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GENERAL DECAY FOR NONLINEAR WAVE EQUATION 
WITH NONAUTONOMOUS DAMPING AND MEMORY 

EFFECT

Hui Zhang1

We consider the second order evolution equations with mem-
ory effect and time-dependent frictional dissipation, which have Neumann
boundary conditions. With appropriate assumptions on nonlinear term, we
obtain explicit decay rates for the solution in terms of the damping coeffi-
cient, in which the relaxation function decays exponentially or polynomially.
The proof is based on some energy integral inequalities and it improves the
previously related results via a different way.
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1. Introduction

In this work, we devote to the long time behavior of solution to the
following integro-differential equation
utt −∆u+

∫ t

0

g(t− s)∆u(s)ds+ α(t)ut + f(u(t)) = 0 in Ω× (0,+∞),

∂u

∂γ
= 0 on Γ× (0,+∞),

(u, ut)|t=0 = (u0, u1) in Ω.

(1.1)

Here, u = u(t, x) is real-valued, and we have denoted by ut the time derivative 
of u and by ∆u the Laplacian of u with respect to space variable x. Also, 
α(t)ut is time-dependent damping term, and Ω ⊆ Rn is bounded with smooth 
boundary Γ, also γ is the unit outward normal on Γ.

Under the framework of the unknown functions satisfying Dirichlet bound-
ary conditions, the stabilization of wave equation with distributed damping and 
memory effect has been studied extensively (cf.,e.g.,[2, 4, 5, 13] and references 
therein). However, if replacing Dirichlet boundary conditions with Neumann 
boundary conditions, the solutions will display different behaviors due to the 
lack of Poincaré inequality. Actually, without ut or f(u), the solution energies
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to (1.1) do not necessarily tend to zero (this is different from the Dirichlet
case), see [14, Remark 3.4(2)].

In the absence of memory terms, A. Cabot and P. Frankel in [1] consid-
ered the equation

utt + Au(t) + α(t)ut + f(u(t)) = 0,

where the linear self-adjoint operator A was nonnegative on a Hilbert space.
Under some ellipticity-like conditions on A and appropriate assumptions on
the nonlinear term f , they gave estimates of energy convergence speed, and
the conclusion was enriched in [12]. In the case of α(t) = 1, Ghisi et al in [6]
proved that all solutions decay at least as fast as a suitable negative power of
t. Also, they showed this decay rate was optimal. For more details, we refer
the reader to [7, 8, 9]. For the special case of (1.1), [14] took into account the
case of α(t) = 1, and proved that the energy and solution decayed uniformly,
whenever the memory kernel function g decayed exponentially or polynomially.
Moreover, when g decayed exponentially, the decay estimate of the solutions
was optimal in the sense of slow solutions. In this paper, we devote to the
system (1.1), and expect that we can show the existence of slow solutions (this
will extend the main result of [14]), but now pay much attention to the decay
rate of energy in (1.1).

Our results are different from [6, 14] in setting and method. To be exact,
instead of using Lyapunov method to construct disturbance energy, it is better
to focus on the original energy and obtain the weighted integral inequality that
the energy satisfies. The advantage of integral approach is clear, as a special
case, we recover the result in [14, Theorem 3.1].

This paper is organized as follows: In Sect.2, we give some preliminaries
and a wellposedness theorem for problem (1.1). Sect.3 is dedicated to the decay
estimates of energy and solution. Throughout the paper, for the standard
L2(Ω), we use 〈·, ·〉 and ‖·‖ to express the scalar product and norm, respectively.
We denote by c0, c1, c2..., C0, C1, C2..., various positive constants, and by R the
set of real numbers.

2. Preliminaries and Wellposedness

We impose the following basic assumptions on non-autonomous coeffi-
cient α(t), memory kernel function g(t) and the nonlinear term f(s).
Assumptions(A-1):
(i)α(t) ∈ W 1,∞

loc (R+, R+) is a nonnegative map on R+.
(ii)g : [0,+∞)→ (0,+∞) is a monotone nonincreasing and locally absolutely
continuous function satisfying

l := 1−
∫ +∞

0

g(s)ds > 0, (2.1)

and
g′(t) ≤ −ξg1+ 1

r (t), ∀t ≥ 0, (2.2)



General Decay for Nonlinear Wave Equation with Nonautonomous Damping and Memory Effect127

where r ∈ (1,∞] with 1
r

= 0 if r =∞, and ξ > 0 is a constant.

(iii) The nonlinear term f(·) ∈ W 1,∞
loc (R) satisfies

f(s)s ≥ 0, ∀s ∈ R, (2.3)

and the growth condition

|f ′(s)| ≤ C0(1 + |s|p), ∀s ∈ R, (2.4)

here, p > 0 if n = 1, 2, and 0 < p ≤ 2
n−2

if n ≥ 3.
The energy of the system (1.1) is defined as

E(t) =
1

2
‖ut‖2 +

1

2
(1−

∫ t

0

g(s)ds)‖∇u(t)‖2 +
1

2

∫ t

0

g(t− s)‖∇u(s)−∇u(t)‖2ds

+

∫
Ω

F (u(x))dx, t ≥ 0,

(2.5)

with

F (s) =

∫ s

0

f(r)dr, s ∈ R.

It is easy to get

E ′(t) = −α(t)‖ut‖2 +
1

2

∫ t

0

g′(t− s)‖∇u(s)−∇u(t)‖2ds− 1

2
g(t)‖∇u(t)‖2 ≤ 0.(2.6)

In fact, differentiating formula (2.5), we have

E ′(t) =〈ut, utt〉 −
1

2
g(t)‖∇u(t)‖2 + (1−

∫ t

0

g(s)ds)〈∇u(t),∇ut(t)〉+ 〈f(u(t)), ut〉

+
1

2

∫ t

0

g′(t− s)‖∇u(s)−∇u(t)‖2ds+

∫ t

0

g(t− s)〈∇u(s)−∇u(t),−∇ut(t)〉ds

=〈ut, utt〉 −
1

2
g(t)‖∇u(t)‖2 + 〈−∆u(t), ut(t)〉+ 〈f(u(t)), ut〉

+
1

2

∫ t

0

g′(t− s)‖∇u(s)−∇u(t)‖2ds+

∫ t

0

g(t− s)〈∆u(s), ut(t)〉ds

=〈utt −∆u+

∫ t

0

g(t− s)∆u(s)ds+ f(u(t)), ut〉 −
1

2
g(t)‖∇u(t)‖2

+
1

2

∫ t

0

g′(t− s)‖∇u(s)−∇u(t)‖2ds

=− α(t)‖ut‖2 − 1

2
g(t)‖∇u(t)‖2 +

1

2

∫ t

0

g′(t− s)‖∇u(s)−∇u(t)‖2ds,

here the last identity holds because u is a solution of (1.1). As α(t) > 0, g(t) ≥
0 and g′(t) ≤ 0, the right-hand side above is negative. (2.6) means that
E(t) is nonincreasing function. Furthermore, F (s) is nonnegative by (2.3)
and f(u) : H1(Ω) → L2(Ω) is a locally Lipschitz continuous operator, by
Assumptions(A-1)(iii). Therefore, we can get the following result regarding
global existence and regularity (cf.[3, Proposition 4.3]).
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Theorem 2.1. Let Assumptions (A-1) hold. Then for given {u0, u1} ∈ V ×
H1(Ω) with V = {u|u ∈ H2(Ω), ∂u

∂γ
= 0 on Γ}, problem (1.1) possesses a

unique strong solution in the class

u ∈ C(0,+∞;V ) ∩ C1(0,+∞;H1(Ω)) ∩ C2(0,+∞;L2(Ω)).

If {u0, u1} ∈ H1(Ω)× L2(Ω), then problem (1.1) has a unique mild solution

u ∈ C(0,+∞;H1(Ω)) ∩ C1(0,+∞;L2(Ω)).

We recall the following decay estimate(see, e.g., [10] [11, Lemma 1]),
which plays an important role in the proof of our main result.

Lemma 2.1. Let E : R+ → R+ be a nonincreasing function, and φ : R+ → R+

a strictly increasing C1-function such that

φ(0) = 0, φ(t)→ +∞ as t→ +∞.
Assume that there exist q ≥ 0 and w > 0 such that∫ +∞

S

Eq+1(t)φ′(t)dt ≤ 1

w
Eq(0)E(S), ∀S ≥ 0,

Then E has the following decay property:

if q = 0, then E(t) ≤ E(0)e1−wφ(t), ∀t ≥ 0,

if q > 0, then E(t) ≤ E(0)
( q + 1

qwφ(t) + 1

) 1
q
, ∀t ≥ 0.

3. The Main Results

In this section, we are in a position to state the main result of this
paper. It gives the decay rate of E(t) and an upper estimate which are valid
for all solutions to system (1.1). Such results are obtained by strengthening
Assumptions (A-1) as follows.
Assumptions(A-2): Let p > 0. There exist constants C1 > 0, C2 > 0, such
that

C1|s|p+2 ≤ F (s) ≤ C2f(s)s, ∀s ∈ R. (3.1)

The first result concerns the case when the memory kernel g decays ex-
ponentially.

Theorem 3.1. Let Assumptions (A-1) and (A-2) hold with r = ∞. Assume
that

α′(t) ∈ L1(R+), and

∫ ∞
0

α(t)dt = +∞. (3.2)

Let {u0, u1} ∈ H1(Ω) × L2(Ω), then, the unique solution u of problem (1.1)
satisfies that for t ≥ 0,

E(t) ≤M(E(0))
(

1 +

∫ t

0

α(s)ds
)−(1+ 2

p
)

, (3.3)
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and

‖u(t)‖ ≤M(E(0))
(

1 +

∫ t

0

α(s)ds
)− 1

p
, (3.4)

where M(·) is a positive function on R, and is bounded on bounded sets.

Proof. We only show the proof for the strong solution. Actually, an approxi-
mation argument suffices to extend conclusions to mild solution.

From (2.6), we get that ∀t ≥ 0,

E(t) ≤ E(0). (3.5)

Let β ≥ p
p+2

. For 0 ≤ S < T , multiplying (1.1) by Eβ(t)α(t)u, and integrating

over [S, T ], we have∫ T

S

Eβ(t)α(t)
〈
u, utt−∆u+

∫ t

0

g(t−s)∆u(s)ds+α(t)ut+f(u(t))
〉
dt = 0. (3.6)

Integrating by parts yields∫ T

S

Eβ(t)α(t)〈u, utt〉dt

=

∫ T

S

d

dt

(
Eβ(t)α(t)〈u, ut〉

)
dt−

∫ T

S

Eβ(t)α(t)‖ut‖2dt−
∫ T

S

Eβ(t)α′(t)〈u, ut〉dt

− β
∫ T

S

Eβ−1(t)E ′(t)α(t)〈u, ut〉dt

=Eβ(t)α(t)〈u, ut〉|TS −
∫ T

S

Eβ(t)α(t)‖ut‖2dt−
∫ T

S

Eβ(t)α′(t)〈u, ut〉dt

− β
∫ T

S

Eβ−1(t)E ′(t)α(t)〈u, ut〉dt.

(3.7)

Similarly, as 〈u,−∆u〉 = −
∫

Ω
u∆udx = −

∫
Γ
u∂u
∂γ
dΓ +

∫
Ω
∇u∇udx = ‖∇u‖2

by (1.1), we obtain∫ T

S

Eβ(t)α(t)〈u,−∆u〉dt =

∫ T

S

Eβ(t)α(t)‖∇u‖2dt, (3.8)

and∫ T

S

Eβ(t)α(t)〈u,
∫ t

0

g(t− s)∆u(s)ds〉dt = −
∫ T

S

Eβ(t)α(t)

∫ t

0

g(t− s)〈∇u(t),∇u(s)〉dsdt

=−
∫ T

S

Eβ(t)α(t)〈∇u(t),

∫ t

0

g(t− s)∇u(s)〉dsdt

=−
∫ T

S

Eβ(t)α(t)〈∇u(t),

∫ t

0

g(t− s)
(
∇u(s)−∇u(t)

)
〉dsdt

−
∫ T

S

Eβ(t)α(t)

∫ t

0

g(s)ds‖∇u‖2dt.

(3.9)
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Taking (3.7)-(3.9) into (3.6), we get∫ T

S

Eβ(t)α(t)
(

1−
∫ t

0

g(s)ds
)
‖∇u‖2dt+

∫ T

S

Eβ(t)α(t)〈f(u), u〉dt

=− Eβ(t)α(t)〈u, ut〉|TS +

∫ T

S

Eβ(t)α(t)‖ut‖2dt+

∫ T

S

Eβ(t)α′(t)〈u, ut〉dt

+ β

∫ T

S

Eβ−1(t)E ′(t)α(t)〈u, ut〉dt−
∫ T

S

Eβ(t)α2(t)〈u, ut〉dt

+

∫ T

S

Eβ(t)α(t)〈∇u,
∫ t

0

g(t− s)
(
∇u(s)−∇u(t)

)
ds〉dt.

(3.10)

Letting θ ∈ (0, 1) and noting (2.5), we obtain by the right hand inequality
of (3.1)

θEβ(t)
(

1−
∫ t

0

g(s)ds
)
‖∇u‖2 + Eβ(t)〈f(u), u〉

≥Eβ(t)
(
θ
(
1−

∫ t

0

g(s)ds
)
‖∇u‖2 +

1

C2

∫
Ω

F (u(x))dx
)

≥c1E
β(t)

(1

2
(1−

∫ t

0

g(s)ds)‖∇u‖2 +

∫
Ω

F (u(x))dx
)

=c1E
β(t)

(
E(t)− 1

2
‖ut‖2 − 1

2

∫ t

0

g(t− s)‖∇u(s)−∇u(t)‖2ds
)
,

here c1 = min{2θ, 1
C2
}. Combining with (3.10) leads to

c1

∫ T

S

Eβ+1(t)α(t)dt

≤1

2
(c1 + 2)

∫ T

S

Eβ(t)α(t)‖ut‖2dt+
c1

2

∫ T

S

Eβ(t)α(t)

∫ t

0

g(t− s)‖∇u(s)−∇u(t)‖2dsdt

− (1− θ)
∫ T

S

Eβ(t)α(t)
(

1−
∫ t

0

g(s)ds
)
‖∇u‖2dt− Eβ(t)α(t)〈u, ut〉|TS

+

∫ T

S

Eβ(t)α′(t)〈u, ut〉dt+ β

∫ T

S

Eβ−1(t)E ′(t)α(t)〈u, ut〉dt−
∫ T

S

Eβ(t)α2(t)〈u, ut〉dt

+

∫ T

S

Eβ(t)α(t)〈∇u,
∫ t

0

g(t− s)
(
∇u(s)−∇u(t)

)
ds〉dt.

(3.11)

Our next task is to estimate the right-hand side of (3.11). Recalling (2.6),
we have

I1 :=

∫ T

S

Eβ(t)α(t)‖ut‖2dt ≤
∫ T

S

Eβ(t)
(
− E ′(t)

)
dt = − 1

β + 1
Eβ+1(t)|TS

≤ 1

β + 1
Eβ+1(S).

(3.12)
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Noting that Lp+2(Ω) ↪→ L2(Ω), and applying the left hand inequality of (3.1),
we have

‖u(t)‖p+2 ≤ c0E(t), ∀t ≥ 0. (3.13)

Together with (2.5), we get

|〈u, ut〉| ≤ ‖ut‖ · ‖u‖ ≤ c2E
1
2

+ 1
p+2 (t),

from which we obtain

I4 : = −Eβ(t)α(t)〈u, ut〉|TS ≤ Eβ(S)‖α(t)‖L∞

(
‖ut(T )‖ · ‖u(T )‖+ ‖ut(S)‖ · ‖u(S)‖

)
≤ c2E

β(S)‖α(t)‖L∞

(
E

1
2

+ 1
p+2 (T ) + E

1
2

+ 1
p+2 (S)

)
≤ 2c2E

β(S)‖α(t)‖L∞E
1
2

+ 1
p+2 (S) = 2c2‖α(t)‖L∞Eβ+ 1

2
+ 1
p+2 (S).

(3.14)

Also,

I5 : =

∫ T

S

Eβ(t)α′(t)〈u, ut〉dt ≤ c2

∫ T

S

Eβ+ 1
2

+ 1
p+2 (t)

∣∣α′(t)∣∣dt
≤ c3E

β+ 1
2

+ 1
p+2 (S),

(3.15)

by α′(t) ∈ L1(R+) in (3.2), as well as

I6 : = β

∫ T

S

Eβ−1(t)E ′(t)α(t)〈u, ut〉dt ≤ βc2

∫ T

S

Eβ−1(t)
(
− E ′(t)

)
α(t)E

1
2

+ 1
p+2 (t)dt

≤ βc2‖α(t)‖L∞

∫ T

S

Eβ− 1
2

+ 1
p+2 (t)

(
− E ′(t)

)
dt ≤ βc2‖α(t)‖L∞Eβ+ 1

2
+ 1
p+2 (S).

(3.16)

Using (2.6),(3.13) and Young’s inequality, for any η1 > 0, we further have

I7 : = −
∫ T

S

Eβ(t)α2(t)〈u, ut〉dt ≤ ‖α(t)‖L∞

∫ T

S

Eβ(t)α(t)‖ut‖ · ‖u‖dt

≤ c
1
p+2

0 ‖α(t)‖L∞

∫ T

S

Eβ+ 1
p+2 (t)α(t)‖ut‖dt

≤ c
1
p+2

0 ‖α(t)‖L∞

(
η1

∫ T

S

α(t)E2β+ 2
p+2 (t)dt+

1

4η1

∫ T

S

α(t)‖ut‖2dt
)

≤ η1c
1
p+2

0 ‖α(t)‖L∞

∫ T

S

α(t)E2β+ 2
p+2 (t)dt+

c
1
p+2

0

4η1

‖α(t)‖L∞E(S).

(3.17)

By applying Young’s inequality, for any η2 > 0,

〈∇u,
∫ t

0

g(t− s)
(
∇u(s)−∇u(t)

)
ds〉

≤η2‖∇u‖2 +
1

4η2

∫ t

0

g1− 1
r (s)ds

∫ t

0

g1+ 1
r (t− s)‖∇u(s)−∇u(t)‖2ds.
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This yields that

I8 :=

∫ T

S

Eβ(t)α(t)〈∇u,
∫ t

0

g(t− s)
(
∇u(s)−∇u(t)

)
ds〉dt

≤η2

∫ T

S

Eβ(t)α(t)‖∇u‖2dt

+
1

4η2

∫ T

S

Eβ(t)α(t)

∫ t

0

g1− 1
r (s)ds

∫ t

0

g1+ 1
r (t− s)‖∇u(s)−∇u(t)‖2dsdt.

(3.18)

Altogether, by taking (3.12), (3.14)-(3.17), (3.18) into (3.11), we get the
estimate

c1

∫ T

S

Eβ+1(t)α(t)dt ≤ c1 + 2

2(β + 1)
Eβ+1(S) +

((
β + 2

)
c2‖α(t)‖L∞ + c3

)
Eβ+ 1

2
+ 1
p+2 (S)

+
1

4η1

c
1
p+2

0 ‖α(t)‖L∞E(S) + η1c
1
p+2

0 ‖α(t)‖L∞

∫ T

S

α(t)E2β+ 2
p+2 (t)dt

+

∫ T

S

(
η2 − (1− θ)

(
1−

∫ t

0

g(s)ds
))
Eβ(t)α(t)‖∇u‖2dt

+
c1

2

∫ T

S

Eβ(t)α(t)

∫ t

0

g(t− s)‖∇u(s)−∇u(t)‖2dsdt

+
1

4η2

∫ T

S

Eβ(t)α(t)

∫ t

0

g1− 1
r (s)ds

∫ t

0

g1+ 1
r (t− s)‖∇u(s)−∇u(t)‖2dsdt.

(3.19)

Furthermore, we make use of Assumption (2.2) (with r =∞) and (2.6),
to get ∫ T

S

Eβ(t)α(t)

∫ t

0

g(t− s)‖∇u(s)−∇u(t)‖2dsdt

≤1

ξ

∫ T

S

Eβ(t)α(t)

∫ t

0

−g′(t− s)‖∇u(s)−∇u(t)‖2dsdt

≤2

ξ

∫ T

S

−Eβ(t)α(t)E ′(t)dt ≤ 2‖α(t)‖L∞

ξ(β + 1)
Eβ+1(S).

(3.20)

Therefore, with the help of (3.20) and (3.19) to obtain

c1

∫ T

S

Eβ+1(t)α(t)dt

≤
( c1 + 2

2(β + 1)
+
(
c1 +

1

2η2

)α(t)‖L∞

ξ(β + 1)

)
Eβ+1(S) +

((
β + 2

)
c2‖α(t)‖L∞ + c3

)
Eβ+ 1

2
+ 1
p+2 (S)

+
1

4η1

c
1
p+2

0 ‖α(t)‖L∞E(S) + η1c
1
p+2

0 ‖α(t)‖L∞

∫ T

S

α(t)E2β+ 2
p+2 (t)dt

+

∫ T

S

(
η2 − (1− θ)

(
1−

∫ t

0

g(s)ds
))
Eβ(t)α(t)‖∇u‖2dt,
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where we have used the fact
∫∞

0
g(s)ds < 1 in (2.1). Take β = p

p+2
, which

satisfies β + 1 = 2β + 2
p+2

. For the fixed θ ∈ (0, 1), let η2 small enough such

that η2− (1− θ)
(
1−
∫ t

0
g(s)ds

)
≤ 0. Then for the fixed θ, η2, choosing η1 small

enough, we justify the existence of positive constants c4, c5, c6 such that∫ T

S

Eβ+1(t)α(t)dt ≤c4E
β+1(S) + c5E

β+ 1
2

+ 1
p+2 (S) + c6E(S)

=c4E
β+1(S) + c5E

p
2(p+2)

+1(S) + c6E(S).

Thus, by (3.5) and letting T →∞, we obtain∫ ∞
S

Eβ+1(t)α(t)dt ≤ 1

w
Eβ(0)E(S),

where 1
w

= c4 + c5E
−β

2 (0) + c6E
−β(0).

Then, applying Lemma 2.1 with φ(t) =
∫ t

0
α(s)ds, and q = p

p+2
, we get

E(t) ≤E(0)

(
q + 1

qwφ(t) + 1

) 1
q

= E(0)

(
q + 1

qw
∫ t

0
α(s)ds+ 1

)1+ 2
p

≤M(E(0))

(
1 +

∫ t

0

α(s)ds

)−(1+ 2
p

)

,

here M(·) is a positive function on R, and bounded on bounded sets. Recalling
(3.13), it is easy to get (3.4). The proof is finished. �

In the following, we devote to the case of polynomially decaying memory
kernel g.

Theorem 3.2. Let Assumptions (A-1) and (A-2) hold with r ∈ (1,+∞) and
{u0, u1} ∈ H1(Ω)× L2(Ω). For a fixed number β satisfies

β ≥ p

p+ 2
, and β >

1

r − 1
, (3.21)

the unique solution u of problem (1.1) satisfies

E(t) ≤M(E(0))
(

1 +

∫ t

0

α(s)ds
)− 1

β
, t ≥ 0, (3.22)

and

‖u(t)‖ ≤M(E(0))
(

1 +

∫ t

0

α(s)ds
)− 1

β(p+2)
, t ≥ 0, (3.23)

where M(·) is a positive function on R, and is bounded on bounded sets.

Proof. Similar to the proof of Theorem 3.1, we can arrive at (3.19). Our goal
is to obtain the estimates for the terms

J1 :=
c1

2

∫ T

S

Eβ(t)α(t)

∫ t

0

g(t− s)‖∇u(s)−∇u(t)‖2dsdt,
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and

J2 :=
1

4η2

∫ T

S

Eβ(t)α(t)

∫ t

0

g1− 1
r (s)ds

∫ t

0

g1+ 1
r (t− s)‖∇u(s)−∇u(t)‖2dsdt.

One can easily show that∫ +∞

0

g1−λ(s)ds < +∞, for 0 < λ < 1− 1

r
.

Due to this fact and (2.1),(3.5), we see that

h(t) : =

∫ t

0

g1−λ(t− s)‖∇u(s)−∇u(t)‖2ds ≤ 2

∫ t

0

g1−λ(t− s)(‖∇u(s)‖2 + ‖∇u(t)‖2)ds

≤ 8

l
E(0)

∫ +∞

0

g1−λ(s)ds.

This combines (2.2),(2.6) and Jensen’s inequality, yields∫ t

0

g(t− s)‖∇u(s)−∇u(t)‖2ds =

∫ t

0

gλ(t− s)g1−λ(t− s)‖∇u(s)−∇u(t)‖2ds

=

∫ t

0

g
( 1
r

+λ) λ
1
r+λ (t− s)g1−λ(t− s)‖∇u(s)−∇u(t)‖2ds

≤ h(t)

(
1

h(t)

∫ t

0

g
1
r

+λ(t− s)g1−λ(t− s)‖∇u(s)−∇u(t)‖2ds

) λ
1
r+λ

= h
1− λ

1
r+λ (t)

(∫ t

0

g1+ 1
r (t− s)‖∇u(s)−∇u(t)‖2ds

) λ
1
r+λ

≤ c7(−E ′(t))
λ

1
r+λ .

Using Young’s inequality, with exponents 1 + rλ and 1 + 1
rλ

, we get for any
η3 > 0

Eβ(t)

∫ t

0

g(t− s)‖∇u(s)−∇u(t)‖2ds ≤ c7E
β(t)(−E ′(t))

λ
1
r+λ

≤ c7η3E
β(1+rλ)(t) + c7cη3(−E ′(t)).

(3.24)

By (3.21), there exists λ ∈ (0, 1 − 1
r
) such that β(1 + rλ) = β + 1. For this

fixed λ, (3.24) indicates

J1 :=
c1

2

∫ T

S

Eβ(t)α(t)

∫ t

0

g(t− s)‖∇u(s)−∇u(t)‖2dsdt

≤c1c7η3

2

∫ T

S

α(t)Eβ+1(t)dt+
c1c7cη3

2

∫ T

S

α(t)
(
− E ′(t)

)
dt

≤c1c7η3

2

∫ T

S

α(t)Eβ+1(t)dt+
c1c7cη3

2
‖α(t)‖L∞E(S).

(3.25)
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Moreover, by Assumption (2.2) and (2.6), we get

J2 :=
1

4η2

∫ T

S

Eβ(t)α(t)

∫ t

0

g1− 1
r (s)ds

∫ t

0

g1+ 1
r (t− s)‖∇u(s)−∇u(t)‖2dsdt

≤ 1

4η2

∫ T

S

Eβ(t)α(t)

∫ t

0

g1− 1
r (s)ds

∫ t

0

−1

ξ
g′(t− s)‖∇u(s)−∇u(t)‖2dsdt

≤ 1

4η2

∫ T

S

Eβ(t)α(t)

∫ t

0

g1− 1
r (s)ds

(
− 2

ξ
E ′(t)

)
dt

≤ 1

2η2ξ

∫ ∞
0

g1− 1
r (s)ds

∫ T

S

Eβ(t)α(t)
(
− E ′(t)

)
dt

≤ ‖α(t)‖L∞

2η2ξ(1 + β)

∫ ∞
0

g1− 1
r (s)dsEβ+1(S).

(3.26)

Taking (3.25),(3.26) into (3.19), we arrive at

c1

∫ T

S

Eβ+1(t)α(t)dt

≤
( c1 + 2

2(β + 1)
+
‖α(t)‖L∞

2η2ξ(1 + β)

∫ ∞
0

g1− 1
r (s)ds

)
Eβ+1(S)

+
((
β + 2

)
c2‖α(t)‖L∞ + c3

)
Eβ+ 1

2
+ 1
p+2 (S) +

( 1

4η1

c
1
p+2

0 +
c1c7cη3

2

)
‖α(t)‖L∞E(S)

+ η1c
1
p+2

0 ‖α(t)‖L∞

∫ T

S

α(t)E2β+ 2
p+2 (t)dt+

c1c7η3

2

∫ T

S

α(t)Eβ+1(t)dt

+

∫ T

S

(
η2 − (1− θ)

(
1−

∫ t

0

g(s)ds
))
Eβ(t)α(t)‖∇u‖2dt.

Noting 2β + 2
p+2
≥ β + 1 (by β ≥ p

p+2
), we get∫ T

S

α(t)E2β+ 2
p+2 (t)dt ≤ Eβ1(0)

∫ T

S

α(t)Eβ+1(t)dt,

where β1 := β − p
p+2

. Therefore, just as the proof of Theorem 3.1, we achive

the estimate (3.22) and (3.23). This completes the proof. �

Corollary 3.1. Let Assumptions (A-1) and (A-2) hold and {u0, u1} ∈ H1(Ω)×
L2(Ω). If r > 2(1 + 1/p), then the estimates in (3.3) and (3.4) remain valid.

Proof. Let β = p
p+2

, it is easy to see that (3.21) is satisfied. Therefore, the

estimates can be obtained by Theorem 3.2. �

Remark 3.1. (1) We can see from Corollary 3.1, the solution can still decays

at the rate
(
1 +

∫ t
0
α(s)ds

)− 1
p as in (3.4), whenever g(t) decays polynomially

as (1 + t)−r, providing r is large enough.
(2) In the special case α(t) = 1, the decay rates of the energy and solution,



136 Hui Zhang

given in Theorem 3.1 and Theorem 3.2, recover those in [14, Theorem 3.1,
Theorem 3.2].
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