hence the components of the grasping style model, off line trained. 
They map at run time the shape of an object recognised and located in the image 
scene into an object-related grasping description, part of the robot scene.  

The Gs_m(O)  model, for an object O and desired grasping style, is function of 
the object-related image data [C, MIA(O)]: 
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Gs_m = {x_off, y_off, rz_off,z_off}, where: 
• x_off, y_off are the position offsets of the user-defined object frame (xobj, yobj) 

which will be automatically attached by vision at run time to a recognised 
instance of O− relative to the object's centre of mass; 

• rz_off is the roll offset angle ),(∠=),(∠ nvisobjvis xxxx  of the user-defined object 
frame relative to xvis, which coincides with the roll orientation of the gripper in 
the object grasping location; 

• z_off is the value offsetting the gripper along z+ from the image plane; if the 
object coordinate system's orientation is trained with z_off such that xobj || xn for 
a desired grasping style, and if x_off, y_off and rz_off are automatically 
applied at run time to the recognized instance of class object O, located from 
image data [C, MIA], it results that z_off is the only component (always non-
zero) of the grasp transformation grip.trans to be composed at run time with 
the camera-robot calibration transformation and the current object pose 
(returned by vision) for effective robot access to the part to be grasped. 

Learning the robot-object scene parameters x_off, y_off, rz_off the x, y, roll 
offsets of the object frame relative to its centre of mass and MIA) and z_off (the z 
offset along z+ of the grasping transformation) of the Gs_m   model was done in an 
interactive session which uses the robot itself as a measuring device (encoder data 
and features extracted from image data) and the user-defined numeric 
computation. An object was modelled with the name "LA"; the learning procedure 
is exemplified in Fig. 4 for the V+ robot programming environment: 

 
Fig. 4. Learning in V+ the location offsets x_off, y_off, rz_off of the object-attached frame and the 

component rz_off of the grasping transformation on the "LA" model 
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1. Place the model in the camera's field of view. Because the object class "LA" is 
not yet modelled, it is a blob.  

2. Use the teach box, the robot is manually moved with open gripper in the 
desired grasping location of the blob.  

3. DO CLOSEI 
DO OPENI 
DO CLOSEI (eliminate part dragging). 

4. HERE pt.rob: The current robot location is stored in pt.rob, which 
expresses the position and orientation offsets of the gripper-attached frame 
(x4, y4, z4) with respect to the robot base frame (x0, y0, z0). 

5. The gripper is opened, and the robot is moved outside the camera's field of 
view in an a priori learned point, safe: 
DO OPENI 
DO DEPARTS 100 
DO MOVE   safe 

6. Compute the location of the gripper's frame (x4, y4, z4) relative to the vision 
frame (xvis, yvis). The camera with the ID cam is used; the result is assigned to 
the transformation variable pt.vis : 
DO SET to.cam[cam]:pt.vis = pt.rob 

7. Accessing the components of pt.vis : 
DO DECOMPOSE arr.pt[] = pt.vis 

8. Visualising the blob and locating it in the image plane, without having moved it 
in the scene meanwhile:  
VPICTURE (1, -1) -1,1 
DO VLOCATE (1, 2) "?", vis.loc 

Because a blob was detected and located, its vision location returned in the 
variable vis.loc has the x, y coordinates of the blob's centre of mass 

),( CC yxC  and a null orientation, 0=rz , i.e. 0=),(∠ visloc xx .  
9. Accessing the components of vis.loc:  
DO DECOMPOSE arr.c[] = vis.loc 

10. Computing the xy  offsets of the user-defined model reference frame relative 
to the default reference frame of the model, based on its centre of mass :  
 DO x_off = arr.pt[0]-arr.c[0] 
 DO y_off = arr.pt[1]-arr.c[1] 

11. Compute the +z  offset as non zero parameter of the grasp transformation to be 
added at run time for recognised model instances:  

   DO z_off = arr.pt[2] 
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12. Compute the roll offset angle rz_off of the user-defined model reference 
frame. A relative transformation grip.par is defined for the actual location 
of the blob, expressing the offsets of the frame ),( parpar yx  attached in the 
gripper's terminal point T, and having its axes parallel to those of the vision 
frame ),( visvis yx , i.e. visparvispar yyxx || ,|| : 

    DO SET grip.par =  
        TRANS(x_off,y_off,z_off,0,0,0) 
        The roll offset rz_off is evaluated from:  
   DO SET to.cam[cam]:vis.loc:grip.par 
        :rot_rz = pt.rob 
   DO DECOMPOSE arr.roll[] = rot_rz 
   DO rz_off = arr.roll[5] 

It can be observed that x_off = xG - xC, y_off = xG - xC and 
),(∠=_ 4 visxxoffrz ; they will be input as "xy-roll" offsets in the mode 5 

VTRAIN.FINDER training operation of V+, and stored. At run time the system 
will use them to automatically shift and rotate the instance-attached frame from 
the default model frame (in C and with zero rotation).  

As for the z+ offset value z_off, it allows defining the grasping 
transformation to be applied at run time to access any recognised and located 
"LA" instance: DO SET grip.la = TRANS(0,0,z_off,0,180,0). 

5. Fingerprint modelling for collision-free grasping 

If there is the slightest risk of collision between the gripper and parts on the 
belt - touching or close one relative to the other -, extended grasping models 

{ }FGP_mGs_m,EG_m =  were created by adding the gripper's fingerprint model 
FGP_m  to authorize part access at run time only after clear grip tests. 

Definition. { }O)(G,FGP_mO)(G,FGP_mO)MFGP_m(G, k,...,1=  is defined as 

multiple fingerprint model for a p -fingered gripper G  and a class of objects O , 
describing the shape, location and interpretation of k  sets of p  projections of the 
gripper's fingerprints onto the image plane xvis, yvis for the corresponding k grasping 
styles ki ,...,1=,iGs_m  of O -class instances. A O)(G,FGP_mi  model has the following 
parameter structure [13]: 
• piisizeishapenumbershapefinger ,...,1 ,,,)(_ ==G , expresses the shape of the 

gripper in terms of its number p  of fingers, the shape and dimensions of each 
finger. Rectangular-shaped fingers are considered; their size is given by "width" 
and "height"; 
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• { } piirzciycixlocationfingers ,...,1,)(),(),()(_ == OOOOG, , indicates the relative 
location of each finger with respect to the object's centre of mass and minimum 
inertia axis (MIA). At training time, this description is created for the object's 
model, and its updating will be performed at run time by the vision system for 
any recognized instance of the prototype. 

 
Fig. 5. Learning the fingerprint model FGP_m location data c0x, c0y, rz0, c1x, c1y, rz1 relative to the 
"LA" finder model for a parallel symmetric gripper with 2 rectangular-shaped fingers of size wd0, 

ht0, wd1, ht1. The current grip is for the grasp model Gs_m={x_off, y_off, rz_off, z_off} 
 

• ),...1,_(_ piicontextposeviewingfingers =G, , indicates how "invisible" 
fingers are to be treated; fingers are "invisible" if they are outside the field of 
view. 

• kgrip ,...,1=  are the k  gripper-object )( OG,Gs_m  distinct grasping models a 
priori trained, as possible alternatives to face at run time foreground context 
situations. 

A collision-free grasping transformation ),( OiGs_mCF  is selected at run 
time from one of the k  grip parameters, after checking that all pixels belonging to 

iFGP_m  (the projection of the gripper's fingerprints onto the image plane xvis, yvis, 
in the O -grasping location) cover only background-coloured pixels. To provide a 
secure, collision-free access to objects, the following robot-vision sequence must 
be executed: 
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1. Training k  sets of parameters of the multiple fingerprints model O)MFGP_m(G,  
for G  and object class O , relative to the k  learned grasping styles 

ki ,...,1 ),( =OG,iGs_m . 
2. Installing the multiple fingerprint model O)MFGP_m(G,  defining the shape, 

position and interpretation (viewing) of the robot gripper for clear-grip tests, by 
including the model parameters in a data base available at run time. This must 
be done at the start of application programs prior to any image acquisition and 
object locating. 

3. Automatically performing the clear-grip test whenever a prototype is 
recognized and located at run time, and grips ki ,....1, =iFGP_m  have been a 
priori defined for it. 

4. On line call of the grasping parameters trained in the )( OG,iGs_m  model, 

which corresponds to the first grip iFGP_m  found to be clear. 
Fig. 5 shows an "LA"-type object, trained and planned with the dual 

Object Finder model ))()(( OGs_m,OFp_mDFG_m =  for the recognition and 
grasping style definition of an instance O . 

Two frames are used: 
• (xloc, yloc) is the default reference frame attached automatically by the vision 

system to the ObjectFinder model in its centre of mass )y,x( CCC  and aligned 
with its minimum inertia axis, MIA≡locx , at training time.   

• (xobj, yobj) is the user-specified object coordinate system, which is shifted with 
CGCG yyoff_y,xxoff_x −=−=  mm and turned  with )x,x(off_rz visobj∠=  

deg, where (SCARA)4x||xobj , and G is the projection of the gripper's end point T 
on the image plane, in the grip position. 

Once trained and installed the robot-object model, any time an instance of 
the model "LA" is recognized and successfully located, the vision system returns 
the X, Y and RZ data of the instance's coordinate system. 

The data c0x, c0y, rz0, c1x, c1y, rz1 of the fingerprint model was learned 
relative to the instance's location Xobj, Yobj, RZobj, expressed in the vision frame (xvis, 
yvis). As can be seen from Fig. 5: 
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Assuming that the fingerprint rectangles have identical size wid, ht, the 
clear-grip routine to be called and executed at run time, is based on generating two 
rectangular Windows Region of Interest WROI, having the exact shape, size, 
position and orientation of the gripper fingerprints. Statistics will be gathered from 
the two windows in what concerns the number of background pixels existing in 
each window, i.e. background pixels covered by each fingerprint projection. 

6. Experimental results 

Experiments have been carried out on a platform using a Cobra s850 
Adept robot [14] equipped with vision system. The collision-free object access 
strategy was implemented for assembling MECCANO parts of 3.5 mm height on 
carburettor flanges (Fig. 6). 

 
Fig. 6. Assembling "COIN", "TE" and "LIG" isolating components (MECCANO) on a carburettor 

flange 
Table 1 indicates the offset values learned in an interactive training session 

for the models of the classes of thin MECCANO parts shown in Fig. 6. The parts, 
randomly arriving on a conveyor belt, are picked "on-the-fly" by the 2-fingered 
gripper of the robot, after checking the fingerprint models FGP_m against the 
foreground for parts closely placed or touching between them. 

Table 1 
Gs_m  parameters learned for "COIN", "TE", and "LIG" models of assembly components 

Gs_m parameters 
Class models  

x_off 
[mm] 

y_off 
[mm] 

rz_off 
[deg] 

z_off 
[mm] 

"COIN" −11.60 −6.75 −77.84 2.67 
"TE"  −19.07 −11.02 −32.89 1.81 
"LIG"  −11.38 −6.38 −77.06 2.26 

A graphical user interface has been developed to assist the learning of 
robot-object and fingerprint models for a given gripper (opening, finger shape and 
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dimensions) and class of objects (Fig. 7). If, after placing the gripper in a desired 
position the clear grip test is ok, the )( OG,Gs_m  parameters are automatically 
computed and displayed. 

 
Fig. 7. Gripper parameters and control interface in GUI 

6. Conclusions and perspectives 

In this paper it has been presented a visual guidance technique used for 
advanced motion control. This technique provides flexibility when integrating 
robots in intelligent manufacturing cells with unstructured environment and in line 
quality inspection. The methodology for on-line vision-based robot control relies 
on robot-object models a priori learned which are on-line checked for collision-
free grasping based on the gripper's fingerprints relative to the objects of interest. 

Future research will be oriented towards adapting vision systems for 
automatic in line quality inspection and optimizing the energy consumption for 
industrial robots executing assembly operations. 
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