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VISUAL GUIDANCE OF ROBOTS INTEGRATED IN
INTELLIGENT MANUFACTURING

Octavian STOCKLOSA', Theodor BORANGIU?, Silviu RAILEANU?, Octavian
MORARIU*, Cristina MORARIU®

Guidance vision is applied as an advanced motion control method, which
provides flexibility when integrating robots in intelligent manufacturing cells with
unstructured environment. The paper develops a methodology for on-line
implementing vision-based robot control strategies that use robot-object models a
priori learned, and are on-line checked for collision-free grasping based on the
models of the gripper's fingerprints. Experiments have been carried out on a
development platform using a Cobra s850 SCARA robot with compact Adept
controller and vision extension.
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1. Introduction

Tasks in visual servoing consist into controlling the motion of the robot in
its environment using vision, as opposed to just observing the environment, like in
active vision from motion. Visual servoing of robots uses structural features
extracted from images as form- and contour image features for object recognition
and locating or collision avoidance. Context features may be added to this data to
simplify object search at run time. The form- and contour image features refer to
the projection of a hody- or hole physical feature of an object (e.g. the part to be
grasped, the gripper's fingers or the robot tool) onto the camera image plane [1].
Typical image features are: edges and cormers for contours, respectively the
shape, centre of mass, orientation of bodies and holes or contrived patterns for
form descriptors. Image features must be unambiguously located in different
views of the robot scene by different virtual cameras [2]. Visual servo systems
typically use one of the following camera configurations [3, 4]: (a) Stationary
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(fixed outside the robot workspace): their location is time-invariant relative to the
robot base frame (xg, yo, zp); (b) Mobile (arm-mounted or hand-held): their
location relative to (xy, vy, z) is time variant as the robot link on which the camera
is mounted moves relative to the world frame.

A systemic view of the robot motion planning and tracking for robot
grasping stationary and moving parts is presented in this paper. This view allows
the task-oriented management of a scene's foreground and provides part
qualifying, robustness to variation in workspace lighting and adaptation to
unstructured material flows to be accessed by the robot.

Random scene foregrounds, as the conveyor belt, may need to be faced in
robotic tasks. Depending on the parts shape and on their dimension along z',
grasping models Gs_m are off line trained for object classes. If there is the

slightest uncertainty about the risk of collision between the gripper and parts in
the scene — touching or very close one to the other —, then extended grasping
models EG_m= {gs_m,Tg@_m} must be created by adding the gripper's
fingerprint model FGP_m to authorize part access only after clear grip tests at run
time.

2. Frames, features and servoing taxonomy

Robotic tasks are typically described with respect to more than one frame
[3, 4]. The fixed or moving locations of these coordinate frames can be linked via
relative transformations, or poses. A robot motion, guided by vision to grasp an
object or to interact with it, will be planned from visual data created at run time
and mapped into the operational space to provide a pose in which the end-effector
accesses the object or interacts with it in a desired manner, imposed by the
application task [10].

An analysis of the components of this transformation and of the coordinate
frames they interconnect results from Fig. 1 which shows a SCARA robot
manipulator and a stationary, down looking camera [5, 6, 7].

The visually planned and tracked motion will guide the robot towards the
grasping location of an object of interest identified and located in the image plane
(xvis» Yvis). There are 4 components used to compute the end-effector's destination
transformation x° = part. loc which is relative to the base frame (xy, yy, zo) of the

robot:
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orientation of the line connecting these two points, «(P"*Q
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Fig. 1. Stationary camera configuration and related camera — robot relative transformations

xgb > x? respectively for feature tracking- and feature tracking for object grasping.

The location offset x° =to.cam[can] of the image frame (X Vi) With

respect to the robot's world frame (xy, vy, zg). This coordinate transformation is
created off line by an interactive camera — robot calibration program for all
virtual cameras cam in use.

The pose x)y;, =vis.loc of the object-attached frame (x,z;, yop) relative to the

vision frame (x,;, yis). This coordinate transformation is computed at run time
by the vision processor and describes, in most cases, the location of the frame
placed in the centre of mass of the currently identified object, with an
orientation expressed by the angle between the minimum inertia axis of the
object's 2D image and x,s;

The pose x5 =x?” =grip.trans of the frame (x,,y,,z,) attached to the end-

effector with respect to the object's locating frame (xoz, Vo). This relative
transformation is always considered when visually controlling object grasping,
to recuperate the third dimension (the depth of view) which was lost during
image acquisition by the 2D projection;
The pose x} =xZ =ToOL of the end-effector frame (x;,y,,z;) with respect to
the coordinate frame (xf, yr, zr) which is attached to the tool mounting flange
of the manipulator.

Image feature parameters represent real-valued quantities that are

computed from one or several image features. Typical feature parameters used in
visual servo control are: the image plane coordinates u,v of visualised object

points P"; the distance between two image points, dist(P"*,Q") and the

vis

,x,;) 5 the parameters
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of the gripper's fingerprints projection on the image plane: shape, area, location,
etc.

Hence, a real-valued mathematical or logical expression having as
arguments one or more image feature parameters may be used to dynamically
update the description of an object (part to be tracked / grasped) or robot tool.
Image feature parameters can be stored in numerical form f; (possibly bounded);
they map the object space into the feature parameter space ¥ , by means of feature
parameter vectors f=[f, f, .. f,1'€ FSR*. Any feature parameter f; takes
values in#,. The set of all £ chosen feature parameters defines a function which
maps the object space into the Cartesian products x# x---x# . Thus, a certain

object to be visually tracked and grasped, or a gripper (tool) to be visually
positioned will appear as a point in the A~-dimensional feature space.

The mapping from the location of the end-effector to the set of
corresponding image feature parameters, computed according to the projective
geometry of the camera will be denoted byF:7 - #. Considering #<R? the
feature parameter space of u,v coordinates of the projection of some point P
onto the image plane (x,i, yvis), then, assuming perspective projection, f =[u v]".

The pair "physical camera-virtual camera (a data set describing the task -
driven context in which the physical camera's information will be interpreted)"” is
related to the base coordinate system of the robot by the time-invariant pose x;
evaluated a single time during an interactive off line camera-robot calibration

session, and to the object in the scene by x;; .

The camera image of the object x); is independent of the robot motion

(unless the target is the end-effector itself, described for example by image feature
of the gripper's fingerprints projected onto the image plane). The pose x is

obj
variable in time for parts travelling on conveyor belts; the computation of this
information is done at run time, and involves the search, recognition and locating
of the image features(s) on the object of interest [2, 3].

For object grasping, the image features must unambiguously describe the
entire object for its successful identification and locating at run time. In addition,
the pose x°” of the gripper, relative to the frame attached to the object in its

current location, is required.
For a stationary camera, the relationship between these poses is:

Xg b = Xgis : X;lgj, for (a) feature tracking
Xg = Xgis : Zlbs/ :Xzb] , for (b) feature tracking

for object grasping
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The taxonomy of visual servo architectures is defined by classifying robot-
vision systems according to the fype of structure of the closed-loop motion
controller and to its type of control law:

Hierarchical motion control structure [8, 9], with the vision processor
providing set-points as reference input to the robot's joint-level controller — thus
using joint data feedback to internally stabilise the robot. This structure
corresponds to the interlaced look-and-move control schemes, where motion
tracking and image processing are pipelined (Fig. 2).
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Fig. 2. Position-based look-and-move servoing scheme for object tracking
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This is a position-based control structures, using error signals defined in
task space coordinates. Features are extracted from images and their associated
parameters are computed and used in conjunction with a geometric model of the
visualised object and of the known camera-robot ensemble, to estimate first the
pose of the object with respect to the camera. Feedback is then computed by
reducing errors in estimated pose space, and applied to the task-space trajectory
generator.

Position-based look-and-move control will be used, according to the
system structure in Fig. 2. Features are extracted from the image and used to

estimate the pose X, = (x})., of the target (object, point) relative to the camera.

Using these values, an error between the current estimated and the desired pose of

the robot (x}y),, is defined in the task space 7. Thus, position-based control

neatly separates the control actions, i.e. the computation of the feedback signal
x%),, =dk(q,,.s), n 3<s<n using the direct kinematics model dk( ) of the
manipulator, from the estimation problem involved in computing position or pose

%)y from visual data (f),, .
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Definition. A visual positioning task is expressed by an error function
E:7 - R". This function is referred to as virtual kinematic error function VKE.
A positioning task is fulfilled when the end-effector has been moved in pose
x, =x% if E(x,)=0.

Once a suitable VKE function is defined and its parameters are
instantiated from visual data, a compensator can be designed that reduces the
value of the VKE function to zero. This compensator computes at every sampling
time instant the necessary end-effector position (X,). that is sent as dynamic
reference Uy to the joint-space (operational - space) motion tracking controller.
Since the VKE functions are defined usually in the Cartesian space, it is common
sense to develop the compensator's control law through geometric insight.

3. Motion control based on pose-feature extraction from fixed camera

In industrial applications of position-based dynamic look-and-move
control structures, the robot-vision system works with offline learned objects
which can be visually recognised and located at runtime [10]. It becomes thus
possible:

- To recover the object's pose, X, , relative to the base frame of the robot, from

obj »

the direct estimate X}, of the object's pose in the vision frame and by

composing it with the camera-robot calibration estimate X, ;
- To define stationing points S°” on the object's image, relative to a suitable
object-attached frame (X, Voiy)-
Assuming a random part presentation in the robot workstation, the object's

Vis

pose relative to a (unique) camera frame X}, |, will be estimated at run time, in a
first stage in terms of the following image feature parameters:
xc,yc: coordinates of the centre of mass C of the 2D projection of the object's
visualised surface onto the image plane (x,;, ;) ;
orient = 2(MIA, x,
The object-attached frame (x,; 1,v,, ;) Will have the origin in C and the
| =MIA (Fig. 3).

) : orientation angle of the object.

abscissa x,,
To grasp objects of a certain type always in the same way, irrespective of

their location in the robot scene, the desired (unique) pose of the gripper, xZ?f ,
relative to the object-attached frame must be a priori learned.

Let us denote by G the projection of the end-tip point T, the origin of the
gripper frame (x,,y,.z,) , onto the image plane: G =proj|, , , {T}.
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For a desired grasping style [11], G°”-' is a stationing point in the object's

coordinates (x,; 1,V 1), irrespective of the current position and orientation of

the object. Its coordinates are x; = d; *cos(alpha) ; y = d g *sin(alpha) ,

Gripper in desired

Visualised grasping location

object surface

Fingerprint 2

-

e Xyis
Fig. 3. The 2-stage definition of the object-attached frame
where d.; = dist(C,G), alpha = 2(dir(C,G), MIA) measured CCW from MIA to the
direction CG, i.e.dir(C,G).
In a second stage, the object-attached frame will be shifted to origin G, by
a translation of distance d., along dir(MIA) followed by a rotation of angle alpha
about the normal in C to the image plane, as represented in Fig. 3.
Given an object pose, x};;, estimated visually at run time, and assuming

that the object was recognized as a member of that class for which a relative

grasping pose x°? was a priori learned using a stationary camera calibrated to the

n

robot base frame by X,;, then the positioning error can be defined by the VKE
function:

ol Svis g oy on LG L gvis . ob
E(Xn9xn* axo[zjaxvis) - Xn* = Xp * Xyis 'Xob/' . X,,*

where:
obyj Xoiy a priori known from learning, particular "grasping style"
X =9 "

bj

n f(o* visually updated at run time, general "grasping style"
n
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With an EOL system, %{ =inverse(Xx’) will be dynamically updated by the
trajectory generator to bring to zero the positioning error x”.. This can be simply

done applying for an IK-based Resolved Motion Rate Control algorithm.
The closed-loop servo control uses the visually estimated pose of the
object, %y, the estimated camera-robot calibration pose, %, and assumes that

reduced-error direct kinematics (%) — and inverse kinematics (X ) models are

available.
As for the imposed grasping pose, for a priori unknown object location in

%°” must be estimated at run time whenever the

the scene, some components in X

"grasping style" is general, i.c. such that G £ C and G does not lie on MIA.
With an ECL system capable to observe both the object (X% ) and the end-

obj

effector (X)) and to estimate their poses, the error equation (4) becomes:

noLgovis . o0 Lgvis .ob _ on
is - Xo 'Xvis'xobj'xn* = Xyis

L QVIS ~obj
Ky 1 X

For an ECL system the uncertainties in both the robot's kinematics models
and in the camera-robot calibration model do not affect the positioning accuracy
of the global system, since the corresponding terms dropped out of the error
equation.

4. Learning procedure for robot-object model parameters

To calculate the set of robot scene parameters for object grasping, an off
line training scheme will use interactively pose- and point-image features (centre
of mass and orientation in the object's image) and robot points learned in
Cartesian space.

The following four robot scene parameters completely specify the relative
gripper-object grasp pose [12]: (1) the grasping "height", hz; (2) the gripper's
opening, openg; (3) the xy offset, d, of the grasping point G=proj|viswis){ T}
relative to the mass centre C of the object's image (7 - end tip point); (4) the roll
angle of the gripper, o, relative to an orientation axis of the object (in the sequel
the minimum inertia axis (MIA) of the object's image. These 4 grasping
parameters (ht, openg, d, p) are particular for each class of objects and "grasping
style" and will be therefore learned and stored in related class records.

The parameters of a grasping transformation X" for a given class of
objects are hence the components of the grasping style model, off line trained.
They map at run time the shape of an object recognised and located in the image
scene into an object-related grasping description, part of the robot scene.

The Gs m(©) model, for an object O and desired grasping style, is function of

the object-related image data [C, MIA(O)]:
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Gs_m = {x_off, y_off, rz_off,z_off}, where:
* x_off, y_off are the position offsets of the user-defined object frame (Xobj, Yob;)
which will be automatically attached by vision at run time to a recognised
instance of O— relative to the object's centre of mass;

* rz_off is the roll offset angle «(x;,x,;) = <(x,;.x,) of the user-defined object

frame relative to x,;;, which coincides with the roll orientation of the gripper in
the object grasping location;

* z off is the value offsetting the gripper along z* from the image plane; if the
object coordinate system's orientation is trained with z_off such that x; || x, for
a desired grasping style, and if x off, y off and rz off are automatically
applied at run time to the recognized instance of class object O, located from
image data [C, MIA], it results that z off is the only component (always non-
zero) of the grasp transformation grip.trans to be composed at run time with
the camera-robot calibration transformation and the current object pose

(returned by vision) for effective robot access to the part to be grasped.
Learning the robot-object scene parameters x_off, y_off, rz_off the x, y, roll
offsets of the object frame relative to its centre of mass and MIA) and z_off (the z
offset along z" of the grasping transformation) of the Gs_m model was done in an

interactive session which uses the robot itself as a measuring device (encoder data
and features extracted from image data) and the user-defined numeric
computation. An object was modelled with the name "LA"; the learning procedure
is exemplified in Fig. 4 for the V' robot programming environment:

2-parallel fingered
asymmetric grippe

dir(CG)
MIA

"EATURE (48)

Object model for

the "LA" class

vic.lmc_f
to.cam[cam] Xg Xe .
Yo
Xg
Fig. 4. Learning in V" the location offsets x_off, y_off, rz_off of the object-attached frame and the
component 7z_off of the grasping transformation on the "LA" model
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1. Place the model in the camera's field of view. Because the object class "LA" is
not yet modelled, it is a blob.

2. Use the teach box, the robot is manually moved with open gripper in the
desired grasping location of the blob.

3.D0 CLOSEI
DO OPENI
DO CLOSEI (eliminate part dragging).

4. HERE pt.rob: The current robot location is stored in pt.rob, which
expresses the position and orientation offsets of the gripper-attached frame
(x4, v4, z4) With respect to the robot base frame (xo, yo, zo).

5. The gripper is opened, and the robot is moved outside the camera's field of
view in an a priori learned point, safe:

DO OPENI
DO DEPARTS 100
DO MOVE  safe

6. Compute the location of the gripper's frame (x4, y4, z4) relative to the vision
frame (x,i, Yvis). The camera with the ID cam is used; the result is assigned to
the transformation variable pt.vis :

DO SET to.cam[cam]:pt.vis = pt.rob

7. Accessing the components of pt.vis :
DO DECOMPOSE arr.pt[] = pt.vis

8. Visualising the blob and locating it in the image plane, without having moved it
in the scene meanwhile:
VPICTURE (1, -1) -1,1
DO VLOCATE (1, 2) "?*, vis.loc
Because a blob was detected and located, its vision location returned in the
variable vis.loc has the x, y coordinates of the blob's centre of mass
C(xc,yc) and a null orientation, rz=0, i.e. 2(x;,.,x,;)=0.

9. Accessing the components of vis.loc:
DO DECOMPOSE arr.c[] = vis.loc
10. Computing the xy offsets of the user-defined model reference frame relative
to the default reference frame of the model, based on its centre of mass :
DO x_off = arr.pt[0O]-arr.c[0]
DO y_off = arr.pt[l]-arr.c[1]
11. Compute the z* offset as non zero parameter of the grasp transformation to be
added at run time for recognised model instances:
DO z_off = arr.pt[2]
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12. Compute the roll offset angle rz off of the user-defined model reference
frame. A relative transformation grip.par is defined for the actual location
of the blob, expressing the offsets of the frame (x ) attached in the

par> Y par
gripper's terminal point T, and having its axes parallel to those of the vision
frame (xvis’yvis) ’ 1e xpar ” xvis’ypar H Yvis :
DO SET grip.par =
TRANS(x_off,y off,z off,0,0,0)
The roll offset 7z_offis evaluated from:
DO SET to.cam[cam]:vis.loc:grip.par
rot_rz = pt.rob
DO DECOMPOSE arr.roll[] = rot_rz
DO rz_off = arr.roll[5]
It can be observed that X off = x¢ - x¢ y off = x¢ - xc and
rz_off =2(x4,x,,); they will be input as "xy-roll" offsets in the mode 5
VTRAIN.FINDER training operation of V', and stored. At run time the system
will use them to automatically shift and rotate the instance-attached frame from
the default model frame (in C and with zero rotation).
As for the z' offset value z off, it allows defining the grasping
transformation to be applied at run time to access any recognised and located
"LA" instance: DO SET grip.la = TRANS(0,0,z_off,0,180,0).

5. Fingerprint modelling for collision-free grasping

If there is the slightest risk of collision between the gripper and parts on the
belt - touching or close one relative to the other -, extended grasping models
EG m= {gs_m,(Fg@_m} were created by adding the gripper's fingerprint model
Fge_m to authorize part access at run time only after clear grip tests.

Definition. MFGP_m(G,0) = {FGP_m, (G,0),...,FGP_m, (G,0)] is defined as

multiple fingerprint model for a p-fingered gripper ¢ and a class of objects 0,
describing the shape, location and interpretation of k¥ sets of p projections of the
gripper's fingerprints onto the image plane x,;, yy;s for the corresponding & grasping
styles Gs_m;,i =1,...k of 0-class instances. A Fg® m,(G,0) model has the following

— 1

parameter structure [13]:
« finger shape(G) = number, shapel.,sizel- ,i=1,.., p, expresses the shape of the
gripper in terms of its number p of fingers, the shape and dimensions of each

finger. Rectangular-shaped fingers are considered; their size is given by "width"
and "height";
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fingers _location(G,0) = {xci (0),,;(0),7z; (O)},i =1,..,p, indicates the relative
location of each finger with respect to the object's centre of mass and minimum
inertia axis (MIA). At training time, this description is created for the object's
model, and its updating will be performed at run time by the vision system for
any recognized instance of the prototype.

2 parallel fingered — > ‘
symmettic gripper

M1
/
Fingerprilﬂtﬂ -
PN - oottt o Merd ol s
“ ObjectFinder model

for the "L&" class

Fingerprint 1

-

Xﬂ-ﬁ'j Kois

Fig. 5. Learning the fingerprint model FGP_m location data cy, cy,, 1z, ciy, C1y, 1 relative to the
"LA" finder model for a parallel symmetric gripper with 2 rectangular-shaped fingers of size wdo0,
ht0, wdl, htl. The current grip is for the grasp model Gs_m={x_off, y_off, rz_off, z_off}

« fingers _viewing(G, pose _context;,i =1,..p), indicates how "invisible"

fingers are to be treated; fingers are "invisible" if they are outside the field of
view.

- grip=1,...,k are the k gripper-object Gs m(G,O) distinct grasping models a
priori trained, as possible alternatives to face at run time foreground context
situations.

A collision-free grasping transformation CF (gs_mi,O) is selected at run

time from one of the k grip parameters, after checking that all pixels belonging to
FGge_m,; (the projection of the gripper's fingerprints onto the image plane Xyis, Yvis,
in the o-grasping location) cover only background-coloured pixels. To provide a
secure, collision-free access to objects, the following robot-vision sequence must
be executed:
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1. Training k sets of parameters of the multiple fingerprints model MFGP_m(G, O)
for G and object class o, relative to the k& learned grasping styles
Gs_m; (G0),i=1...k.

2. Installing the multiple fingerprint model MFGP m(G, 0) defining the shape,
position and interpretation (viewing) of the robot gripper for clear-grip tests, by
including the model parameters in a data base available at run time. This must
be done at the start of application programs prior to any image acquisition and
object locating.

3. Automatically performing the clear-grip test whenever a prototype is
recognized and located at run time, and grips FGP_m L= l,...k have been a

priori defined for it.
4. On line call of the grasping parameters trained in the Gs_m (G,0) model,

which corresponds to the first grip FGP_m ; found to be clear.

Fig. 5 shows an "LA"-type object, trained and planned with the dual
Object Finder model DFG m = (Fp_m(0),Gs_m(0)) for the recognition and
grasping style definition of an instance 0.

Two frames are used:

o (Xioe, Vioc) 18 the default reference frame attached automatically by the vision
system to the ObjectFinder model in its centre of mass C(x., y.) and aligned

with its minimum inertia axis, x;,, = MIA, at training time.
o (xop;, Yoiy) 1s the user-specified object coordinate system, which is shifted with
x _off =xg—-xc,y_off =yg —yc mm and turned with rz_off = Z(Xopjs Xyis )

deg, where x,;; || x4scara)» and G is the projection of the gripper's end point T

on the image plane, in the grip position.

Once trained and installed the robot-object model, any time an instance of
the model "LA" is recognized and successfully located, the vision system returns
the X, Y and RZ data of the instance's coordinate system.

The data cox, coy, 720, Cix, C1y, ¥z1 Of the fingerprint model was learned
relative to the instance's location X, Yos;, RZ,p, €xpressed in the vision frame (x,;,
Wis)- As can be seen from Fig. 5:

Cox = Xopy —(opng | 2+ wid | 2) *sin(rz _ off) 1 = Xy — (0png /2 + wid /2) *sin(rz _off)

Coy = Yop; +(0png / 2+ wid | 2)* cos(rz _off) ¢y =Y,y +(opng /2 + wid /2)* cos(rz _off)
720 = RZ rzp = RZ,,
where

Xop =%g X Yo =Yg Ve

RZ =71z _ Oﬁr\gs,m ("LA™
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Assuming that the fingerprint rectangles have identical size wid, ht, the
clear-grip routine to be called and executed at run time, is based on generating two
rectangular Windows Region of Interest WROI, having the exact shape, size,
position and orientation of the gripper fingerprints. Statistics will be gathered from
the two windows in what concerns the number of background pixels existing in
each window, i.e. background pixels covered by each fingerprint projection.

6. Experimental results

Experiments have been carried out on a platform using a Cobra s850
Adept robot [14] equipped with vision system. The collision-free object access
strategy was implemented for assembling MECCANO parts of 3.5 mm height on
carburettor flanges (Fig. 6).

Fig. 6. Assembling "COIN", "TE" and "LIG" isolating components (MECCANO) on a carburettor
flange

Table 1 indicates the offset values learned in an interactive training session
for the models of the classes of thin MECCANO parts shown in Fig. 6. The parts,
randomly arriving on a conveyor belt, are picked "on-the-fly" by the 2-fingered
gripper of the robot, after checking the fingerprint models FGP_m against the
foreground for parts closely placed or touching between them.

Table 1
Gs_m parameters learned for "COIN", "TE", and "LIG" models of assembly components
Gs_m parameters x_off y off 1z off z off
Class models [mm] [mm] [deg] [mm]
"COIN" -11.60 -6.75 -77.84 2.67
"TE" -19.07 -11.02 -32.89 1.81
"LIG" -11.38 -6.38 -77.06 2.26

A graphical user interface has been developed to assist the learning of
robot-object and fingerprint models for a given gripper (opening, finger shape and
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dimensions) and class of objects (Fig. 7). If, after placing the gripper in a desired
position the clear grip test is ok, the Gs m(G,0) parameters are automatically

computed and displayed.
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B [DATT013998909] gacress Newlmage | ObjectName [[Te
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1z_off (0.633633338340437 J 4
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DnmpuleParEﬂ Cancel
=10l

wolf 12945042 i

yoff -19.036 o
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2_off 0 mm
Shore | Cancel |

[%=550 Y=225 Gray Level=127

Fig. 7. Gripper parameters and control interface in GUI

6. Conclusions and perspectives

In this paper it has been presented a visual guidance technique used for
advanced motion control. This technique provides flexibility when integrating
robots in intelligent manufacturing cells with unstructured environment and in line
quality inspection. The methodology for on-line vision-based robot control relies
on robot-object models a priori learned which are on-line checked for collision-
free grasping based on the gripper's fingerprints relative to the objects of interest.

Future research will be oriented towards adapting vision systems for
automatic in line quality inspection and optimizing the energy consumption for
industrial robots executing assembly operations.
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